
Array Concepts

Introduction

Working with a collection of data of the same type

REAL :: relhum1, relhum2, relhum3, …, relhum8252

The Fortran language will not recognize the intended
relationship between these variables. Instead, use an
array which is a collection of values of the same type.

REAL, DIMENSION(8252) :: relhum

Array Declarations (1)

Fortran 90 uses the DIMENSION attribute to declare
arrays. The most common examples are:

INTEGER, DIMENSION(30) :: days_in_month
CHARACTER(LEN=10), DIMENSION(250) :: names
REAL, DIMENSION(350,350) :: box_locations

In Fortran the starting index defaults to a value of 1
(not 0 as is common in many other languages - C/C++/
Python)

Array Declarations (2)
BUT you can specify a lower bound different than 1. It
will just default to 1 if you omit it.

The syntax is <lower bound>:<upper bound> where
the bound values are INTEGERs.

INTEGER, DIMENSION(0:99) :: arr1, arr2, arr3
CHARACTER(LEN=10), DIMENSION(1:250) :: names
REAL, DIMENSION(-10:10,-10:10) :: pos1, pos2
REAL, DIMENSION(0:5,1:7,2:9,1:4,-5:-2) :: pos1, pos2

Array Declarations(3)
Alternative way to declare arrays: Put the dimensions
next to the variable name

INTEGER :: arr1(0:99), arr2(0:99), arr3(0:99)
REAL :: pos1(10), pos2(35)
REAL :: globe1(144,92), globe2(128,64)

Don’t mix the two forms!

REAL :: A(0:99), B(3,6:9,5)

• The rank of an array is the number of dimensions.
The maximum number of dimensions is 7!

A has rank 1 and B has rank 3

• The bounds are the upper and lower limits.

A has bounds 0:99 and B has bounds 1:3, 6:9 and 1:5

• The extent of an array dimension is the range of its
index or indices. (upperbound-lowerbound+1)

A has extent 100 and B has extents 3, 4 and 5

Array Terminology

REAL :: A(0:99), B(3,6:9,5)

• The size of an array is the total number of
elements.

A has size 100 and B has size 60

• The shape of an array is its rank and extents.

A has shape (100) and B has shape (3,4,5)

Arrays are conformable if they share
the same shape. The bounds do not have
to be the same.

Array References

In general, there are three different ways to reference
arrays:

• individual array elements arr1(5), myintval(-10)

• entire array arr1 or arr1(:)

• array section arr1(5:24), arr1(-10:-7)

Array Element References

An array index can be any integer expression
e.g., months(j) selects the jth month

INTEGER, DIMENSION(-50:50) :: val
DO i = -50,50

val(i) = 2*i
END DO

Sets val to -100, -98, ..., 98, 100

Index Expressions

Set the even elements to the odd indices and vice versa

INTEGER, DIMENSION(1:80) :: series
DO K = 1,40

series(2*K) = 2*K-1
series(2*K-1) = 2*K

END DO

You can go completely overboard, too

 series(int(1.0+80.0*cos(-0.4))) = 42

Example of Arrays: Sorting

Sort a list of numbers into ascending order
The top level algorithm is:

1. Read the numbers and store them in an array.
2. Sort them into ascending order of magnitude.
3. Print them out in sorted order.

Selection Sort

This is NOT how to write a general sort
It takes O(N2) time compared to O(N log(N))

For each location J from 1 to N-1
 For each location K from J+1 to N
 If the value at J exceeds that at K
 Then swap them
 End of loop
End of loop

Let’s take a look: sort10.f90

Using Arrays as Objects
Set all the elements of an array to a single value

INTEGER, DIMENSION(1:50) :: series
series = 0

You can use entire arrays as simple variables provided
they are conformable

REAL, DIMENSION(200) :: arr1, arr2
arr1 = arr2 + 1.23*exp(arr1/4.56)

The RHS and any LHS indices are evaluated, and then
the RHS is assigned to the LHS.

Array Sections

Array sections create an aliased subarray
It is a simple variable with a value

INTEGER :: arr1(100), arr2(50),arr3(100)
arr1(1:63) = 5; arr1(64:100) = 7
arr2 = arr1(1:50)+arr3(51:100)

Even this is legal but it forces a copy:

arr1(26:75) = arr1(1:50)+arr1(51:100)

Short Form
Existing array bounds may be omitted
Especially useful for multidimensional arrays

If we have REAL, DIMENSION(6, 8) :: A

A(3:, :4) is the same as A(3:6, 1:4)
A(6, :) is the same as A(6, 1:8)

A(6, :) is the 6th row as a 1-D vector
A(:, 3) is the 3rd column as a 1-D vector
A(6:6, :) is the 6th row as a 1x8 matrix
A(:, 3:3) is the 3rd column as a 6x1 matrix

Conformability of Sections

The conformability rule applies to sections, too.

