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Preface

Numerical modeling is one of four broad approaches to the study of the atmosphere. The
others are observational studies of the real atmosphere through field measurements and
remote sensing, laboratory studies, and theoretical studies. Each of these four approaches
has both strengths and weaknesses. In particular, both numerical modeling and theory
involve approximations. In theoretical work, the approximations often involve extreme
idealizations, e.g., a dry atmosphere on a beta plane, but on the other hand solutions can
sometimes be obtained in closed form with a pencil and paper. In numerical modeling, less
idealization is needed, but no closed form solution is possible. In most cases, numerical
solutions represent particular cases, as opposed to general relationships. Both theoreticians
and numerical modelers make mistakes, from time to time, so both types of work are subject
to errors in the old-fashioned human sense.

Perhaps the most serious weakness of numerical modeling, as a research approach,
is that it is possible to run a numerical model built by someone else without having the
foggiest idea how the model works or what its limitations are. Unfortunately, this kind
of thing happens all the time, and the problem is becoming more serious in this era of
“community” models with large user groups. One of the purposes of this book is to make it
less likely that you, the readers, will use a model without having any understanding of how
it works.

This introductory survey of numerical methods in the atmospheric sciences is designed
to be a practical, “how-to” course, which also conveys sufficient understanding so that after
completing the course students are able to design numerical schemes with useful properties,
and to understand the properties of schemes designed by others.

This book is based on my class notes. The first version of the notes, put together in
1991, was heavily based on the class notes developed by Prof. Akio Arakawa at UCLA, as
they existed in the early 1970s. Arakawa’s influence is still apparent throughout the book,
but especially in Chapters 2, 3, and 4. A lot of additional material has been incorporated,
mainly reflecting developments in the field since the 1970s.

The Teaching Assistants for the course have made major improvements in the material
and its presentation, in addition to their help with the homework and with questions outside
of class. I have learned a lot from them, and also through questions and feedback from the

1
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students.

Michelle Beckman, Amy Dykstra, and Val Hisam spent countless hours patiently as-
sisting in the production of various versions of these notes. I am especially indebted to
Claire Peters, who converted the whole book to LaTeX.
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Chapter 1

Introduction

1.1 What is a model?

The atmospheric science community includes a large and energetic group of researchers
who devise and carry out measurements of the atmosphere. They do instrument develop-
ment, algorithm development, data collection, data reduction, and data analysis.

The data by themselves are just numbers. In order to make physical sense of the data,
some sort of model is needed. It might be a qualitative conceptual model, or it might
be an analytical theory, or it might be a numerical model. Models provide a basis for
understanding data, and also for making predictions about the outcomes of measurements.

Accordingly, a community of modelers is hard at work developing models, perform-
ing simulations, and analyzing the results, in part by comparison with observations. The
models by themselves are just “stories” about the atmosphere. In making up these stories,
however, modelers must strive to satisfy a very special and rather daunting requirement:
The stories must be true, as far as we can tell; in other words, the models must be consis-
tent with all of the relevant measurements.

Most models in atmospheric science are formulated by starting from basic physical
principles, such as conservation of mass, conservation of momentum, and conservation of
thermodynamic energy. Many of these equations are prognostic, which means that they
involve time derivatives. A simple example is the continuity equation, which expresses
conservation of mass:

∂ρ

∂ t
=−∇ · (ρV). (1.1)

Here t is time, ρ is the density of dry air, and V is the three-dimensional velocity vector.
Prognostic variables are governed by prognostic equations. Eq. (1.1) is a prognostic equa-
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tion, in which ρ is a prognostic variable. A model that contains prognostic equations is
solved by time integration, and initial conditions are needed for the prognostic variables.

Any variable that is not prognostic is called diagnostic. Equations that do not contain
time derivatives are called diagnostic equations. The diagnostic variables of a model can
be computed from the prognostic variables and the external parameters that are imposed on
the model, e.g., the radius of the Earth. In this sense, the prognostic variables are primary,
and the diagnostic variables are secondary.

