Introduction to Parallel
Programming

Overview

® Parallel programming allows the user to use
multiple cpus concurrently

® Reasons for parallel execution:

® shorten execution time by spreading the
computational cycles across multiple cpus.

® permit a larger problem by access to the
combined memory of multiple cpus.

® The days of waiting for the next-generation
chip to improve your serial code throughput
are over.

Amdahl’s Law

® Describes the speedup one can expect as a
function of the number of processors (N) used
and the code fraction that is parallel (p).

T(1) =T()*(l-p) + T(1)*p

T(N) =T(1)*(1-p) + T(1)*p
N
Speedup =T(I) / T(N)
= 1/((l-p) + p/N))

Max Speedup = |/(I1-p)

opeedup

12 g

10

Amdahl’ s law:

Parallel speedup vs. Sequential fraction

—é—0.]

"—0.2 —

.‘. D 5 --.-."'-V.
—3—Linear L

General Parallel Architecture

Memory

Memory Memory

Shared memory / Distributed memory

Types of Parallelism

® Process Parallelism (MPMD) - a code may
contain different segments that can be
computed concurrently. Example: ocean, land,
atmosphere and ice parts of a climate model.

® Data Parallelism (SPMD) - the same code
works on different datastreams. For example,
dividing a global domain into subdomains -
each processor executes all the code for an
individual subdomain.

® Data and process parallelism may be employed
together.

Parallel Programming
Concepts

® Synchronization - making sure all code gets to
a certain point before proceeding.

® | oad balancing - trying to keep processes or
threads from being idle while others are
computing.

® Granularity - how large a chunk of work is in
each parallel section - alleviates the overhead
implementing parallel constructs.

Parallel Programming
Paradigms:

Shared memory techniques launch threads
during execution

Automatic Parallelizers - just turn on the
compiler switch - it finds the do loops that can
be done in parallel.

Compiler Directives - OpenMP is the current
standard. User inserts ‘comments’ in code that
compiler recognizes as parallelization
instructions. Only modest changes to code
necessary.

Only works with shared memory architecture.

See hello_omp.f90

Open MP - Overview

Master thread

1N Pad

Parallel regions

Tutorial:

http://www.osc.edu/supercomputing/training/openmp/big/
fsld.00 | .html

Openmp: http://www.openmp.org/

http://www.osc.edu/supercomputing/training/openmp/big/fsld.001.html
http://www.osc.edu/supercomputing/training/openmp/big/fsld.001.html
http://www.osc.edu/supercomputing/training/openmp/big/fsld.001.html
http://www.openmp.org

Parallel Programming
Paradigms:

Can work with both distributed and shared
memory architectures.

MPI is the standard - comes in several
implementations: MPICH2, open-mpi.

Library calls explicitly control the parallel
behavior - extensive user rewrite of code.
Code is explicitly instructed to send and
receive messages from other processes.

Message passing and shared memory
techniques can be used in a hybrid mode.

See hello__mpi.f90

Message Passing - Overview

crunch
Memory crunch
receive
crunch
crunch
Memory crunch
send

crunch

Message Passing - MPl examples

® https://computing.linl.gov/tutorials/mpi/
® Barriers

MPI_BARRIER (comm, ierr)

® C(Collective operations

MPI_BCAST (buffer,count,datatype,root,comm,ierr)
MPI_REDUCE (sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

® Sends/receives (blocking and non blocking)

e MPI_SEND (buf,count,datatype,dest,tag,comm,ierr)
MPI_RECYV (buf,count,datatype,source,tag,comm,status,ierr)

e MPI_ISEND (buf,count,datatype,dest,tag,comm,request,ierr)
MPI_IRECV (buf,count,datatype,source,tag,comm,request,ierr)
MPI_WAITALL (count,array of requests,array of statuses,

ierr)

® much more...

® hello_mpi.f90

® Compile with mpif90 wrapper - includes all libraries and
modules.

® Run with mpirun -np n executable

https://computing.llnl.gov/tutorials/mpi/

Open MP - First Steps

OpenMP is the simplest and quickest route to
parallel acceleration.

|dentify parallel do-loops. Each do loop carries
overhead so it can be helpful to have a larger
outer do-loop for parallelism.

|dentify functionally parallel regions.
|dentify shared and private data (scoping).

|dentify race conditions where shared data can
changes program output unexpectedly.

Open MP - parallel do loop

cSomp do shared(x) private (i)
cbSompé& schedule(static)
do 1 = 1, 1000
X(1)=a
enclco

thread 0 (1= 1,250

thread 1 (1 =251,300)

thread O thread O

thrcad 2 (1 =501,750)

thread 3 (i = 751.1000)

Open MP - reduction and
sections

cSomp do shared({x) private (i)
cSompé& reduction (+:sum)
do 1 =1, N
sum = sum + x{1)
enddo

cSomp do shared({x) private (i)
cSompé& reduction{min:gmin)
do 1 = 1,N
gmin = min{gmin,x{(1i))
end do

CSomp
CcSomp

cSomp
cSomp
csSomp

cSomp
CSomp

parallel
sections

section
call computeXpart()
section
call computeYpart ()
section
call computeZpart()

end sections
end parallel

call sum{)

Open MP - data dependency

Qn ly .Variables thaj:. are Writtgn in onc Is there a dependency here?
iteration and read in another iteration
will create data dependencies.

A variable cannot create a dependency ele) =_2 ’];] e
unless it 1s shared. a(1) = cra(i-1)
enddo

Often data dependencies are difficult to
identify. AP O can help by identifying
the dependencies antomatically.

Recurrence:
do 1 = 2,5
aii1) = c*ra(i-1)

enddo

Time

Open MP - Run time

® OpenMP execution can be controlled with
environment variables

e OMP NUM THREADS - sets the number of
threads requested for parallel execution.

e OMP DYNAMIC - enables or disables
dynamic adjustment of the number of
threads used in a parallel region (due to
system load).

Open MP - Examples

® gfortran: compile with -fopenmp

® hello omp.f90, openmp_sample.f90,
poisson_openmp.f90

Coarrays - Fortran 2008

® compilers just now getting it implemented

® extends array syntax of fortran with trailing
subscripts in square brackets to denote the
image (process)

® evolving rapidly - Fortran 2015 standard
will be considerably more advanced.

GPU acceleration

® |atest supercomputers have GPU chips
onboard alongside CPU. Code can be
accelerated by ‘offloading’ some of the
computation to the GPU.

® No one standard for doing this, but some
methods are:

® Cuda - insert subroutine calls

® OpenACC - directive approach akin to
OpenMP

