
Data Types and Basic
Calculation

Intrinsic Data Types

Fortran supports five intrinsic data types:

1. INTEGER for exact whole numbers

e.g., 1, 100, 534, -18, -654321, etc.

2. REAL for approximate, fractional numbers

e.g., 1.1, 3.0, 23.565, 3.1415, exp(1), etc.

3. COMPLEX for complex, fractional numbers

e.g., (1.1,-23.565), etc.

4. LOGICAL for truth values (boolean)
These may only have values of true or false
e.g., .TRUE. , .FALSE.

5. CHARACTER for strings of characters
e.g., ‘?’, ‘Albert Einstein’, ‘X + Y = ‘, etc.

The string length is part of the type in
Fortran.

Fortran uses integers for:
• Loop counts and loop limits
• An index into an array or a position in a list
• An index of a character in a string
• As error codes, type categories, etc.

Also use them for purely integral values
Example: Calculations involving counts

Integers (1)

• Integers are restricted to lie in a finite range.

Typically ±2147483647 (Sometimes ±9.23 × 1017)

• A compiler may allow you to select the range.

• More on arithmetic and errors later.

Integers (2)

Reals
• Reals are used for continuously varying values.

• Reals are stored as floating-point values. They
also have a finite range and precision.

THEY ARE INEXACT

• It is essential to use floating-point appropriately.

 FP representation : significand x baseexponent

 1.2345 = 12345 x 10-4

Floating Point Standard

• The Institute of Electrical and Electronics
Engineers (IEEE) has produced a standard for
floating point arithmetic. IEEE 754-2008.

• This defines 32-bit and 64-bit floating point
representations.

• 32-bit: 10-38 to 10+38 and 6-7 decimal places

• 64-bit: 10-308 to 10+308 and 15-16 decimal
places

Real Constants
• Real constants must contain a decimal point or an

exponent.

• They can have an optional sign just like integers.

• The basic fixed-point form is anything like:

123.456, -123.0, +0.0123, 123., .0123,
0012.3, 0.0, 000., .000

• Optionally followed by E or e and an exponent

1.0e6, 123.0e-3, .0123e+5, 123.E+06, .0E0

• 1e6 and 1E6 are also valid Fortran real constants.

Complex Numbers

This course will generally ignore them.
If you don’t know what they are don’t worry.

These are (real, imaginary) pairs of REALs (i.e.,
Cartesian notation)

Constants are pairs of reals in parentheses
e.g., (1.23,-4.56) or (-1.0e-3,0.987)

Declaring Numeric Variables
Variables hold values of different types:

INTEGER :: count, income, mark
REAL :: width, depth, height

You can get all undeclared variables diagnosed
Add the statement IMPLICIT NONE at the
start of every program, subroutine, function, etc.

If not, variables are declared implicitly by use
Names starting with I-N are INTEGER
Names starting with A-H and O-Z are REAL

YOU SHOULD ALWAYS
USE IMPLICIT NONE

Assignment Statements
The general form is:

<variable> = <expression>
This is actually very powerful (see later).

This first evaluates the expression on the RHS.
It then stores the result in the variable on the LHS.
It replaces whatever value was there before.

For example:
xyMax = 2 * xyMin
mySum = mySum + Term1 + Term2 + (Eps * Err)

Arithmetic Operators
There are five built-in numeric operations:

+ addition
- subtraction
* multiplication
/ division
** exponentiation

Exponents can be any arithmetic type:
INTEGER, REAL or COMPLEX

Examples

Some examples of arithmetic expressions are:

A + B * C
A + C1 - D2
X + Y/7.0
2**K
A**B + C
(A + C1) - D2
A + (C1 - D2)
P**3/((X+Y*Z)/7.0-52.0)

Operator Precedence
Fortran uses normal mathematical conventions

• Operators bind according to precedence
• And then generally from left to right
• Exponentiation binds from right to left

The precedence from highest to lowest is:
** exponentiation
* / multiplication and division
+ - addition and subtraction

Parentheses are used to control it. Use them
whenever the order matters or it is clearer.

Examples
X + Y * Z is equivalent to X + (Y * Z)
X + Y / 7.0 is equivalent to X + (Y / 7.0)
A - B + C is equivalent to (A - B) + C
A + B ** C is equivalent to A + (B ** C)
- A ** 2 is equivalent to - (A ** 2)
A - (((B + C))) is equivalent to A - (B + C)

You can force any order you like:
(X + Y) * Z

Adds X to Y and then multiplies by Z

Exponentiation Precendence

This is an exception as it evaluates right to left.