1.2 Elementary models

The sub-disciplines of atmospheric science, e.g., geophysical fluid dynamics, radiative
transfer, atmospheric chemistry, and cloud microphysics all make use of models that are
essentially direct applications of the physical principles listed above to phenomena that
occur in the atmosphere. These models are “elementary” in the sense that they form the
conceptual foundation for other modeling work. Many elementary models were developed
under the banners of physics and chemistry, but some – enough that we can be proud – are
products of the atmospheric science community. Elementary models tend to deal with mi-
croscale phenomena, (e.g., the movement of a microscopic fluid particle, or the evolution
of individual cloud droplets suspended in or falling through the air, or the optical properties
of ice crystals) so that their direct application to practical atmospheric problems is usually
thwarted by the sheer size and complexity of the atmosphere.

Analytical produce results that consist of equations. As a simple example, consider the
ideal gas law

p = ρRT. (1.2)

Eq. (1.2) can be derived using the kinetic theory of gases, which is an analytical model;
the ideal gas law can be called a “result” of the model. This simple formula can be used
to generate numbers, of course; for example, given the density and temperature of the air,
and the gas constant, we can use Eq. (1.2) to compute the pressure. The ideal gas law
summarizes relationships that hold over a wide range of conditions. It is sufficiently simple
that we can understand what it means just by looking at it.

1.3 Numerical models

The results of a numerical model consist of (yes) numbers, which represent particular
“cases” or “realizations.” A realization is an particular instance of what the (model) at-
mosphere can do. For example, we can “run” a numerical model to create a weather fore-
cast, which consists of a large set of numbers. To perform a new forecast, starting from a
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different initial condition, we have to run the model again, generating a new set of num-
bers. In order to see everything that the (model) atmosphere can do, we would have to run
infinitely many cases. In this way, numerical models are quite different from analytical
models, which can describe all possibilities in a single formula. We cannot understand
what a numerical model can simulate just by looking at the computer code.

This distinction between numerical and analytical models is not as straightforward as it
sounds, however. Sometimes the solutions of analytical models are so complicated that we
cannot understand what they mean. Then it is necessary to plot particular examples in order
to gain some understanding of what the model is telling us. In such cases, the analytical
solution is useful in more or less the same way that a numerical solution would be.

The other side of the coin is that in rare cases the solution of a numerical model repre-
sents all possibilities in form of a single (numerically generated) table or plot.

1.4 Physical and mathematical errors

All models entail errors. It is useful to distinguish between physical errors and mathemati-
cal errors.

Suppose that we start from a set of equations that describes a physical phenomenon
“exactly.” For example, we often consider the Navier-Stokes equations to be an exact de-
scription of the fluid dynamics of air.1 For various reasons, we are unable to obtain exact
solutions to the Navier-Stokes equations (except in trivial cases). To simplify the problem,
we introduce physical approximations. For example, we may introduce approximate phys-
ical parameterizations that can be used to determine turbulent and convective fluxes. To
ensure that the models are realistic, we must rely on physical understanding of the relative
importance of the various physical processes and the statistical interactions of subgrid-scale
and grid-scale motions. This means that the design of atmospheric models can never be a
purely mathematical problem.

Beyond simplification, a second motivation for making physical approximations is that
the approximate equations may describe the phenomena of interest more directly, omitting
or “filtering” phenomena of less interest, and so yielding a set of equations that is more
focused on, and more appropriate for, the problem at hand. For example, we may choose
approximations that filter sound waves (e.g., the anelastic approximation) or even gravity
waves (e.g., the quasigeostrophic approximation). These physical approximations intro-
duce physical errors, which may or may not be considered acceptable, depending on the
intended application of a model.

In short, we have to choose the equation system that is used to formulate the model.

Once we have settled on a suitable set of physical equations, we must devise mathemat-

1In reality, of course, the Navier-Stokes equations already involve physical approximations.
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ical methods to solve them. The mathematical methods are almost always approximate,
which is another way of saying that they introduce errors. This book focuses on the math-
ematical methods for models in the atmospheric sciences, and especially the mathematical
errors that these methods entail. We discuss how the mathematical errors can be identified,
analyzed, and minimized. All your life you have been making errors. Now, finally, you get
to read a book about errors.

