
Modules and Interfaces

Motivation
Passing arguments may not be the most efficient way
 to share a large number of things between a large
 number of procedures
• Just writing all of the argument lists and getting them

in the proper order may be a significant chore (and
may reduce efficiency)

Modules provide a way of sharing procedures as well as
 data
• Especially useful when building a package or library

that may be accessible to many different programs

Module Summary

• Similar to same term used in other languages. As
usual, modules fulfill multiple purposes

• For shared declarations (i.e., “headers”)

• Defining global data (old COMMON)

• Defining procedure interfaces

• Semantic extension (described later)

And more...

• Think of a module as a high-level interface
It collects <whatevers> into a coherent unit

• Design your modules carefully

As the ultimate top-level program structure
Perhaps only a few, perhaps dozens

• Good place for high-level comments

Very helpful to document purpose and
interfaces

Use of Modules

Module Structure

MODULE module-name
 Static data definitions (often exported)
CONTAINS
 Procedure definitions and interfaces
END MODULE module-name

Files may contain several modules
 For simplest use, keep them one-to-one

IMPLICIT NONE
Modules should also use this important specification

MODULE double
 IMPLICIT NONE
 INTEGER, PARAMETER :: DP = KIND(0.0D0)
END MODULE double

MODULE parameters
 USE double
 IMPLICIT NONE
 REAL(KIND=DP), PARAMETER :: one = 1.0_DP
END MODULE parameters

Module Interactions
Modules can USE other modules
Dependency graph shows visibility/usage

Modules may not depend on themselves
i.e., the standard does not permit the recursive or
circular use of modules

MODULE A
 USE B
END MODULE A

MODULE B
 USE A
END MODULE B

MODULE double
 INTEGER, PARAMETER :: DP = KIND(0.0D0)
END MODULE double

MODULE parameters
 USE double
 REAL(KIND=DP), PARAMETER :: one = 1.0_DP
 INTEGER, PARAMETER :: nx = 10, ny = 25
END MODULE parameters

MODULE workspace
 USE double
 USE parameters
 REAL(KIND=DP), DIMENSION(nx,ny) :: now, then
END MODULE workspace

Example (cont.)

The main program might look like this

PROGRAM main
 USE double
 USE parameters
 USE workspace
 ...
END PROGRAM main

Could omit the USE double and USE parameters as
they would be inherited through USE workspace

Module Dependencies
double

parameters

workspace

main program

Shared Constants

We have already seen and used this:

MODULE double
 INTEGER, PARAMETER :: DP = KIND(0.0D0)
END MODULE double

You can do a great deal of this sort of thing

Greatly improves clarity and maintainability
The larger the program, the more it helps

Example from the CAM: shr_const_mod.F90

Global Data
Variables in modules define global data
These can be fixed-size or allocatable arrays

• You need to specify the SAVE attribute
Set automatically for initialized variables
But it is good practice to do it explicitly

A simple SAVE statement saves everything
• This isn’t always the best thing to do

Example (1)
MODULE state_variables
 INTEGER, PARAMETER :: nx=100, ny=100
 REAL, DIMENSION(NX,NY), SAVE :: &
 current, increment, values
 REAL, SAVE :: time = 0.0
END MODULE state_variables

USE state_variables
IMPLICIT NONE
DO
 current = current + increment
 CALL next_step(current, values)
END DO

Example (2)
This is equivalent to the previous example:

MODULE state_variables
 IMPLICIT NONE
 SAVE
 INTEGER, PARAMETER :: nx=100, ny=100
 REAL, DIMENSION(NX,NY) :: &
 current, increment, values
 REAL :: time = 0.0
END MODULE state_variables

Example (3)
The arrays sizes do not have to be fixed:

MODULE state_variables
 REAL, DIMENSION(:,:), ALLOCATABLE, SAVE :: &
 current, increment, values
END MODULE state_variables

USE state_variables
IMPLICIT NONE
INTEGER :: NX, NY
READ *, NX, NY
ALLOCATE(current(NX,NY), increment(NX,NY), &
 values(NX,NY))

Explicit Interfaces
Procedures now need explicit interfaces
e.g., for assumed shape arrays, keywords