2 ** 3 ** 2 is equivalent to 2 ** (3 ** 2)
 ==> 2 ** 9 = 512

NOT 8 ** 2 = 64

In case you actually try to do this (???)

Integer Expressions
Expressions involving integer constants and variables

These are evaluated in integer arithmetic. Division
always truncates toward zero.

INTEGER :: K, L, N
N = K+L/2
If K = 4 and L = 5 then N = 6

(-7)/3 and 7/(-3) are both -2

Mixed Expressions
In the CPU calculations must be performed between
objects of the same type, so if an expression mixes type
some objects must change type.

Default types have an implied ordering:

1. INTEGER (lowest)
2. REAL
3. COMPLEX (highest)

The result of an expression is always of the highest
type. e.g., INTEGER * REAL gives a REAL

Be careful with this as it can be deceptive!

Conversions
There are several ways to force conversion
• Intrinsic functions INT, REAL and COMPLEX

X = X + REAL(K)/2
N = 100*INT(X/1.25)+25

• Use the appropriate constants. (You can even add
zero or multiply by one

X = X + K/2.0
X = X+(K+0.0)/2

The second method isn’t very nice but works well
enough. (See later about KIND and precision)

Mixed-type Assignment
<real variable> = <integer expression>

• The RHS is converted to REAL
• Just as in a mixed-type expression

<integer variable> = <real expression>
• The RHS is truncated to INTEGER
• It is always truncated toward zero

Similar remarks apply to COMPLEX

The RHS is evaluated independently of the LHS

Example: mixedassigned.f90

Built-in functions that are always available
• No declaration is needed -- just use them!

Examples:
Y = SQRT(X)
PI = 4.0 * ATAN(1.0)
Z = EXP(3.0*Y)
X = REAL(N)
N = INT(X)
Y = SQRT(-2.0*LOG(X))

Intrinsic Functions

Intrinsic Numeric Functions
REAL(n) ! Converts its argument to REAL
INT(x) ! Truncates x to INTEGER (to zero)
AINT(x) ! The result remains REAL
NINT(x) ! Converts x to the nearest INTEGER
ANINT(x) ! The result remains REAL
ABS(x) ! The absolute value of its argument
 ! Can be used for INTEGER, REAL or COMPLEX
MAX(x,y,...) ! The maximum of its arguments
MIN(x,y,...) ! The minimum of its arguments
MOD(x,y) ! Returns x modulo y
And there are more -- some are mentioned later.

Intrinsic Mathematical
Functions

SQRT(x) ! The square root of x
EXP(x) ! e raised to the power of x
LOG(x) ! The natural logarithm of x
LOG10(x) ! The base 10 logarithm of x

SIN(x) ! The sine of x (x in radians)
COS(x) ! The cosine of x (x in radians)
TAN(x) ! The tangent of x (x in radians)
ASIN(x) ! The arc sine of x (x in radians)
ACOS(x) ! The arc cosine of x (x in radians)
ATAN(x) ! The arc tangent of x (x in radians)

Logical Type
These can take only two values: true or false

.TRUE. and .FALSE.
• Their type is LOGICAL (not BOOL)

LOGICAL :: red, amber, green
red = .True.
IF (red) THEN
 PRINT *, ‘Stop’
 red = .False. ; amber = .True. ; green = .False.
ELSE IF (red .AND. amber) THEN
 ...

Relational Operators
Relations create LOGICAL values

These can be used on any other built-in type
== (or .EQ.) equal to
/= (or .NE.) not equal to

These can be used only on INTEGER and REAL
< (or .LT.) less than
<= (or .LE.) less than or equal to
> (or .GT.) greater than
>= (or .GE.) greater than or equal to

Logical Expressions
Can be as complicated as you like

Start with .TRUE., .FALSE. and relations
Can use parentheses as for numeric ones

.NOT., .AND. and .OR.

.EQV. can be used instead of ==

.NEQV. can be used instead of /=

Fortran is not like C-derived languages
LOGICAL is not a sort of INTEGER

Example: testlogical.f90

Operator Precedence (2)
Include the logical and relational operators

The precedence from highest to lowest is:
 .not. (-) logical NOT and negative sign
 ** exponentiation
 * / multiplication and division
 + - addition and subtraction
<, <=, >, >= relational
 .and. logical AND
 .or. logical OR
 = assignment

Character Type

Used when strings of characters are required.
Names, descriptions, headings, etc.

Fortran’s basic type is a fixed-length string (unlike
almost all more recent languages)

Character constants are quoted strings
PRINT *, ‘This is a title’
PRINT *, “And so is this”

The characters between quotes are the value

Character Data
The case of letters is significant in them
Multiple spaces are not equivalent to one space
Any representable character may be used

The only Fortran syntax where the above is so

In ‘Time^^=^^13:15’, with ‘^’ being a space
The character string is of length 14
Character 1 is T, 8 is a space, 10 is 1, etc.

