
Fortran Seminar Series
Fall 2022

Overview

• Presented by Mark Branson and Don Dazlich

• Presentation materials and sample codes available
at the web site:

hogback.atmos.colostate.edu/fortran

• Kelley keeps this updated on a weekly
basis

Intended Audience

• Some people will already know some Fortran

• Some people will be programmers in other languages

• Some people will be complete newcomers

This course is intended for all three groups!

Why Fortran?

• Almost every major model in atmospheric and
oceanic science is still written in Fortran (CAM or
CESM, RAMS, WRF, ECMWF’s suite of models, NWP,
etc.)

• Fortran has a reputation for being hopelessly out of
date (mainly due to Fortran 77?)

• No courses offered except in Meteorology
departments

Speed Test
Solve 2D Laplace equation with Jacobi interactive solver

Uxx + Uyy = 0

using a fourth-order compact finite difference scheme

Uij = (4(Ui-1,j + Ui,j-1 + Ui+1,j + Ui,j+1) +
Ui-1,j-1 + Ui+1,j-1 + Ui+1,j+1 + Ui-1,j+1) / 20

Dang It’s Fast!

Compiler/Package n=50 n=100

Python 46.15 751.78

NumPy 0.61 6.39

Matlab 0.64 6.53

Java 0.12 2.2

gfortran 0.24 3.25

ifort 0.052 0.66

Results with different software (Execution time in
seconds)

Courses
• CSU Atmos used to have a programming course

(Fortran/UNIX, IDL and Matlab)

http://www.atmos.colostate.edu/programming/

• Iowa State has a Fortran/Python course

http://www.meteor.iastate.edu/classes/mt227/

• Univ of Miami Scientific Programming course

http://www.rsmas.miami.edu/personal/miskandarani/
Courses/MSC321/

Hands On!
• In the past we’ve just lectured and not done any

“hands on” work.

• But the best way to learn any programming language
is to get some hands on experience.

• We’d like to try splitting each session into lecture and
hands-on.

• Use your own compiler on your laptop

GREAT RESOURCE: fortran-lang.org

Proposed Syllabus
1. Beginnings

2. Data Types and Basic Calculation

3. Control Constructs

4. Array Concepts

5. Subroutines and Functions

6. Modules

7. Parameterized Data Types

Proposed Syllabus (cont.)

8. Input and Output (Don)

9. Derived Types

10. Computer Arithmetic (Don)

11. Make and Makefiles

12. Introduction to Parallel Programming (Don)

Beginnings

• Fortran does not (yet) have a command-line
interpreter like IDL, Matlab or Python.

• You need an editor to write the code in and a
Unix or Linux shell window to compile and
execute it.

• Each individual will need to determine the
compiler that’s available on their system.

Classes of Language

Interpreted Compiled

Shell
script

Perl Python Java C,C++,Fortran

Fortran is the best choice for pure number
crunching!

History

FORmula TRANslator invented 1954-8 by John
Backus and his team and IBM

general purpose programming language mainly
intended for mathematical computations in
engineering

first-ever high-level programming language using
the first compiler ever developed

History (2)

FORTRAN 66 (ISO Standard 1972)

FORTRAN 77 (1980)

Fortran 90 (1991)

Fortran 95 (1996)

Fortran 2003 (2004)

Fortran 2008 (2010)

Fortran 2018 (formerly Fortran 2015)

HUGE TRANSITION!}

Disclaimer

This course will cover modern, free-format
Fortran only!

• Don’t want to teach newcomers “old” fortran.

• At the same time almost all of you already have
or will encounter your fair share of legacy
Fortran codes.

• Almost all old Fortran remains legal.

Hardware and Software

A system is built from hardware and software

The hardware is the physical medium

• CPU, memory, keyboard, display

The software is a set of computer programs

• operating system, compilers, editors

• Fortran programs

Programs
Fortran 90 is a high-level language

Uses English-like words and math expressions

Y = X+3
PRINT *, Y

Compilers translate into machine instructions

A linker then creates an executable program

The operating system runs the executable

Algorithms and Models
An algorithm is a set of instructions
They are executed in a defined order
Doing that carries out a specific task

The above is known as procedural programming
Fortran 90 is a procedural language

Object-orientation is still procedural
Fortran 90 has object-oriented facilities

An Example of a Problem

Write a program to convert a temperature value
in degrees Fahrenheit to degrees Celsius and
degrees Kelvin.

