
Kind and Precision
(a.k.a. Parameterized Data Types)

Background
• Fortran 77 had a problem with numeric portability.

A default REAL might support numbers up to 1068

on one machine and up to 10136 on another.

• Fortran 90/95/2003/2008 includes a KIND
parameter which provides a way to parameterize
the selection of different possible machine
representations for each of the intrinsic data types
(INTEGER, REAL, COMPLEX, LOGICAL and
CHARACTER)

• Main usage: Provide a mechanism for making the
selection of numeric precision and range portable.

KIND Values (1)

The intrinsic inquiry function KIND will return the kind
value of a given variable. The return value is a scalar.

Although it is common for the return value to be the
same as the number of bytes stored in a variable of that
kind, it is NOT REQUIRED by the Fortran standard.

KIND Values (2)
On a lot of systems:

REAL(KIND=4) :: xs ! 4-byte IEEE float
REAL(KIND=8) :: xd ! 8-byte IEEE float
REAL(KIND=16) :: xq ! 16-byte IEEE float

But on some systems/compilers:

REAL(KIND=1) :: xs ! 4-byte IEEE float
REAL(KIND=2) :: xd ! 8-byte IEEE float
REAL(KIND=3) :: xq ! 16-byte IEEE float

Sample program: mykinds.f90

SELECTED_REAL_KIND (1)
You can request a minimum precision and range as
well as a specific radix (*radix is new in Fortran2008)

SELECTED_REAL_KIND(Prec, Range, Radix)

This gives at least Prec decimal places and range of
10-Range to 10Range

e.g., SELECTED_REAL_KIND(12) will give at least 12
decimal places

SELECTED_REAL_KIND (2)

Return codes:
 -1 = does not support P value, but r and radix okay
 -2 = does not support R value, but p and radix okay
 -3 = if radix but not P and R reqs are fulfillable
 -4 = if radix and either P and R reqs are fulfillable
 -5 = if there is no real time with the given radix

Using KIND (1)
For large programs it is extremely handy to put this
into a module:

MODULE double
 INTEGER, PARAMETER :: DP = &
 SELECTED_REAL_KIND(12)
END MODULE double

Then, immediately after every procedure statement
(i.e., PROGRAM, SUBROUTINE or FUNCTION):

USE double
IMPLICIT NONE

Using KIND (2)
Declaring variables, etc. is easy

 REAL (KIND=DP) :: a, b, c
 REAL (KIND=DP), DIMENSION(10) :: x, y, z

Using constants is more tedious but easy

 0.0_DP, 7.0_DP, 0.25_DP, 1.23E12_DP,
 3.141592653589793_DP

Sample module: shr_kind_mod.F90

Using KIND (3)
Note that the above makes it trivial to change all
variables and constants in a large program. All you
need to do is change the module

MODULE double
 INTEGER, PARAMETER :: DP = &
 SELECTED_REAL_KIND(15, 300)
END MODULE double

requires IEEE 754 double or better

Or even: SELECTED_REAL_KIND(25, 1000)

DOUBLE PRECISION
This was the second “kind” of real type in Fortran 77.

 You can still use it just like REAL in declarations
Using KIND is more modern and compact

 REAL (KIND=KIND(0.0D0)) :: a, b, c
 DOUBLE PRECISION, DIMENSION(10) :: x, y, z

Constants use D for the exponent

 0.0D0, 7.0D0, 0.25D0, 1.23D12,
 3.141592653589793D0

Sample program: setkinds.f90

Intrinsic Procedures

• Almost all intrinsics “just work” (i.e., are generic)

 REAL, INT, NINT, MAX, MIN, ABS etc.

• Avoid specific (old) names for intrinsics

 AMAX0, DMIN1, DSQRT, FLOAT, IFIX, etc.