Example program: charstrings.f90

Character Variables
CHARACTER :: answer, marital_status
CHARACTER(LEN=10) :: name, dept, faculty
CHARACTER(LEN=32) :: address

answer and marital_status are each of length 1
They hold precisely one character each
answer might be blank or hold ‘Y’ or ‘N’

name, dept and faculty are of length 10
address is of length 32

Another Form

CHARACTER :: answer*1, martial_status*1, &
 name*10, dept*10, faculty*10, address*32

While this form is historical it is more compact

Don’t mix the forms -- that is an abomination
CHARACTER(LEN=10) :: dept, faculty, addr*32

For some obscure reasons using LEN= is cleaner
It avoids some arcane syntactic “gotchas”

Character Assignment

CHARACTER(LEN=6) :: firstname, lastname
firstname = ‘Mark’ ; lastname = ‘Branson’

firstname is padded with spaces (‘Mark^^’)
lastname is truncated to fit (‘Branso’)

Unfortunately you won’t get told
But at least it won’t overwrite something else

Character Concatenation
Values may be joined using the // operator

CHARACTER(LEN=6) :: identity, A, B, Z
identity = ‘TH’ // ‘OMAS’
A = ‘TH’; B = ‘OMAS’
Z = A // B

Sets identity to ‘THOMAS’
But Z is set to ‘TH’ − why?

// does not remove trailing spaces
It used the whole length of its inputs

Substrings
If Name has length 9 and holds ‘Marmaduke’

Name(1:1) would refer to ‘M’
Name(2:4) would refer to ‘arm’
Name(6:) would refer to ‘duke’ -- note the form!

We could therefore write statements such as
CHARACTER :: name*15, lastname*7, title*3
name = ‘Mr. Joe Johnson’
title = name(1:3)
lastname = name(9:)

Warning - a “Gotcha”
CHARACTER substrings look like array sections
But there is no equivalent of array indexing

CHARACTER :: name*20, temp*1
temp = name(10)

name(10) is an implicit function call
Use name(10:10) to get the 10th character

CHARACTER variables come in various lengths
name is not made up of 20 variables of length 1

Intrinsic Character Functions

LEN(c) ! The STORAGE length of c
TRIM(c) ! c without trailing blanks
ADJUSTL(c) ! With leading blanks removed
INDEX(str,sub) ! Position of sub in str
SCAN(str,set) ! Position of any character in set
REPEAT(str,num) ! num copies of str, joined

And there are more -- see the references

Examples
name = ‘ Smith ‘
newname = TRIM(ADJUSTL(name))

newname would contain ‘Smith’

CHARACTER(LEN=6) :: A, B, Z
A = ‘TH’; B = ‘OMAS’
Z = TRIM(A) // B

Now Z gets set to ‘THOMAS’ correctly

Named Constants (1)

These have the PARAMETER attribute
REAL, PARAMETER :: pi = 3.14159
INTEGER, PARAMETER :: maxlen = 100

They can be used anywhere a constant can be

CHARACTER(LEN=maxlen) :: string
circum = pi * diam
IF (nchars < maxlen) THEN
 ...

Named Constants (2)
Why are these important?

They reduce mistyping errors in long numbers
Is 3.14159265358979323846D0 correct?

They can make equations much clearer
Much clearer which constant is being used

They make it easier to modify the program later
INTEGER, PARAMETER :: MAX_DIMENSION = 10000

Named Character
Constants

CHARACTER(LEN=*), PARAMETER :: &
 author = ‘Dickens’, title = ‘A Tale of Two Cities’

LEN=* takes the length from the data

It is permitted to define the length of a constant
The data will be padded or truncated if needed

But the above form is generally the best

Named Constants (3)
Expressions are allowed in constant values

REAL, PARAMETER :: pi = 3.1415, &
 pi_by_4 = pi/4, two_pi = 2*pi

CHARACTER(LEN=*), PARAMETER :: &
 all_names = ‘Bob, Jennifer, Karen’, &
 karen = all_names(16:20)

Generally anything reasonable is allowed
It must be determinable at compile time

Initialization

Variables start with undefined values
They often vary from run to run, too

Initialization is much like defining constants
without the PARAMETER attribute

INTEGER :: count = 0, I = 5, J = 100
REAL :: inc = 1.0E5, max = 10.0E5, min = -10.0E5
CHARACTER(LEN=10) :: light = ‘Amber’
LOGICAL :: red = .TRUE., blue = .FALSE, &
 green = .FALSE.

