
Introduction to Parallel
Programming

Overview
• Parallel programming allows the user to use

multiple cpus concurrently

• Reasons for parallel execution:

• shorten execution time by spreading the
computational cycles across multiple cpus.

• permit a larger problem by access to the
combined memory of multiple cpus.

• The days of waiting for the next-generation
chip to improve your serial code throughput
are over.

Amdahl’s Law
• Describes the speedup one can expect as a

function of the number of processors (N) used
and the code fraction that is parallel (p).

T(1) = T(1)*(1-p) + T(1)*p

T(N) = T(1)*(1-p) + T(1)*p
 N
Speedup = T(1) / T(N)
 = 1/ ((1-p) + p/N))

Max Speedup = 1/(1-p)

General Parallel Architecture
Memory

Node
Chip

Core Core

Chip
Core Core

Memory

Node
Chip

Core Core

Chip
Core Core

Memory

Node
Chip

Core Core

Chip
Core Core

Memory

Node
Chip

Core Core

Chip
Core Core

Network

Shared memory / Distributed memory

Types of Parallelism
• Process Parallelism (MPMD) - a code may

contain different segments that can be
computed concurrently. Example: ocean, land,
atmosphere and ice parts of a climate model.

• Data Parallelism (SPMD) - the same code
works on different datastreams. For example,
dividing a global domain into subdomains -
each processor executes all the code for an
individual subdomain.

• Data and process parallelism may be employed
together.

Parallel Programming
Concepts

• Synchronization - making sure all code gets to
a certain point before proceeding.

• Load balancing - trying to keep processes or
threads from being idle while others are
computing.

• Granularity - how large a chunk of work is in
each parallel section - alleviates the overhead
implementing parallel constructs.

Parallel Programming
Paradigms:

• Shared memory techniques launch threads
during execution

• Automatic Parallelizers - just turn on the
compiler switch - it finds the do loops that can
be done in parallel.

• Compiler Directives - OpenMP is the current
standard. User inserts ‘comments’ in code that
compiler recognizes as parallelization
instructions. Only modest changes to code
necessary.

• Only works with shared memory architecture.

See hello_omp.f90

Open MP - Overview

Tutorial:
 http://www.osc.edu/supercomputing/training/openmp/big/
fsld.001.html

Openmp: http://www.openmp.org/

http://www.osc.edu/supercomputing/training/openmp/big/fsld.001.html
http://www.osc.edu/supercomputing/training/openmp/big/fsld.001.html
http://www.osc.edu/supercomputing/training/openmp/big/fsld.001.html
http://www.openmp.org

Parallel Programming
Paradigms:

• Can work with both distributed and shared
memory architectures.

• MPI is the standard - comes in several
implementations: MPICH2, open-mpi.

• Library calls explicitly control the parallel
behavior - extensive user rewrite of code.
Code is explicitly instructed to send and
receive messages from other processes.

• Message passing and shared memory
techniques can be used in a hybrid mode.

See hello_mpi.f90

Message Passing - Overview
Memory

Node
Chip

Core Core

Chip
Core Core

Memory

Node
Chip

Core Core

Chip
Core Core

crunch

crunch

crunch

crunch

receive

send

crunch

crunch

Message Passing - MPI examples

• https://computing.llnl.gov/tutorials/mpi/
• Barriers

 MPI_BARRIER (comm,ierr)

• Collective operations
 MPI_BCAST (buffer,count,datatype,root,comm,ierr)
 MPI_REDUCE (sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

• Sends/receives (blocking and non blocking)
• MPI_SEND (buf,count,datatype,dest,tag,comm,ierr)

 • MPI_RECV (buf,count,datatype,source,tag,comm,status,ierr)
• MPI_ISEND (buf,count,datatype,dest,tag,comm,request,ierr)

 MPI_IRECV (buf,count,datatype,source,tag,comm,request,ierr)
 MPI_WAITALL (count,array_of_requests,array_of_statuses,
...... ierr)

• much more…
• hello_mpi.f90
• Compile with mpif90 wrapper - includes all libraries and

modules.
• Run with mpirun -np n executable

https://computing.llnl.gov/tutorials/mpi/

Open MP - First Steps
• OpenMP is the simplest and quickest route to

parallel acceleration.

• Identify parallel do-loops. Each do loop carries
overhead so it can be helpful to have a larger
outer do-loop for parallelism.

• Identify functionally parallel regions.

• Identify shared and private data (scoping).

• Identify race conditions where shared data can
changes program output unexpectedly.

Open MP - parallel do loop

Open MP - reduction and
sections

Open MP - data dependency

Open MP - Run time

• OpenMP execution can be controlled with
environment variables

• OMP_NUM_THREADS - sets the number of
threads requested for parallel execution.

• OMP_DYNAMIC - enables or disables
dynamic adjustment of the number of
threads used in a parallel region (due to
system load).

Open MP - Examples

• gfortran: compile with -fopenmp

• hello_omp.f90, openmp_sample.f90,
poisson_openmp.f90

Coarrays - Fortran 2008

• compilers just now getting it implemented

• extends array syntax of fortran with trailing
subscripts in square brackets to denote the
image (process)

• evolving rapidly - Fortran 2015 standard
will be considerably more advanced.

GPU acceleration

• Latest supercomputers have GPU chips
onboard alongside CPU. Code can be
accelerated by ‘offloading’ some of the
computation to the GPU.

• No one standard for doing this, but some
methods are:

• Cuda - insert subroutine calls

• OpenACC - directive approach akin to
OpenMP

