
Input and Output

Fortran I O Overview

• Input/output (I O) can be a lot more flexible
than just reading typed input from the terminal
window and printing it back out to a screen.

• Fortran allows for multiple file streams.

• Fortran allow multiple representations of the
data for I O.

• Fortran allows multiple approaches to the
sequencing of I O.

Some More I O definitions
• File - a collection of data

• Data is organized into records, which may be
formatted (character representation),
unformatted (machine binary representation),
or denote an end of file. (Compare: a Unix file
is a sequence of bytes.)

• Each READ and WRITE uses 1+ records. Any
unread characters are skipped for READ.
WRITE ends by writing an end-of-line
indicator.

• (direct access is an exception to the above)

Really Basic I/O (again)
READ *, <variable list> reads from stdin
PRINT *, <expression list> writes to stdout
WRITE(*,*), <expression list> writes to stdout

Both do input/output as human-readable text.
Each I/O statement reads/writes on a new line.

Input data can be on single line or multiple lines,
comma or space delimited (if the read requires
multiple numbers).

Character (string) input must be put in quotes.

See example1.f90 with stdin files stdin.1, stdin.2
and stdin.3.

Formatting
READ <format>, <variable list>
PRINT <format>, <expression list>
WRITE(*, <format>), <expression list>

The format specifier is used in read, write and
print statements
* - default, or list-directed formatting
f (floating point) for I O of reals

syntax: ‘(fw.d)’ where
w = total number of positions
d = number of places after the decimal point
The decimal point occupies a position, as does
the minus sign

Formatting (cont.)
e (exponential) for I O of large and small reals

syntax: ‘(ew.d)’ where
w = total number of positions
d = number of digits in mantissa

a (alphanumeric) for character strings
syntax: ‘(aw)’ where

w = total number of positions
i (integer) for character strings

syntax: ‘(iw)’ or ‘(iw.d)’ where
w = total number of positions
d = the number of zeros that will pad the value

Any format can be repeated with a leading number
and can be mixed and matched.

Formatting examples
/ for newline
‘(f12.2)’
‘(e12.4)’
‘(i2)’
‘(i4.4)’
‘(f8.1/2e13.5)
‘(3(a12,4i6))’
Be sure the format is sized to represent the
number you expect.
A floating point format requires W >= D+3
An exponential format requires W >= D+3

IOSTAT Keyword
The IOSTAT keyword lets you test for various error
conditions associated with in I O operation. Zero
is returned for an operation that completes normally.
The meaning of other values is compiler dependent.
One can test for specific conditions such as
end-of-file or end-of-record.

DO
 READ(*,*,IOSTAT=ierr) x
 IF(ierr /= 0) EXIT
 ...
ENDDO

When the IOSTAT keyword is omitted you get an
execution error for abnormal conditions. With IOSTAT it
returns to you the code and continues onward.

Multiple File Streams
A keyword nearly universal to all Fortran I O
statements is the Logical Unit

WRITE(11,*)u !written to file associated with unit 11
WRITE(12,*)v !written to file associated with unit 12

INTEGER :: lun=3
READ(lun,*)n

Default filename associated with logical unit lun is
fort.lun (fort.11, fort.12, fort.3). Compilers may
vary! Generally use 1 through 99.

Open Statement
The OPEN statement associates a logical unit with a
specific file:

OPEN([UNIT=],<integer>, FILE=<char>, &
 FORM=<char>, ACCESS=<char>, &
 ACTION=<char>, STATUS=<char>, &
 POSITION=<char>, RECL=<integer>, &
 IOSTAT=<integer var>)

OPEN(UNIT=10,FILE=‘input.u’,FORM=‘formatted’)
OPEN(21,FILE=‘output.dat’,FORM=‘unformatted’, &
 STATUS=‘OLD’,ACTION=‘READ’)

Open Statement (cont.)
More on common OPEN keywords:
FORM: ‘FORMATTED’ or ‘UNFORMATTED’
ACCESS: ‘SEQUENTIAL’ (default) or ‘DIRECT’
POSITION:‘ASIS’ (default), ‘REWIND’ or ‘APPEND’
ACTION: ‘READWRITE’ (default), ‘READ’ or ‘WRITE’
STATUS: ‘UNKNOWN’ (default), ‘OLD’, ‘NEW’,
 ‘REPLACE’ or ‘SCRATCH’
RECL: integer record length for direct access I O

One can open an already connected file to change its
properties.

CLOSE Statement
The CLOSE statement terminates the connection of a
file to a logical unit. A normal program exit will
automatically do this.

Close([UNIT=]<integer>, STATUS=<char>, &
 IOSTAT=<integer var>)

STATUS: what to do with the closed file - ‘KEEP’
(default) or ’DELETE’.