• Don’t use the INTRINSIC statement

• Don’t pass intrinsic functions as arguments

Type Conversion (1)
This is the main “gotcha” - you should use:

 REAL (KIND=DP) :: x
 x = REAL(<integer expression>, KIND=DP)

Omitting the KIND=DP may lose precision with no
warning from the compiler

Automatic conversion is actually safer!

 x = <integer expression>
 x = SQRT(<integer expression>+0.0_DP)

Type Conversion (2)

There is a legacy intrinsic function
If you are using explicit DOUBLE PRECISION

 x = DBLE(<integer expression>)

All other “gotchas” are for COMPLEX

Warning

You will often see code like:

 REAL*8 X, Y, Z
 INTEGER*8 M,N

A Fortran IV feature, not a standard one

‘8’ is NOT always the size in bytes

I strongly recommend converting to KIND

INTEGER KIND
You can choose different sizes of integer

INTEGER, PARAMETER :: big = &
 SELECTED_INT_KIND(12)
INTEGER (KIND=big) :: bignum

bignum can hold values up to 1012

Few users will need this - mainly for OpenMP

Some compilers may allocate smaller integers
e.g., by using SELECTED_INT_KIND(4)

CHARACTER KIND

It can be used to select the encoding
It is mainly a Fortran 2003 feature

Can select default, ASCII, or ISO 10646
ISO 10646 is effectively Unicode

Not covered in this course

Notes
• The Fortran standard requires that each compiler

support at least two real kinds which must have
different precisions. The default real kind is the
lower precision of these.

• There are two ways to specify a double precision
real:

1. With a REAL specifier using the KIND parameter
corresponding to double precision (portable)

2. Using a DOUBLE PRECISION specifier (not
portable)

Related Inquiry Functions
KIND(x) returns the kind value of x
PRECISION(x) returns the decimal precision of x
RANGE(x) returns the decimal exponent range of x
TINY(x) returns the smallest non-zero number of x
HUGE(x) returns the largest non-infinite number of x
DIGITS(x) returns the number of significant digits in
 the internal model representation of x
RADIX(x) returns the base of the model representing x
MINEXPONENT(x) returns the minimum exponent of
 the model representing x
MAXEXPONENT(x) returns the maximum exponent of
 the model representing x

Derived Types

What Are Derived Types?

As we discussed back in “Data Types and Basic
Calculation”, there are five intrinsic data types
available in Fortran. A derived type is a special
form of data type that can encapsulate other built-
in types as well as other derived types.

C++, Python, etc. are very similar (structures)

Simple Derived Types
TYPE Wheel
 INTEGER :: spokes
 REAL :: diameter, width
 CHARACTER(LEN=15) :: material
END TYPE Wheel

That defines a derived type Wheel
Using derived types needs a special syntax

TYPE(Wheel) :: w1
print *, w1%spokes

Usage

1. Declare the type

TYPE <derived type name>
 declarations
END TYPE <derived type name>

2. Create an instance of the type

TYPE(<derived type name>) :: <varname>

More Complicated Ones
You can include almost anything in there

TYPE Bicycle
 CHARACTER(LEN=80) :: description(100)
 TYPE(Wheel) :: front, back
 REAL, ALLOCATABLE, DIMENSION(:) :: times
 INTEGER, DIMENSION(100) :: codes
END TYPE Bicycle

And so on...

Sample program: bike.f90

Fortran 90/95 Restriction

Fortran 90/95 was much more restrictive
You couldn’t have ALLOCATABLE arrays
Had to use POINTER instead

Fortran 2003 removed that restriction
Most compilers already include this feature

Be sure to check your own compiler

Component Selection

The selector “%” is used for this
Followed by a component of the derived type

It delivers whatever type that field is
You can then subscript or select it

TYPE(Bicycle) :: mine

mine%times(52:53) = (/ 123.4, 98.7 /)
PRINT *, mine%front%spokes

Selecting from Arrays
You can select from arrays and array sections
It produces an array of that component alone

TYPE Rabbit
 CHARACTER(LEN=16) :: variety
 REAL :: weight, length
 INTEGER :: age
END TYPE Rabbit

TYPE(Rabbit), DIMENSION(100) :: exhibits
REAL, DIMENSION(50) :: fattest

fattest = exhibits(51:)%weight

Assignment (1)
You can assign complete derived types
That copies the values element-by-element

