
Control Constructs

Control Constructs

These will change the sequential execution order
Will cover the main constructs in some detail
We will cover procedure call later

The main ones are:
Conditionals (IF etc.)
Loops (DO etc.)
Switches (SELECT/CASE etc.)

Loops are by far the most complicated.

Single Statement IF (1)

The oldest and the simplest is the single statement IF

IF (logical expression) simple statement

If the logical expression is .True. then the simple
statement is executed.

If the logical expression is .False. then the whole
statement has no effect.

Single Statement IF (2)
Some examples:

IF (X < A) X = A

IF (INT(a*b-c) <= 47) mytest = .true.

IF (MOD(Cnt,10) == 0) WRITE(*,*) CNT

Unsuitable for anything complicated.

Only action statements (assignment, input/output) can
be used. Nothing complicated like another IF
statement or anything containing blocks.

Block IF Statement
A block IF statement is much more flexible

Here is the most traditional form of it

IF (logical expression) THEN
then block of statements

ELSE
else block of statements

ENDIF

If the expr is .TRUE. then the first block is executed
If not, the second block is executed.

ENDIF or END IF can be used.

Example
LOGICAL :: flip

IF (flip .AND. X /= 0.0) THEN
 PRINT *, ‘Using the inverted form’
 X = 1.0/A
 Y = EXP(-A)
ELSE
 X = A
 Y = EXP(-A)
ENDIF

Omitting the ELSE
The ELSE and its block can also be omitted.

IF (X > Maximum) THEN
X = Maximum

ENDIF

IF (name(1:4) == “Miss” .OR. &
 name(1:4) == “Mrs.”) THEN

 name(1:3) = “Ms.”
 name(4:) = name(5:)

ENDIF

Including ELSE IF Blocks (1)
ELSE IF functions much like ELSE and IF

IF (X < 0.0) THEN ! This is tried first
X = A

ELSE IF (X < 2.0) THEN ! This second
X = A + (B-A)*(X-1.0)

ELSE IF (X < 3.0) THEN ! This third
X = B + (C-B)*(X-2.0)

ELSE ! This is used if none succeed
X = C

ENDIF

Including ELSE IF Blocks (2)

• You can have as many ELSE IFs as you wish

• There is only one ENDIF for the whole block

• All ELSE IFs must come before any ELSE

• They are checked in order and the first success is taken

• You can omit the ELSE in these constructs

• ELSE IF can also be spelled ELSEIF

Named IF Statements (1)
The IF can be preceded by <name>:
And the END IF followed by <name> (note!)
And any ELSE IF / THEN and ELSE may be

myifblock: IF (X < 0.0) THEN
X = A

ELSE IF (X < 2.0) THEN myifblock
X = A + (B-A)*(X-1.0)

ELSE myifblock
X = C

ENDIF myifblock

Named IF Statements (2)
The IF construct name must match and be distinct
Can be a great help for checking and clarity
You should name at least all long IFs

If you don’t nest IFs that much this style is fine:

myifblock: IF (X < 0.0) THEN
X = A

ELSE IF (X < 2.0) THEN
X = A + (B-A)*(X-1.0)

ELSE
X = C

ENDIF myifblock

• Almost any executable statements are okay
Both kinds of IF, complete loops, etc.
You may never notice the few restrictions

• This applies to all of the block statements
IF, DO, SELECT, etc.

• Avoid deep levels and very long blocks
Purely because they will confuse human
readers

Block Contents

Example
phasetest: IF (state == 1) THEN
 IF (phase < pi_by_2) THEN

...
 ELSE

...
 ENDIF
ELSE IF (state == 2) THEN phasetest
 IF (phase > pi) PRINT *, ‘A bit odd here’
ELSE phasetest

 IF (phase < pi) THEN
...

 ENDIF
ENDIF phasetest

SELECT CASE (1)

An alternative to the IF block for selective execution is
the SELECT CASE statement. Can be used if the
selection criteria are based on simple values in
INTEGER, LOGICAL and CHARACTER.

It provides a streamlined syntax for an important
special case of a multiway selection.

SELECT CASE (2)
The basic format is:

SELECT CASE (<selector>)
CASE (label-list-1)

statements-1
CASE (label-list-2)

statements-2
CASE (label-list-n)

statements-n
CASE DEFAULT

statements-default
END SELECT

SELECT CASE (3)

The label-list can take one of many forms:

• val → a specific value
• val1, val2, val3 → a specific set of values
• val1: val2 → values between val1 and val2 inclusive
• val1: → values larger than or equal to val1
• : val2 → values less than or equal to val2

val, val1 and val2 must be constants or parameters!
Examples: select_example1.f90 & select_example2.f90

SELECT CASE (4)
Some important notes:

• The values in the label-lists should be unique.
Otherwise you will get a compilation error.

• CASE DEFAULT should be used if possible as it
guarantees that a match will be found even if it is an
error condition.

• Technically the CASE DEFAULT can be placed
anywhere within the SELECT CASE statement but
the preferred position is at the bottom.

DO Construct

The loop construct in Fortran is known as the do loop.
The basic syntax is:

[loop name] DO [loop control]
block of statements

END DO [loop name]

• loop name and loop control are optional

• With no loop control it loops indefinitely

• END DO or ENDDO can be used.

Indexed DO Loop (1)
This is the most common form.

DO <control-var> = <initial>, <final> [,<step>]
block of statements

END DO

• <control var> is an integer variable.

• <initial>, <final> and <step> are integer expressions

• If <step> is omitted its default value is 1.

• <step> cannot be zero.

Indexed DO Loop (2)
If <step> is positive:

• <control-var> receives the value of <initial>.

• If the value of <control-var> is less than or equal to
<final>, the block of statements contained within
the loop are executed.

• Then the value of <control-var> is iterated by
<step> and compared to <final>.

• When the value of <control-var> exceeds the value
of <final> execution moves below the END DO.

Indexed DO Loop (3)
If <step> is negative:

• <control-var> receives the value of <initial>.

• If the value of <control-var> is greater than or
equal to <final>, the block of statements contained
within the loop are executed.

• Then the value of <control-var> is iterated by
<step> and compared to <final>.

• When the value of <control-var> is less than the
value of <final> execution moves below the END
DO.

Indexed DO Loop (4)
Important notes:

• <step> cannot be zero.

• Before the loop starts the values of <initial>, <final>
and <step> are evaluated exactly once. i.e., these
values are never re-evaluated as the loop executes.

• Never attempt to change the values of <control-
var>, <initial>, <final> or <step>.

• Don’t use real variables for the loop expressions.

• Examples: simpleloop.f90

Non-Indexed DO Loop

We can omit the loop control but then we need a way
to exit the loop.

• The EXIT statement brings the flow of control to
the statement following the END DO.

• The CYCLE statement starts the next iteration.

• Examples: exitloop.f90

WHILE Loop
The WHILE loop control has the following form:

DO WHILE (<logical expression>)
.
END DO

• The logical expression is reevaluated for each cycle

• The loop exits as soon as it becomes .FALSE.

• It’s actually a redundant feature as the same thing
can be accomplished with an EXIT statement.

• Examples: whileloop.f90

CONTINUE Statement

CONTINUE is a statement that does nothing
Used to be fairly common particularly before END DO
came along but now it is rare.

It’s mainly a placeholder for labels
This is purely to make the code clearer

It can be used anywhere a statement can.

RETURN and STOP

RETURN causes a procedure to halt execution with
control given back to the calling program

STOP halts execution cleanly.
Typically used with an IF statement to stop the program
if some error condition is encountered.

