
Computer ‘Arithmetic’

What Every Computer Scientist Should Know About
Floating-Point Arithmetic

http://docs.oracle.com/cd/E19957-01/806-3568/
ncg_goldberg.html

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

• Fortran does this ok, just need to watch out for
numbers (including intermediate results) too
large/small to express. Operations then lead to
wrapping.
• Sometimes 32 bit integers are not enough
• A sanity test for sufficient integer range: see
int_sanity.f90
Integer Arithmetic
 B=C=D=5000
E = B*D = 25000000 Right
A = E*C = 445948416 Wrong
print*, A/C 89189 But this is E!
ntotal = n*n*n
if (ntotal /= n*INT(n,8)*n) call panic(...)
B=C=D=5000

Integer Arithmetic

• Beside yielding approximate results, floating point
operations can yield:
• Overflow, typically output as Inf - beyond the
range of the fp numbers
• Underflow - closer to zero than representable,
usually reset to zero. Watch for division by an
underflow!!!
• Not mathematically permissible:log(0), sqrt(-1.)
Usually output as NaN (not a number)

See exceptions.f90

Floating point Exceptions

• Floating point numbers are a finite subset of the
rational numbers. They are bounded and have the
same frequency per decade.

• In true arithmetic operations with rational
numbers are also rational numbers.

• Beside the issue of boundedness, in FP
arithmetic, an operation with FP numbers may
only approximate an FP number - rounded or
truncated.

Floating point Arithmetic

FP Error Analysis
Let
xfp = x * (1+O(ε))
yfp = y * (1+O(ε))

Then
(xfp * yfp - x * y)/(x * y) ~O(ε)
{xfp+yfp -(x+y)}/(x+y) ~O(ε)(|x|+|y|)/(x+y)

In addition, if x and y are of opposite signs, x+y
can be considerably smaller than either x or y,
and the result is a larger relative error.

Key Floating Point Intrinsics

HUGE(x) - Largest non-infinite number of type x
TINY(x) - smallest positive number of type x
EPSILON(x) - smallest number E such that 1+E > 1
PRECISION(x) - decimal precision of type x
RANGE(x) - decimal exponent range

These intrinsic reveal the limits of floating
point arithmetic for a particular Kind.
See fp_intrinsics.f90

FP Arithmetic - more consequences
Neither associative nor distributive:

(A+B)+C may not be A+(B+C) (ditto for *)
(A+B)-B may not be A (ditto for * and /)
A+A+A may not be 3.0*A

They do not have a multiplicative inverse: Not all
A have a B = 1.0/A, such that A*B = 1.0

• Not continuous (for any of +, -, * or /):
B > 0.0 may not mean A+B > A
A > B and C > D may not mean A+C > B+D
 A > 0.0 may not mean 0.5*A > 0.0

See var.f90, sum_order.f90
A poorly-designed algorithm can be vulnerable to
the vagaries of floating point arithmetic.
Worthwhile to use good third-party libraries.

Some Floating-point Best Practices
Do not compare two reals for equality:
IF (A == B) THEN
IF (ABS(A-B) < EPS) THEN

Protect against division by too small a number:
IF (ABS(c)> EPS) THEN
a = b / c

ELSE
a = d ! safety value for small denominator

ENDIF
When working with a large number of reals consider
computing partial sums: example partialsums.f90
...and many more...

Code Optimization
• Three kinds of programming inefficiencies:

• a computation-bound program

• a memory-bound program

• an IO-bound program

Efficient Computation
• AVOID DIVISION! It takes multiple clock cycles.
If you divide by the same number frequently,
compute and save the reciprocal.

• Most CPUs can do an addition and multiplication
simultaneously - write code the tends to pair
them

a(i) = a(i) + b(i)*c(i)

Compiler Optimization
• Compilers have flags to perform optimization
automatically, typically -O, -O2, -O3

• Compilers often have other flags to do faster but
more approximate arithmetic.

Original loop:
do i = 1, ni

a(i) = a(i) + b(i)*c(i)
enddo

• Compiler optimization carries risk! Make sure
your program gives (approximately) the same
answer with and without optimization

Unrolled loop:
do i = 1, ni, 4

a(i) = a(i) + b(i)*c(i)
a(i+1) = a(i+1) + b(i+1)*c(i+1)
a(i+2) = a(i+2) + b(i+2)*c(i+2)
a(i+3) = a(i+3) + b(i+3)*c(i+3)

enddo

Subroutine Bottlenecks
• Subroutine calls use lots of clock cycles which
increase with the number of arguments. You want
to maximize computation per subroutine call.