Algorithm:
1. Read in the initial temperature value (F).
2. Apply equation to compute temp in C.
3. Apply equation to compute temp in K.
4. Write out the results.

Logical Structure

1. Start of program
2. Reserve memory for data
3. Write prompt to display
4. Read in the initial temperature value (F)
5. Convert to both C and K
6. Write out the results
7. End of program

The Program

temp_conversion.f90 (break out of keynote)

High Level Structure
1. Start of program (or procedure)

PROGRAM temp_conversion

2. Specification part

Declare types and sizes of data

3. - 6. Execution part

All of the “action” statements

7. End of program (or procedure)

END PROGRAM temp_conversion

Program and File Names

• The program and file names are NOT related.
PROGRAM QES can be in the file QuadSolver.f90

Some implementations like the same names,
sometimes converted to lower- or upper-case.

The compiler documentation should tell you!

The Specification Part

Reserve memory for data
REAL :: deg_f, deg_c, deg_k

REAL is the type of the variables

The variable deg_f is used to hold input
The value read in is called the input data
The output data are the string, deg_c and deg_k
They can be any expression not just a variable

The Execution Part
Write prompt to display

PRINT *, ‘Please type in the temp in F’

Read the temperature in degrees F
READ *, deg_f

Convert to Celsius and Kelvin
deg_c = 5.*(deg_f-32.)/9.

deg_k = deg_c + 273.15

Write out the results
print*, "This is equal to", deg_c, "C and",deg_k, "K"

Compiling and Executing

Compile your program into an executable:

f90 [-o exename] program_name.f90

where

f90 = name of your compiler (f90, ifort,
gfortran, g90, etc.)

If you do not specify an executable most systems
will use a.out by default.

Really Basic I/O

READ *, <variable list> reads from stdin
PRINT *, <expression list> writes to stdout

Both do input/output as human-readable text
Each I/O statement reads/writes on a new line

A list is items separated by commas
Variables are anything that can store values
Expressions are anything that can deliver a value

Example

There are four main steps:

1. Specify the problem
2. Analyze and subdivide into tasks
3. Write the Fortran 90 code
4. Compile and run (testing phase)

Each step may require several iterations.
You may need to restart from an earlier step.
The testing phase is very important.

Errors
• ALWAYS keep in mind the golden rule:

Computers ONLY do what you tell them to do.

• If something is wrong, it’s probably your own
fault. I’m sorry, but it is.

• Corollary: Sometimes you don’t know that
you told the computer to do it wrong, OR
somebody else did the telling.

Errors

• If the syntax is incorrect, the compiler says so

INTEGER :: ,mins,secs

• If the action is invalid, things are messier

X / Y when Y is zero

Error message at run-time OR
Program may crash or hang or produce
nonsense values

Fortran Language Rules

• This course is modern, free-format source only

• Almost all old Fortran remains legal BUT you
should avoid using it as modern Fortran is
better

Important Warning
• Fortran syntax (the arrangement of words and

phrases) is verbose and horrible. It can fairly
be described as a historical mess

• Fortran semantics (the mean of words, phrases,
or text) are fairly clean and consistent

• Verbosity causes problems for examples. Many
use poor style to be readable, lack error
checking.

• DO WHAT I SAY NOT WHAT I DO

Correctness
Humans understad linguage quite well even when
it isnt stroctly correc

Computers (i.e., compilers) are not so forgiving
• Programs must follow the rules to the letter

Fortran compilers will flag all syntax errors. Good
compilers will detect more than is required.

But your error may just change the meaning OR
do something invalid (“undefined behavior”)

Examples of Errors

Consider (N*M/1024+5)

If you mistype the ‘0’ as a ‘)’: (N*M/1)24+5)

You will get an error message when compiling. It
may be confusing but will point out a problem.

If you mistype the ‘0’ as a ‘-’: (N*M/1-24+5)

You will simply evaluate a different formula and get
wrong answers with no error message.

