
Subroutines, Functions and
Modules

Subdividing the Problem

• Most problems are thousands of lines of code.
Few people can grasp all of the details.

• You often use similar code in several places.

• You often want to test only parts of the code.

• Designs often break up naturally into steps.

All sane programmers use procedures

What Fortran Provides
There must be a single main program
There are subroutines and functions
All are collectively called procedures

function
• Purpose is to return a single result
• Invoked by inserting the function name
• It is called only when its result is needed

subroutine
• May or may not return result(s)
• Invoked with the CALL statement

SUBROUTINE Statement

Declares the procedure and its arguments
These are called dummy arguments in Fortran

The subroutine’s interface is defined by:
• The SUBROUTINE statement itself
• The declaration of its dummy arguments
• And anything that use those (see later)

SUBROUTINE Sortit(array)
INTEGER :: [temp,] array(:) [, J, K]

Structure and Syntax
Subroutine syntax:

SUBROUTINE subroutine-name(arg1, arg2,...,argn)
 IMPLICIT NONE
 [specification part]
 [execution part]
END SUBROUTINE subroutine-name

If the subroutine does not require any arguments, the
(arg1, arg2,...,argn) can be omitted.

Similar syntax is used for functions.

Subroutines with No
Arguments

You aren’t required to have any arguments

You can omit the parentheses if you prefer

Probably either do or don’t, but you can mix uses

SUBROUTINE Joe ()
SUBROUTINE Joe

CALL Joe ()
CALL Joe

Example: sort3[a,b].f90

Dummy Arguments
also known as formal arguments

Their names exists only in the procedure
They are declared much like local variables

Any actual argument names are irrelevant
Or any other names outside the procedure

The dummy arguments are associated
 with the actual arguments

Think of association as a bit like aliasing

Argument Matching

In general, dummy and actual argument lists must match
• The number of arguments must be the same
• Each argument must match in type and rank

These can be relaxed in some cases.

Most of the complexities involve array arguments

Functions (1)
Often the required result is a single value (or array)
In that case it makes more sense to write a function

Function syntax:

 type FUNCTION funct-name(arg1,...,argn) [result
 return-value-name]
 IMPLICIT NONE
 [specification part]
 [execution part]
 END FUNCTION funct-name

• If a result variable is not specifically defined then
the result is returned through the function name.

• The result variable must be declared in the
function’s specification area.

• You can optionally specify the type of the function:

REAL FUNCTION VARIANCE(array)

• If this is done, no local declaration is needed.

Functions (2)

Functions with No
Arguments

You aren’t required to have any arguments

You must NOT omit the parentheses

FUNCTION Fred ()
INTEGER :: Fred

X = 1.23 * Fred()
CALL Alf (Fred())

Examples: variance.f90, series.f90

Usage
How do we incorporate subroutines and functions into
our code?

1. Attach them to a main program as internal
procedures using the CONTAINS statement

2. Include them in a MODULE (also with CONTAINS)

Legacy Fortran had to use external procedures. I will
show you why these are inferior to internal procedures

 Examples: variance.f90, series.f90

Internal Procedures (1)

For relatively small programs you can include
procedures in the main program using CONTAINS

• You can include any number of procedures

• Visible to the outer program only

• These internal subprograms may not contain their
own internal subprograms

Internal Procedures (2)

Everything accessible in the enclosing program can also
be used in the internal procedure

• All of the local declarations

• Anything imported by USE (covered later)

Internal procedures need only a few arguments

• Just the things that vary between calls

• Everything else can be used directly

Internal Procedures (3)
A local name takes precedence

PROGRAM main
 REAL :: temp = 1.23
 CALL myval(4.56)
CONTAINS
 SUBROUTINE myval(temp)
 PRINT *, temp
 END SUBROUTINE myval
END PROGRAM main

This will print 4.56, not 1.23
Avoid doing this as it’s very confusing

Internal vs External

Most compilers cannot check for argument list
mismatches with external procedures, but they CAN
perform this check for internal procedures.

• Used to be that all compilers did not have this
capability, but now gfortran seems to be an
exception.