• Modules are the primary way of doing this
We will come to the secondary way later

Simplest to include the procedures in modules
The procedure code goes after CONTAINS
This is what we discussed earlier

Example: goodpass2.f90

Example
MODULE mymod
CONTAINS
 FUNCTION Variance (Array)
 REAL :: Variance, X
 REAL, INTENT(IN), DIMENSION(:) :: Array
 X = SUM(Array)/SIZE(Array)
 Variance = SUM((Array-X)**2)/SIZE(Array)
 END FUNCTION Variance
END MODULE mymod

PROGRAM main
 USE mymod
 PRINT *, ‘Variance = ‘,Variance(array)

Procedures in Modules (1)
Including all procedures within modules works
very well in almost all programs

These are very much like internal procedures

Everything accessible in the module can
 also be used in the procedure

Again, a local name takes precedence
But reusing the same name is very confusing

Procedures in Modules (2)
MODULE thing
 INTEGER, PARAMETER :: temp = 123
 CONTAINS
 SUBROUTINE pete ()
 INTEGER, PARAMETER :: temp = 456
 PRINT *, temp
 END SUBROUTINE pete
END MODULE thing

This will print 456, not 123
Avoid doing this as it’s very confusing

Derived Type Definitions
We shall cover these later:

MODULE Bicycle
 REAL, PARAMETER :: pi = 3.141592
 TYPE Wheel
 INTEGER :: spokes
 REAL :: diameter, width
 CHARACTER(LEN=15) :: material
 END TYPE Wheel
END MODULE Bicycle

USE Bicycle
TYPE(Wheel) :: w1

Compiling Modules

Just as with external subroutines, you’ll want to
compile modules with the -c compiler switch

gfortran -c mymod.f90

This will create files mymod.mod and mymod.o
They contain the interface and the code

Using Compiled Modules
The program just needs the USE statement

Compile all of the modules in a dependency order
If A contains USE B, compile B first

Then add a *.o for every module when linking
gfortran -o main main.f90 mymod.o
gfortran -o main main.f90 mymod.o \
 mod_a.o mod_b.o mod_c.o

Interfaces in Modules

The module can define just the interface
The procedure code is supplied elsewhere
The interface block comes before CONTAINS

• Be absolutely sure they are consistent!
The interface and code are not checked

Examples: goodpass3.f90, goodpass4.f90

What Are Interfaces?

The FUNCTION or SUBROUTINE statement
And everything directly connected to that

Strictly, the argument names are not part of it
You are strongly advised to keep them the same

Local variables can be left out

Interface Blocks
These start with an INTERFACE statement
Include any number of procedure interfaces
End with an END INTERFACE statement

INTERFACE
 SUBROUTINE Fred (arg)
 REAL :: arg
 END SUBROUTINE FRED
 FUNCTION Joe ()
 LOGICAL :: Joe
 END FUNCTION Joe
END INTERFACE

Example

SUBROUTINE does_something(A) YES
 USE DOUBLE YES
 INTEGER :: j, n NO
 REAL(KIND=dp) :: A(:,:), X YES for A
 NO for X
 . . .

END SUBROUTINE does_something YES

Procedures as Arguments

With Fortran 90/95 it was essential to use
an interface block for using procedure arguments

Fortran 2003/2008: not true anymore

Example: proc_as_arg

* I tried using an intrinsic function as an argument
and it failed, but some compilers may support this

Another Interface Format

Enables the use of generic procedures

INTERFACE
 MODULE PROCEDURE proc_a, proc_b, …
END INTERFACE

Example: genericswap.f90

Interface Bodies and Names (1)
An interface body does NOT import names
The reason is that you can’t undeclare names

For example, this does not work as expected:

USE double ! This does not allow usage of dp
INTERFACE
 FUNCTION square (arg)
 REAL(KIND=dp) :: square, arg
 END FUNCTION square
END INTERFACE

Interface Bodies and Names (2)
So there is another statement to import names

USE double
INTERFACE
 FUNCTION square (arg)
 IMPORT :: dp ! This solves it
 REAL(KIND=dp) :: square, arg
 END FUNCTION square
END INTERFACE

