
Pointers

What is a pointer?

• A pointer variable can be thought of as an alias
for another variable.

• In most programming languages, a pointer
variable stores the memory address of an
object. However, in Fortran, a pointer is a data
object that has more functionalities than just
storing the memory address. It contains more
information about a particular object, like type,
rank, extents, and memory address.

Declaring a pointer
• A pointer variable is declared with the pointer

attribute.
integer, pointer :: p1 ! pointer to integer
real, pointer, dimension (:) :: pra ! pointer to 1-dim real array
real, pointer, dimension (:,:) :: pra2 ! pointer to 2-dim real array

• A pointer can point to −

• An area of dynamically allocated memory

• A data object of the same type as the
pointer, with the target attribute

Assigning a pointer
• There are two types of pointer assignment.

• Pointer assignment (=>) transfers the status of
one pointer to another.

• Ordinary assignment (=) transfers the values of
the aliases targets in the usual way

REAL,POINTER :: ptr1,ptr2
REAL,TARGET :: x1,x2
x1 = 4.7
x2 = 8.3
ptr1 => x1

ptr2 => ptr1 ! pointer assignment

ptr2 => x2

ptr1 = ptr2 ! ordinary assignment

A pointer can have three states

• Null. The pointer does not alias any other
variable.

• Associated. The pointer is an alias for another
variable.

• Undefined. Until a pointer is either nullified or
associated it is undefined.

Pointer functions (1)
• The allocate statement applied to a pointer will

create space and cause a pointer to refer to
that state.

• The deallocate statement throws away the
space pointed to by the argument and makes
the argument null.

REAL,POINTER :: ptr
ALLOCATE (ptr)
ptr = 8.3
DEALLOCATE (ptr)

Pointer functions (2)
• The associated statement returns TRUE if the

pointer is associated, else FALSE

• The nullify statement disassociates a pointer
from a target

• Nullify does not empty the target, as there
could be more than one pointer pointing to
the same target. However, emptying
(deallocating the pointer) implies nullification.

• Caution: nullification without deallocation can
cause memory to become inaccessible

Basic examples

• See pointerexample1.f90 and
pointerexample2.f90

Example - replace obsolescent equivalence
WAS
 real(kind=kind_phys), allocatable, dimension(:,:,:,:) :: sgs_field_diag
 real tk (dimx1_d:dimx2_d, dimy1_d:dimy2_d, nzm) ! SGS eddy viscosity
 real tkh (dimx1_d:dimx2_d, dimy1_d:dimy2_d, nzm) ! SGS eddy conductivity
 equivalence (tk(dimx1_d,dimy1_d,1), sgs_field_diag(dimx1_d, dimy1_d,1,1))
 equivalence (tkh(dimx1_d,dimy1_d,1), sgs_field_diag(dimx1_d, dimy1_d,1,2))
...
 allocate(sgs_field_diag(dimx1_d:dimx2_d, dimy1_d:dimy2_d, nzm, nsgs_fields_diag))

NOW
 real(kind=kind_phys), allocatable, dimension(:,:,:,:), target :: sgs_field_diag
 real(kind=kind_phys), pointer :: tk (:, :, :) ! SGS eddy viscosity
 real(kind=kind_phys), pointer :: tkh (:, :, :) ! SGS eddy conductivity
...
! If we do this the indexing changes when tk and tkh are used
! if(.not.associated(tk)) tk => sgs_field_diag(:,:,:,1)
! if(.not.associated(tk)) tkh => sgs_field_diag(:,:,:,2)

! since we are using pointers we need correct indices where these variables are used
 if(.not.associated(tk)) tk(dimx1_d:dimx2_d, dimy1_d:dimy2_d, :) => sgs_field_diag(:,:,:,1)
 if(.not.associated(tk)) tkh(dimx1_d:dimx2_d, dimy1_d:dimy2_d, :) => sgs_field_diag(:,:,:,2)

Example - reshaping without copying
 ! variables comprising linear system Mx=b
 real, dimension(6,nsuboc,6,nsuboc,nzm), &
 target :: adiag, &! lower block diagonal of M
 bdiag, &! main block diagonal
 cdiag ! upper block diagonal
 real, dimension(6,nsuboc,nz), target :: xnew, rhs ! solution, rhs
 ! pointers to implicitly reshape the above arrays -
 ! two dimensions (6,nsuboc) become one (6*nsuboc)
 real, contiguous, pointer, dimension(:,:,:) :: a, b, c
 real, contiguous, pointer, dimension(:,:) :: r, x
 ...
 ! assign pointers that will be arguments of the solver
 ! (avoid the copy of reshape)
 a(1:6*nsuboc,1:6*nsuboc,1:nzm) => adiag
 b(1:6*nsuboc,1:6*nsuboc,1:nzm) => bdiag
 c(1:6*nsuboc,1:6*nsuboc,1:nzm) => cdiag
 r(1:6*nsuboc,1:nzm) => rhs
 x(1:6*nsuboc,1:nzm) => xnew
 ...
 call trisolver_block(nzm, 6*nsuboc, a, b, c, r, xnew)

Pointers and more
complicated data structures

• Arrays of pointers

• Linked list data structures

• Tree data structures

Arrays of pointers
• Suppose you have an array of things and the things are of different

size: example - sparse matrix.

• We can define a derived data type with a pointer as its sole
component, and define arrays of this data type.

• The storage for the rows can be allocated as necessary.

• Array assignment will copy all components (from ptest.f90)

TYPE row
 REAL, POINTER , DIMENSION(:) :: r
END TYPE row

TYPE(row), DIMENSION(n) :: s, t

DO I = 1,n
 ALLOCATE(t(i)%r(1:i))
ENDDO
s=t

Linked list
• Linked lists are a very useful data structure when the size of the

data set is not initially known. They can grow to accompany any
amount of data.We can define a derived data type with a pointer
as its sole component, and define arrays of this data type.

• Data can be put in order “on the fly”.

• A linked list is a list of nodes. Each node type contains some data
and a pointer to the next node.

• The list type contains only a pointer to the first node of the list.

• Example: linked_list.f90, utilities_netCDF.f90