More READ and WRITE
 READ([UNIT=]<integer>, [FMT=]<format>, &
 END=<label>, ERR=<label>, REC=<integer>&
 ADVANCE=<char>, IOSTAT=<integer var>)
 WRITE([UNIT=]<integer>, [FMT=]<format>, &
 END=<label>, ERR=<label>, REC=<integer>&
 ADVANCE=<char>, IOSTAT=<integer var>)

ADVANCE: ‘YES’ (default) or ‘NO’
REC: the record number in direct access I O
END and ERR obsolescent - use IOSTAT

INQUIRE
The INQUIRE statement can get information about a
file. You may inquire by UNIT or by FILENAME.
INQUIRE([UNIT=]<integer>, EXIST=<logical_var>, &
 NAME=<char_var>, OPENED=<logical_var> &
 IOSTAT=<integer var>)
INQUIRE([NAME=]<char_var>, EXIST=<logical_var>, &
 UNIT=<integer>, OPENED=<logical_var> &
 IOSTAT=<integer var>)

plus many more arguments. UNIT is the input
argument, all the others are returned.

Other useful statements

The following are position statements and let you
change your position within a sequential access file:
REWIND ([UNIT=]<integer>,IOSTAT=<integer var>)
BACKSPACE ([UNIT=]<integer>, &
 IOSTAT=<integer var>)
ENDFILE ([UNIT=]<integer>,IOSTAT=<integer var>)

Example programs avg1.f90, avg2.f90, avg3.f90 and
avg4.f90 demonstrate some features of I O.

Unformatted I O

When a file is opened with
FORM=‘UNFORMATTED’ the data will be read/
written in the machine binary representation. Use no
format specifier!

Unformatted I O is much faster, more compact.

Warning! Different machines may have different
representations - big-endian vs. little-endian; latter is
prevalent nowadays.

Sequential Access

Sequential Access (the default) advances record by
record through the file. The end of each record is
marked by a special signifier.

As name implies, each READ/WRITE proceeds to the
next record - exception is when ADVANCE=’NO’ is
used.

Can control file position with POSITION statements.

Direct Access
Permits user to specify exactly which bytes are
addressed in a file by an I O operation - no end of
record markers. Multiple jobs/processes can access
the file without interference.

Must open file with ACCESS=‘DIRECT’ and specify
a record length RECL=<integer> (generally in bytes)

You go directly where you wish in the file by
specifying the record number REC=<integer>
in the READ/WRITE

NAMELIST
NAMELIST I O is a deprecated type of formatted I O

LOGICAL:: dopbp
INTEGER :: ijtlen
NAMELIST /pbplist/ dopbp, ijtlen
OPEN(2,FILE=‘namel.pbp’,FORM=‘FORMATTED’
READ(2,pbplist)

> cat namel.pbp
&pbplist
dopbp=.true.
ijtlen=4
&END

Internal I O
Imagine you wish to convert a number to its
character representation:

CHARACTER (LEN=4):: cyear
INTEGER, PARAMETER :: year = 1989
OPEN(2,FILE=‘temfile’,FORM=‘FORMATTED’)
WRITE(2,FMT=’(i4)’))year
BACKSPACE(2)
READ(2,FMT=’(A4)’)cyear

Internal I O does this directly where the logical unit
is a variable rather than a file

WRITE(UNIT=cyear,FMT=’(I4)’)year
READ(UNIT=cyear,FMT=’(I4)’)newyear

I O Libraries
Typically, with standard fortran I O statements when
someone sends you a file he must also send you a
README about the contents, or some code kernal
for reading

It sure would be nice if the data in files were
‘self-describing’ with the use of ‘metadata’!

I O libraries are publicly available that can do this:
NetCDF and HDF are widely used in atmospheric
sciences.

NetCDF
NetCDF is something of a standard for climate/
meteorological data:
http://www.unidata.ucar.edu/software/netcdf

Includes command line utilities to inspect the files

Many graphics packages can read it (IDL)

NCO (http://nco.sourceforge.net) is a set of
command line utilities to manipulate NetCDF files

Fortran subroutine calls are used to read/write/
inquire about the data.

Examples: sfc_pres_temp_wr.f90,
sfc_pres_temp_rd.f90

http://www.unidata.ucar.edu/software/netcdf
http://nco.sourceforge.net

A Digression on Libraries
Libraries are code that have already been compiled.
You need to tell your program where to find them.

-I<path_to_include_files_and_modules>

-L<path_to_libraries> -l<library_name>

To compile one of the netcdf examples:

ifort -I/usr/local/intel/include sfc_pres_temp_rd.f90 \

 -L/usr/local/intel/lib -lnetcdf

Other examples of libraries for linear algebra (lapack),
pde solvers(phaml), fft (fftw) and many more.