It is available ONLY in interface bodies

Accessibility (1)
Can separate exported from hidden definitions

Fairly easy to use in simple cases
• Worth considering when designing modules

PRIVATE names are accessible only within the
module (i.e., in module procedures after
CONTAINS)

PUBLIC names are accessible by USE
This is commonly called exporting them

Accessibility (2)
They are just another attribute of declarations

MODULE fred
 REAL, PRIVATE :: array(100)
 REAL, PUBLIC :: total
 INTEGER, PRIVATE :: error_count
 CHARACTER(LEN=50), PUBLIC :: excuse
CONTAINS
 . . .
END MODULE fred

Accessibility (3)
PUBLIC/PRIVATE statement sets the default
The default default is PUBLIC

MODULE fred
 PRIVATE
 REAL :: array(100)
 REAL, PUBLIC :: total
CONTAINS
 . . .
END MODULE fred

Only TOTAL is accessible by a USE statement

Accessibility (4)

You can specify names in the statement
Especially useful for included names

MODULE workspace
 USE double
 PRIVATE :: dp
 REAL(KIND=dp), DIMENSION(1000) :: scratch
END MODULE workspace

DP is no longer exported via workspace

Partial Inclusion (1)

You can include only some names in USE

 USE bigmodule, ONLY : errors, invert

Makes only errors and invert visible regardless
of how many names bigmodule exports

Using ONLY is good practice
Makes it easier to keep track of uses

Can find out what is used where with grep

• One case when ONLY is strongly recommended:
When using USE within modules

• All included names are exported
Unless you explicitly mark them PRIVATE

• Ideally, use both ONLY and PRIVATE
Almost always use at least one of them

• Another case when it is almost essential:
If you don’t use IMPLICIT NONE religiously!

Partial Inclusion (2)

Partial Inclusion (3)

If you don’t restrict exporting and importing then
a typing error could trash a module variable

Or forget that you had already used the name
 in another file far, far away...

• The resulting chaos is almost unfindable
From bitter experience in many years of Fortran!

Example (1)

MODULE settings
 INTEGER, PARAMETER :: DP = KIND(0.0D0)
 REAL(KIND=DP) :: Z = 1.0_DP
END MODULE settings

MODULE workspace
 USE settings
 REAL(KIND=DP), DIMENSION(1000) :: scratch
END MODULE workspace

Example (2)
PROGRAM main
 IMPLICIT NONE
 USE workspace
 Z = 123
 . . .
END PROGRAM main

• DP is inherited, which is okay

• Did you mean to update Z in settings?

• No problem if workspace had used ONLY : DP

Example (3)
The following are better and best

MODULE workspace
 USE settings, ONLY : DP
 REAL(KIND=DP), DIMENSION(1000) :: scratch
END MODULE workspace

MODULE workspace
 USE settings, ONLY : DP
 PRIVATE :: DP
 REAL(KIND=DP), DIMENSION(1000) :: scratch
END MODULE workspace

Renaming Inclusion (1)
You can rename a name when you include it

WARNING: this is “footgun” territory
 i.e., point gun at foot, pull trigger

This technique is sometimes incredibly useful
• But it is also incredibly dangerous

Use it only when you really need to
And even then as little as possible

Renaming Inclusion (2)
MODULE corner
 REAL, DIMENSION(100) :: pooh
END MODULE corner

PROGRAM house
 USE corner, sanders => pooh
 INTEGER, DIMENSION(20) :: pooh
 . . .
END PROGRAM house

pooh is accessible under the name sanders
The name pooh is the local array

Why Is This Lethal?
MODULE one
 REAL :: X
END MODULE one

MODULE two
 USE one, Y => X
 REAL :: Z
END MODULE two

PROGRAM three
 USE one
 USE two
 !-- Both X and Y refer to the same variable!

Protected Status (1)

NEW in Fortran 2003: PROTECTED attribute
and statement

A module procedure can only modify a protected
module entity (or its subobjects) if the same
module defines both the procedure and the entity

Protected Status (2)

There are three possible access properties:
• public : outside code has read and write access
• private : outside code has NO access
• public, protected : outside code has read access

Example: protected.f90