• Inlining is an effective way to optimize this. There
are usually compiler tools to do this.

• Passing array subsections into subroutines may
require a physical copy before any work is done.

Efficient Memory
• Memory efficiency is typically about managing
cache use

• Avoid long strides - they tend to force the
program out of cache more frequently

BAD:
DO i = 1, ni

DO j = 1,nj
a(i,j) = a(i,j) + b(i,j)*c(i,j)

ENDDO
ENDDO

GOOD:
DO j = 1, nj

DO i = 1,ni
a(i,j) = a(i,j) + b(i,j)*c(i,j)

ENDDO
ENDDO

IO Management
• IO bandwidth is much smaller than memory
bandwidth.

• Access to local disks is faster than to remote
filesystems.

• Unformatted IO avoids conversion of data and is
faster than formatted IO.

• There are vendor specific techniques to overlap
IO and computation - asynchrounous IO.

Where to Optimize? Profiling
• Profiling directs the programmer where to focus
optimization efforts - work on the piece of code
that consumes most of the time (wall-clock).

• Look for prof or gprof.

• Some platforms may have proprietary profilers,
often need to use special compile flags.

• Other performance monitors tell you other
metrics like flop-rate, cache usage, etc.

Debugging
• You’ve written your program, it compiles. Now
you run it and it either crashes or gives bad
output. You typically need to find out two things -
where the error happens, and the variable values
at that point.
• Types of errors:
• Floating point exception - produces a number

that is not a valid floating point number. To stop
at an exception you need to enable floating
point trapping
• Segmentation fault (Sigsegv) or Bus error -

often involve a memory error like a bad
subscript or argument, often cryptic.

Simple Debugging
• Judicious use of write statements can help
pinpoint where the program crashed and provide
variable values.
• Every time you add write statements you must
recompile. Also, an executable with write
statements is not quite the one that blew up.
Still, useful if you have a hunch where the
problem is.
• Sanity checking - good program practice that
tells you things are going wrong before they blow
up.
if (speed > 0.0 .and. speed < 3.0e8) then
…

else
call panic(’Speed error in my-function’)

endif

Compiler Debug Tools
• Many compilers have options to provide extra
error checking both during the compilation stage
and during run-time. These do incur overhead
and should be turned off when debugging is
done.
• Array bounds checking: detects if an array
subscript is out of bounds.
• Uninitialized variable initialization - all variables
initialized with an FP exception. Together with FP
trapping this lets you detect if you are using a
variable before it is assigned a value.
• Actual option syntax is compiler-specific.

Intel

ifort

PGI

pgf90

GNU

gfortran

bounds-checking -check bounds -Mbounds -fbounds-check

run=time detection of

uninitialized variable

-auto -trapuv

-check uninit

-finit-real=nan

-finit-int=xxx

-finit-logical=xxx

floating point trapping -fpe 0 -Ktrap=divz,inv,ovf
-ffpe-

trap=invalid,zero
,overflow

debugger flags -g -g -O0 -g

generate stack trace -traceback -traceback -fbacktrace

information -diag-remark -Minform-inform

Compiler options for debugging

Where is the error?
• A program that terminates abnormally often
generates a core file. The core file is a snapshot
of the program contents at the time of crash. It
includes a traceback (which program statement
you are at) and the values of each variable.

• Some compilers generate the traceback apart
from the core and write to standard output.

• There are debugger utilities to examine the core
file. To use these you need to generate symbol
tables, -g, in the object (.o) files, -c. Usually best
to turn off all optimization as well.

Command line debuggers
• There are a host of similar command line
debuggers that depend on the compiler:
gdb (GNU), pgdbg (Portland group), idb (Intel).

• To examine a core file:

• gdb executable_file corefile; then at prompt type
where.

• Examine values of variables:

• print i; print x(3,3)

• To see what the program is like before the crash
you can run it to a breakpoint: break line_number
gdb executable_file
break line_number (no longer stop)
r(un)

• execution commands:
• r (run from beginning)
• c (continue
• s (step one line)
• n (next line)

• Examine source code:
• l (list 10 lines)
• l line_number; l filename.f90
• u (up one program level)
• d (down one program level)

Other useful debugger commands

• Graphical interface debuggers greatly enhance
debugging power. Examples are Totalview (widely
available) and DDT (at NERSC).

Graphical Debuggers