REAL :: A(1:6, 1:8), B(0:3, -5:5), C(0:10)

A(2:5,1:7) = B(:,-3:3) ! both have shape (4,7)
A(4,2:5) = B(:,0) + C(7:) ! all have shape (4)
C(:) = B(2,:) ! both have shape (11)

But these would be illegal

A(1:5,1:7) = B(:,-3:3) ! shapes (5,7) and (4,7)
A(1:1,1:3) = B(1,1:3) ! shapes (1,3) and (3)

Sections with Strides
Array sections need not be contiguous
Any uniform progression is allowed

This is exactly like a more compact DO-loop
Negative strides are allowed, too

INTEGER :: arr1(1:100), arr2(1:50), arr3(1:50)
arr1(1:100:2) = arr2 ! Sets every odd element
arr1(100:1:-2) = arr3 ! Even elements, reversed

arr1 = arr1(100:1:-1) ! Reverses the order of arr1

Actual source code: arrsection.f90

Strided Sections
A(1:6, 1:8)

A(:3,1:5:2)

A(2:6:2,7)

Array Bounds
Subscripts and sections must be within the array bounds
The following are invalid (undefined behavior)

REAL :: A(1:6, 1:8), B(0:3, -5:5), C(0:10)

A(2:5,1:7) = B(:,-6:3)
A(7,2:5) = B(:,0)
C(:11) = B(2,:)

Most compilers will NOT check for this automatically!

Errors will lead to overwriting, etc. and CHAOS

Actual source code: abounds.f90

Elemental Operations

Most built-in operators/functions are elemental
They act element-by-element on arrays

REAL, DIMENSION(1:200) :: arr1, arr2, arr3
arr1 = arr2 + 1.23*EXP(arr3/4.56)

Comparisons and logical operations, too

REAL, DIMENSION(1:200) :: arr1, arr2, arr3
LOGICAL, DIMENSION(1:200) :: flags
flags = (arr1 > EXP(arr2) .OR. arr3 < 0.0)

Array Intrinsic Functions (1)
There are over 20 useful intrinsic procedures
They can save a lot of coding and debugging

SIZE(x [,n]) ! The size of x (an integer scalar)
SHAPE(x) ! The shape of x (an integer vector)

LBOUND(x [,n]) ! The lower bound of x
UBOUND(x [,n]) ! The upper bound of x

If n is present then compute for that dimension only
And the result is an integer scalar
Otherwise the result is an integer vector

Array Intrinsic Functions (2)

MINVAL(x) ! The minimum of all elements of x
MAXVAL(x) ! The maximum of all elements of x

These return a scalar of the same type as x

MINLOC(x) ! The indices of the minimum
MAXLOC(x) ! The indices of the maximum

These return an integer vector, just like SHAPE

Array Intrinsic Functions (3)

SUM(x [,n]) ! The sum of all elements of x
PRODUCT(x [,n]) ! The product of all elements of x

If n is present the compute for that dimension only

TRANSPOSE(x) means Xij ⇒ Xji
It must have two dimensions but need not be square

DOT_PRODUCT(x,y) means ∑i Xi · Yi ⇒ Z
Two vectors, both of same length and type

Array Intrinsic Functions (4)

MATMUL(x,y) means ∑k Xik · Ykj ⇒ Zij

2nd dimension of X must match the 1st of Y
The matrices need not be the same shape
Either X or Y may be a vector

Many more for array reshaping and array masking

Array Element Order (1)

This is also called the “storage order”

Traditional term is “column-major order”
But Fortran arrays are not laid out in columns!
Much clearer: “first index varies fastest”

REAL, DIMENSION(1:3,1:4) :: A

The elements of A are stored in this order:

A(1,1), A(2,1), A(3,1), A(1,2), A(2,2), A(3,2),
A(1,3),A(2,3), A(3,3), A(1,4), A(2,4), A(3,4)

Array Element Order (2)

Opposite to C, Matlab, Mathematica, IDL, etc.