Example: checkarg_int.f90, checkarg_ext.f90

Module Procedures

You can also place procedures in a module using a
CONTAINS statement

• Module internal subprograms may contain their own
internal subprograms

• Module name need not be the same as the file name
but for large programs that is highly recommended

• Include the module with the USE statement

Example: checkarg_mod.f90

Intent (1)
You can make arguments read-only

SUBROUTINE Summarize(array, size)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: size
 REAL, DIMENSION(size) :: array

Will prevent you from writing to a variable by accident
Or calling another procedure that does that
May also help the compiler to optimize

Strongly recommended for read-only arguments

Intent (2)
You can also make arguments write-only
Less useful but still worthwhile

SUBROUTINE Init(array, value)
 IMPLICIT NONE
 REAL, DIMENSION(:), INTENT(OUT) :: array
 REAL, INTENT(IN) :: value
 array = value
END SUBROUTINE Init

As useful for optimization as INTENT(IN)

Intent (3)
The default is effectively INTENT(INOUT)
Specifying it can be useful as it can catch certain errors

SUBROUTINE Mult100(value)
 REAL, INTENT(INOUT) :: value
 value = 100.0 * value
END SUBROUTINE Mult100

CALL Mult100(1.23)

This would be okay:
 x = 1.23
 CALL Mult100(x)

Example
SUBROUTINE expsum(n, k, x, sum)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: n
 REAL, INTENT(IN) :: k, x
 REAL, INTENT(OUT) :: sum
 INTEGER :: i
 sum = 0.0
 DO i = 1, n
 sum = sum + EXP(-i*k*x)
 END DO
END SUBROUTINE expsum

Keyword Arguments

Dummy argument names can be used as keywords
You don’t have to remember their order

Keywords are NOT names in the calling procedure
They are only used to map dummy arguments

Example: series2.f90

Optional Arguments

Use OPTIONAL for setting defaults only

Check for existence using PRESENT function

Use only local copies thereafter

That way all variables will be well-defined when used

Example: series3.f90

Assumed Shape Arrays (1)

The best way to declare array arguments
Simply specify all bounds with a colon (‘:’)

• The rank must match the actual argument
• The lower bounds default to one (1)
• The upper bounds are taken from the extents

 REAL, DIMENSION(:) :: vector
 REAL, DIMENSION(:,:) :: matrix
 REAL, DIMENSION(:,:,:) :: tensor

Example
SUBROUTINE peculiar(vector, matrix)
 REAL, DIMENSION(:), INTENT(INOUT) :: vector
 REAL, DIMENSION(:,:), INTENT(IN) :: matrix
 …

PROGRAM main

 REAL, DIMENSION(1000) :: one
 REAL, DIMENSION(100,100) :: two
 CALL peculiar(one, two)
 CALL peculiar(one(101:160), two(21:,26:75))

In the second call vector will be dimensioned (1:60)
and matrix will be dimensioned (1:80, 1:50)

Assumed Shape Arrays (2)
Array query functions were described earlier

SIZE, SHAPE, LBOUND, UBOUND

Gives the ability to write completely generic procedures
 SUBROUTINE Init(matrix, scale)

 REAL, DIMENSION(:,:), INTENT(OUT) :: matrix
 INTEGER, INTENT(IN) :: scale
 DO N = 1, UBOUND(matrix,2)
 DO M = 1, UBOUND(matrix,1)
 matrix(M,N) = scale*M + N
 END DO
 ENDDO
END SUBROUTINE Init

Assumed Shape Arrays (3)

Assumed shape arrays work splendidly with internal
procedures, but they will NOT work with external
procedures without an INTERFACE block.

Examples: badpass.f90, goodpass1.f90

Setting Lower Bounds

Even when using assumed shape arrays you can set any
lower bounds you want.

SUBROUTINE peculiar(vector, matrix,n)
 REAL, DIMENSION(2*n+1:) :: vector
 REAL, DIMENSION(0:,0:) :: matrix

Automatic Arrays (1)
Local arrays with bounds specified at run-time are called
automatic arrays

Bounds may be taken from an argument, or a constant
or variable in a module

 SUBROUTINE aardvark (arrsize)
 USE sizemod ! this defines the var “worksize”
 INTEGER, INTENT(IN) :: arrsize
 REAL, DIMENSION(1:worksize) :: array_1
 REAL, DIMENSION(1:arrsize*(arrsize+1)) :: array_2

Automatic Arrays (2)

Another very common use is a “shadow” array
 i.e., one that is the same shape as an argument

 SUBROUTINE swap_arrays (A, B)
 REAL, DIMENSION(:) :: A, B
 REAL, DIMENSION(SIZE(A)) :: temp

 temp = A ; A = B ; B = temp

 END SUBROUTINE swap_arrays

Automatic Arrays (3)

Multi-dimensional example of the same concept:

 SUBROUTINE pard (matrix)
 REAL, DIMENSION(:,:) :: matrix
 REAL, DIMENSION(UBOUND(matrix,1), &
 UBOUND(matrix,2)) :: matrix_2, matrix_3

Automatic arrays are very flexible.