TYPE(Bicycle) :: mine, yours

yours = mine
mine%front = yours%back

Assignment is the only intrinsic operation

You can redefine that or define other operations
But they are some of the topics that I am omitting

Assignment (2)
Each derived type is unique
You cannot assign between different ones

TYPE :: Fred
 REAL :: x
END TYPE Fred
TYPE :: Joe
 REAL :: x
END TYPE Joe
TYPE(Fred) :: a
TYPE(Joe) :: b
a = b ! This is erroneous

Constructors
A constructor creates a derived type value

TYPE Circle
 REAL :: X, Y, radius
 LOGICAL :: filled
END TYPE Circle

TYPE(Circle) :: a
a = Circle(1.23, 4.56, 2.0, .False.)

Fortran 2003 allows keywords for components

a = Circle(X=1.23, Y=4.56, radius=2.0, filled=.False.)

Default Initialization
You can specify default initial values

TYPE Circle
 REAL :: X = 0.0, Y = 0.0, radius = 1.0
 LOGICAL :: filled = .False.
END TYPE Circle

TYPE(Circle) :: a, b, c
a = Circle(1.23, 4.56, 2.0, .True.)

This becomes much more useful in with keywords

a = Circle(X=1.23, Y=4.56)

I/O on Derived Types

Can do normal I/O with the ultimate components
A derived type is flattened much like an array
 (recursively if it includes embedded derived types)

TYPE(Circle) :: a, b, c
a = Circle(1.23, 4.56, 2.0, .True.)
PRINT *, a ; PRINT *, b ; PRINT *, c

1.230000 4.5599999 2.0000000 T
0.0000000E+00 0.0000000E+00 1.0000000 F
0.0000000E+00 0.0000000E+00 1.0000000 F

Private Derived Types

When you define them in modules

A derived type can be wholly private
 i.e., accessible only to module procedures

Or its components can be hidden
 i.e., it’s visible as an opaque type

Wholly Private Types
MODULE Marsupial
 TYPE, PRIVATE :: Wombat
 REAL :: width, length
 END TYPE Wombat
 REAL, PRIVATE :: koala
 CONTAINS
 . . .
END MODULE Marsupial

Wombat is not exported from Marsupial
No more than the variable Koala is

Hidden Components (1)
Hidden components allow opaque types
The module procedures use them normally

• Users of the module can’t look inside them
They can assign them like variables
They can pass them as arguments
Or call the module procedures to work on them

An important software engineering technique
Usually called data encapsulation

Hidden Components (2)
MODULE Marsupial
 TYPE :: Wombat
 PRIVATE
 REAL :: width, length
 END TYPE Wombat
 CONTAINS
 . . .
END MODULE Marsupial

Wombat IS exported from Marsupial
But its components (width, length) are not

Trees
Example: Type A contains an array of type B
Objects of type B contain arrays of type C

TYPE Leaf
 CHARACTER(LEN=20) :: name
 REAL(KIND=dp), DIMENSION(3) :: data
END TYPE Leaf
TYPE Branch
 TYPE(Leaf), ALLOCATABLE :: leaves(:)
END TYPE Branch
TYPE Trunk
 TYPE(Branch), ALLOCATABLE :: branches(:)
END TYPE Trunk

Going Beyond the Basics
Fortran 2003 greatly extended/expanded
derived types

• full object orientation
• type bound procedures
• polymorphism (abstract types)
• and LOTS more

It’s enough for a separate course
Beyond what this audience really needs

Extending a Derived Type

Inheritance: allowing “child” types derive from
extensible parent types

TYPE, EXTENDS(parent) :: child

Here the child inherits all the members and
functionality from the parent type.

Example: test_employee.f90

Recursive Types

Pointers allow that to be done a little more flexibly
You don’t need a separate type for each level

People often use more complicated structures
You build those using derived types
 e.g., linked lists (also called chains)

Both very commonly used for sparse matrices
And algorithms like Dirichlet tesselation

We shall return to this when we cover pointers