You don’t often need to know the storage order
Three important cases where you do:

• I/O of arrays, especially unformatted

• Array constructors and array constants

• Optimization (caching and locality)

Simple Array I/O (1)

Arrays and sections can be included in I/O
These are expanded in array element order

REAL, DIMENSION(3,2) :: oxo
READ *, oxo

This is exactly equivalent to:

 READ *, oxo(1,1), oxo(2,1), oxo(3,1), &
 oxo(1,2), oxo(2,2), oxo(3,2)

Simple Array I/O (2)
Array sections can also be used

REAL, DIMENSION(100) :: nums
READ *, nums(30:50)

REAL, DIMENSION(3,3) :: oxo
READ *, oxo(:,3), oxo(3:1:-1,1)

This last statement equivalent to:

 READ *, oxo(1,3), oxo(2,3), oxo(3,3), &
 oxo(3,1), oxo(2,1), oxo(1,1)

Array Constructors (1)
Commonly used for assigning array values
An array constructor will create a temporary array

INTEGER, DIMENSION(6) :: marks
marks = (/ 10, 25, 32, 54, 56, 60 /)

Constructs an array with the elements
10, 25, 32, 54, 56, 60

And then copies that array into marks

Fortran 2003 addition: Also can use square brackets

marks = [10, 25, 32, 54, 56, 60]

Array Constructors (2)

Variable expressions are okay in constructors

marks = (/ x, 2.0*y, SIN(t*w/3.0), ... /)

They can be used anywhere an array can be
Except where you might assign to them!

All expressions must be the same type
This can be relaxed in Fortran 2003

Array Constructors (3)

Arrays can be used in the value list
They are flattened into array element order

Implied DO-loops (as in I/O) allow sequences

If n has the value 5:

marks = (/ 0.0, (k/10.0,k=2,n), 1.0 /)

This is equivalent to:

marks = (/ 0.0, 0.2, 0.3, 0.4, 0.5, 1.0 /)

Constants and Initialization (1)

Array constructors can be very useful for this
All elements must be initialization expressions
i.e., ones that can be evaluated at compile time

For rank one arrays just use a constructor

REAL, PARAMETER :: a(3) = (/ 1.23, 4.56, 7.89 /)

REAL :: b(3) = (/ 1.23, 4.56, 7.89 /)
b = exp(b)

Constants and Initialization (2)

Other types can be initialized in the same way

CHARACTER(LEN=4), DIMENSION(5) :: &
 names = (/ ‘Fred’, ‘Joe’, ‘Bill’, ‘Bert’, ‘Alf ’ /)

Initialization expressions are allowed

INTEGER, PARAMETER :: N = 3, M = 6, P = 12
INTEGER :: arr(3) = (/ N, (M/N), (P/N) /)

Constants and Initialization (3)

What about this?

REAL :: arr(3) = (/ 1.0, exp(1.0), exp(2.0) /)

Fortran 90 does NOT allow this but Fortran 2003 does

Not just intrinsic functions but all sorts of things

Sample source code: arrayinit.f90

Multiple Dimensions

Constructors cannot be nested - e.g., NOT:

REAL, DIMENSION(3,4) :: xvals = &
(/ (/ 1.1, 2.1, 3.1 /), (/ 1.2, 2.2, 3.2 /), &
 (/ 1.3, 2.3, 3.3 /), (/ 1.4, 2.4, 3.4 /) /)

They construct only rank one arrays

Use the RESHAPE intrinsic function to construct higher
rank arrays. (See myreshape.f90)

Allocatable Arrays (1)
Arrays can be declared with an unknown shape
Use the ALLOCATABLE attribute in the type declaration

INTEGER, DIMENSION(:), ALLOCATABLE :: counts
REAL, DIMENSION(:,:,:), ALLOCATABLE :: values

They become defined when space is allocated

ALLOCATE(counts(1:1000000))
ALLOCATE(values(0:N,-5:5,M:2*N+1))

You can also allocate multiple arrays in a single
ALLOCATE statement

Allocatable Arrays (2)
Failures will terminate the program
You can trap most allocation failures

INTEGER :: istat
ALLOCATE(arr(0:100,-5:5,7:14),STAT=istat)
IF (istat /= 0) THEN
 ...
ENDIF

Arrays can be deallocated using

DEALLOCATE(counts)

Example
INTEGER, DIMENSION(:), ALLOCATABLE :: counts
INTEGER :: size, code
!-- Ask the user how many counts he has
PRINT *, ‘Type in the number of counts’
READ *, size
!-- Allocate memory for the array
ALLOCATE(counts(1:size),STAT=code)
IF (code /= 0.0) THEN
 PRINT *, ‘Error in allocate statement’
 ...
ENDIF

WHERE Construct (1)
Used for masked array assignment
Example: Set all negative elements of an array to zero

REAL, DIMENSION(20,30) :: array

DO j = 1,30
 DO k = 1,20
 IF (array(k,j) < 0.0) array(k,j) = 0.0
 ENDDO
ENDDO

But the WHERE statement is much more convenient

WHERE (array < 0.0) array = 0.0

WHERE Construct (2)
It has a statement construct form, too
Example: Set all negative elements of an array to zero

WHERE (array < 0.0)
 array = 0.0
ELSE WHERE
 array = 0.01 * array
ENDWHERE

Masking expressions are LOGICAL arrays
You can use an actual array there, if you want
Masks and assignments need the same shape