Explicit Shape Array Args (1)

We cover these because of their importance
They were the only mechanism available in Fortran 77
Generally they should be avoided

In this form all bounds are explicit
They are declared just like automatic arrays
The dummy should match the actual argument
Making an error will usually cause chaos

Only the very simplest uses are covered

Explicit Shape Array Args (2)
You can use constants

 SUBROUTINE expl_shape (matrix, array)
 INTEGER, PARAMETER :: M = 5, N = 10
 REAL, DIMENSION(1:M,1:N) :: matrix
 REAL, DIMENSION(1000) :: array
 ...

 INTEGER, PARAMETER :: M = 5, N = 10
 REAL, DIMENSION(1:M,1:N) :: table
 REAL, DIMENSION(1000) :: workspace

 CALL expl_shape(table, workspace)

Explicit Shape Array Args (3)

It is common to pass the bounds as arguments

 SUBROUTINE expl_shape (matrix, m, n)
 INTEGER, INTENT(IN) :: m, n
 REAL, DIMENSION(1:m,1:n) :: matrix
 ...

You can use expressions but it’s not generally
recommended

Assumed Size Array
Arguments

The last upper bound can be *

 SUBROUTINE oldschool (matrix, m)
 INTEGER, INTENT(IN) :: m
 REAL, DIMENSION(m,*) :: matrix
 ...

You may come across this but generally avoid it

It makes it very hard to locate bounds errors

WARNING

Argument overlap will NOT be detected
Not even if you turn on array-bounds checking
This is a common cause of obscure errors

In this form all bounds are explicit
They are declared just like automatic arrays
The dummy should match the actual argument
Making an error will usually cause chaos

Example: overlap.f90

Character Arguments

Few scientists do anything fancy with these

People often use a constant length
You can specify this as a digit string

Or define it using PARAMETER
That is best done in a module

Or define it as an assumed length argument

Explicit Length Character
The dummy should match the actual argument
You are likely to get confused if it doesn’t

 SUBROUTINE sorter (list)
 CHARACTER(LEN=8), DIMENSION(:) :: list
 ...

 END SUBROUTINE sorter

 CHARACTER(LEN=8) :: data(1000)
 ...

 CALL sorter(data)

Assumed Length Character

A CHARACTER length can be assumed
The length is taken from the actual argument

You use an asterisk (*) for the length
It acts very like an assumed shape array

Note that it is a property of the type
It is independent of any array dimensions

Example (1)
FUNCTION is_palindrome(word)
 LOGICAL :: is_palindrome
 CHARACTER(LEN=*), INTENT(IN) :: word
 INTEGER :: n,i
 is_palindrome = .false.
 n = len(word)
 do i = 1,(n-1)/2
 if (word(i:i) /= word(n+1-i:n+1-i)) then
 RETURN
 endif
 enddo
 is_palindrome = .true.
 END FUNCTION is_palindrome

Example (2)
Such arguments do not have to be read-only

SUBROUTINE reverse_word(word)
 CHARACTER(LEN=*), INTENT(INOUT) :: word
 CHARACTER(LEN=1) :: c
 N = LEN(word)
 DO i = 1,(n-1)/2
 c = word(i:i)
 word(i:i) = word(n+1-i:n+1-i)
 word(n+1-i:n+1-i) = c
 ENDDO
END SUBROUTINE reverse_word

Static Data

Sometimes you need to store values locally
Use a value in the next call of the procedure

You can do this with the SAVE attribute
Initialized variables get this automatically

The best style avoids this use.

Warning for C/C++ Users

Initialization in a declaration without SAVE initializes
 only once!

It does NOT reinitialize each time it is called

Do it with an explicit assignment statement

Example: localsave.f90, test_saves.f90

