
Compiling and Building
(including make)

Compiling and Building (1)
First step in the build process: compile the source code

The output from this step is generally known as the
object code

Different compilers will produce different object codes
from the same source code, and the naming conventions
may be different.

Consequences:

• Use the same compiler for all source code
• Object files are .o or .obj

Compiling and Building (2)

Second step in the build process: link the object files

Except for the most simplest Fortran codes, most
programs are built up from different pieces

The linker adds a number of extra files, the run-time
libraries. Use -v if you want to see the gory details.

Stuff contained in the run-time libraries:

• input/output to the screen
• intrinsic functions (sin, cos, etc.)

Compiling and Building (3)

End result: an executable program!

Contains the compiled source code and various auxiliary
routines that make it work

It also contains references to so-called dynamic run-time
libraries (Windows: DLLs, Linux: shared objects or
shared libaries)

Include files and Modules
Your program might be organized in some convenient
directory tree. In this case, the compiler may need
assistance in order to help it find everything.

• Fortran has the capability of including external files
• When compiling code that includes modules, the

compiler will generate module intermediate files
(.mod)

Compilers support the -I option to help locate these
files.

Example: tabulate

Makefile Disclaimer
This course will give a brief overview of
 how to use make with Fortran

Will cover the basics only!

Motivation:

• You might be using an existing code
that gets compiled with make

• You might want to incorporate this for
your own projects/codes

What is Make?
Make is a tool which controls the generation of
 executables from a program’s source files

It gets its knowledge of how to build your program
 from a file called the makefile

The compilation procedure is much faster!

• The compilation is done with a single command
• Only files that have been modified are recompiled
• Allows managing large programs with lots of

dependencies

Makefile Basics (1)

A rule in the makefile tells Make how to execute a
series of commands in order to build a target file from
source files

It also specifies a list of dependencies of the target file

Here is what a simple rule looks like:

 target : dependencies ... (also called prerequisites)
 <tab> commands

The <tab> is absolutely necessary!

Makefile Basics (2)
Make uses timestamps to locate the files that have been
modified since the last time make was executed

By default when you type make it looks for the file
makefile or Makefile. You can designate a specific name
with make -f <thismakefile>

Can also use macros to give names to variables within
the makefile. NOTE these are case-sensitive!

If no specific target is given in the make command then
Make starts with the first target listed in the makefile

Let’s start with a very simple example (example1)

Makefile Basics (3)
Comments are delimited by the # symbol

A backslash \ can be used as a continuation character

Common extra tidbit: Create a “phony target” called
clean which can be run to do a fresh recompile of all
source code

Great reference: https://www.gnu.org/software/make/
manual/make.html

https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html

Makefile Automatic
Variables

These can only be values in the recipe. They cannot be
used in the target list of a rule

$< The name of the first prerequisite

$^ The names of the all prerequisites

$@ The file name of the target of the rule

And there are even more available

Compiling Modules
When modules are compiled both a .o and .mod file
are created

A .mod file is like a compiled header. This is what the
compiler searches for when it sees a USE statement

The dependencies can start to get cumbersome and
complicated when many modules are USED and
inherited

Make has no method for determining these for you.

Take a look at example2

Compiling Modules (2)
If you edit a module but do not change the interface
then there’s no need to update the .mod file.

But this is compiler specific behavior:

gfortran has been updated to handle this

ifort always updates both the .o and .mod files

There are some software build tools that try to handle
this complexities to try to reduce “cascading
compilation”.

Want it to compile fast, but really we want it correct!

Helpful Tools

mkDepends - generate a list of dependencies

mkSrcfiles - generate a list of all source files

Versions of these perl scripts are used in atmospheric
models like SAM and CAM

mkdep - requires both GNU make and Python

fortran-lang.org has some excellent material on building
programs including ways to generate dependency lists

http://fortran-lang.org

C-preprocessing Blocks

A mechanism to include conditionally-compiled code

Will automatically be handled by using a file extension
of .F, .FOR, .FTN, .fpp, .Fpp, .F90, .F95, .F03 or .F08

To manually invoke the preprocessor use -cpp

To activate the named blocks of code use -D<name>

Sample program: cpreproc.f90