And if you mistype ‘*’ as ‘8’?

Character Set

Letters (A to Z and a to z) and digits (0 to 9)
Letters are matched ignoring their case

And the following special characters
_ = + - * / () , . ’ : ! ” % & ; < > ? $
Plus space (i.e., a blank) but not tab
The end-of-line indicator is not a character

Any character allowed in comments and strings
• Case is significant in strings and only there

Special Characters

_ = + - * / () , . ’ : ! ” % & ; < > ? $

slash (/) is also used for divide
hyphen (-) is also used for minus
asterisk (*) is also used for multiply
apostrophe (‘) is also used for single quote
period (.) is also used for decimal point

The others are described when we use them.

Source Form (1)

Spaces are not allowed in keywords or names
INTEGER is not the same as INT EGER

HOURS is the same as hours or hoURs
But not HO URS - that means HO and URS

Some keywords can have two forms:
ENDDO is the same as END DO
But EN DDO is treated as EN and DDO

Source Form (2)

• Do not run keywords and names together
PROGRAMMyPROG - illegal
PROGRAM MyPROG - allowed

• You can use spaces liberally for clarity
INTEGER :: I, J, K

Exactly where you use them is a matter of taste

• Blank lines can be used in the same way as well
as well as lines consisting only of comments

Lines and Comments
A line is a sequence of up to 132 characters.

A comment is from ! to the end of the line.
The whole of a comment is totally ignored by the
compiler.

A = A+1 ! These characters are ignored
! That applies to !, & and ; too.

Blank lines are completely ignored.
!
! Including ones that are just comments
!

Use of Layout

• Well laid-out programs are much more readable.

• You are less likely to make trivial mistakes AND
much more likely to spot them.

• This also applies to low-level formats, too.

1.0e6 is clearer than 1.e6 or .1e7

Use of Comments

• Appropriate commenting is very important.

• Document assumptions that may break later.

• Also helps to remind you to not make the
same mistake twice!

• Good commenting can slow coding by 25%
BUT it really speeds up initial debugging!

• Overall in research it repays itself 3:1. Can be
10:1 for production codes.

Use of Case

• It doesn’t matter which case convention you
use BUT do try to be moderately consistent.

• Very important for clarity and editing/
searching.

• One possible convention:

• UPPER case for keywords

• Lower case for names

Statements and
Continuation

• A program is a sequence of statements used to
build high-level constructs.

• Statements are made up out of lines.

• Statements are continued by appending &

A = B + C + D + E + &
F + G + H

is equivalent to

A = B + C + D + E + F + G + H

Other Rules (1)
• Statements can start at any position.

• Use indentation to clarify your code.

IF (a > 1.0) THEN
 b = 3.0
ELSE
 b = 2.0
END IF

• A number starting a statement is a label.

 10 A = B + C

The use of labels is described later.

Other Rules (2)
Semi-colons can be used to put multiple
statements on the same line:

a = 3 ; b = 4 ; c = 5
Overusing that can make a program unreadable
BUT it can clarify your code in some cases.

Avoid mixing continuation with that and
comments. It is legal but makes code VERY hard
to read.

 a = b + c ; d = e + f + &
 g + h
 a = b + c + & ! More coming...

Breaking Character Strings
Continuation lines can start with an &
Preceding spaces and the & are suppressed.

The following works and allows indentation:

PRINT *, ‘Assume that this string &
 &is far too long and complic&
 &ated to fit on a single line’

The initial & avoids including excess spaces AND
avoids problems if the text starts with !

This may also be used to continue any line.

Names
• Up to 31 letters, digits and underscores.

• Names must start with a letter.

• Upper and lower case are equivalent.

DEPTH, Depth and depth are all the same.

• The following are valid fortran names:

A, AA, aaa, Tax, INCOME, Num1, Num2, NUM333,

N12MO5, atmospheric_pressure, Line_Color,

R2D2, A_21_173_5a

Invalid Names

The following are invalid names

1A does not begin with a letter
_B does not begin with a letter
Depth$0 contains an illegal character ‘$’
A-3 would be interpreted as subtract 3 from A
B.5: contains illegal characters ‘.’ and ‘:’