Another source of error is the finite precision of the computer hardware. This round-
off error is a property of the machine being used (and to some extent the details of the
program). Round-off error sometimes causes problems, but usually it doesn’t, and we will
not worry about it in this book.

1.5 Discretization

Numerical models are “discrete.” This simply means that a numerical model deals with a
finite number of numbers. The process of approximating a continuous model by a discrete
model is called “discretization.”

Most atmospheric models include equations that have time derivatives. As mentioned
earlier, these are called prognostic equations. The design of a model entails choosing which
variables to prognose. As a simple example, we could choose to predict either temperature
or potential temperature. In a continuous model, the same results would be obtained either
way, but in a discrete model the results can depend on which variable is chosen. Much
more discussion of the choice of prognostic variables is given later.

There are multiple approaches to discretization. This book emphasizes grid-point meth-
ods, which are some times called finite-difference methods. The fields of the model are
defined at the discrete points of a grid. The grid can and usually does span time as well
as space. Derivatives are then approximated in terms of differences involving neighboring
grid-point values. A finite-difference equation (or set of equations) that approximates a dif-
ferential equation (or set of equations) is called a finite-difference scheme, or a grid-point
scheme. Grid-point schemes can be derived by various approaches, and the derivation
methods themselves are sometimes given names. Examples include finite-volume meth-
ods, finite-element methods, and semi-Lagrangian methods. This book emphasizes finite-
volume methods, for reasons that will be explained as we go.

A major alternative to the finite-difference method is the spectral method, which in-
volves expanding the fields of the model in terms of weighted sums of continuous, and
therefore differentiable, basis functions, which depend on horizontal position. Simple ex-
amples would include Fourier expansions, and spherical harmonic expansions. In a spectral
model, the basis functions are global, which means that each basis function is defined over
the entire horizontal domain. In atmospheric science, spectral models are most often used
in the global domain, using spherical harmonics as the basis functions.
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In a continuous model, infinitely many basis functions are needed to represent the spa-
tial distribution of a model field. The basis functions appear inside a sum, each weighted by
a coefficient that measures how strongly it contributes to the field in question. In a discrete
model, the infinite set of basis functions is replaced by a finite set, and the infinite sum is
replaced by a finite sum. In addition, the coefficients are defined on a discrete time grid,
and almost always on a discrete vertical grid as well. Even spectral models use grid-point
methods to represent the temporal and vertical structures of the atmosphere.

In a spectral model, horizontal derivatives are computed by differentiating the contin-
uous basis functions. Although the derivatives of the individual basis functions are com-
puted exactly, the derivatives of the model fields are only approximate because they are
represented in terms of finite (rather than infinite) sums.

Finite element methods are similar to spectral methods, except that each basis function
is defined over a “patch” of the domain, rather than globally. The finite-element method
can be viewed as a way of deriving grid-point methods.

Even after we have chosen a grid-point method or a spectral method or a finite-element
method, there are many additional choices to make.

If we adopt a grid-point method, then we have to choose the shapes of the grid cells.
Possibilities include rectangles, triangles, and hexagons. Again, there are trade-offs.

Having settled on the shapes of the grid cells, we must choose where to locate the pre-
dicted quantities on the grid. There can be good reasons to locate different quantities in
different places. This is called “staggering.” It is also possible (but less common) to stag-
ger the variables in time, i.e., to predict different variables at different time levels (e.g.,
Eliassen, 1956; Phillips, 1959b). We will discuss in some detail the strengths and weak-
nesses of various staggering schemes.

For any given grid shape and staggering, we can devise numerical schemes that are
more or less accurate. The many meanings of “accuracy” will be discussed later. More
accurate schemes have smaller errors, but less accurate schemes are usually simpler and
faster. Again, we have to make choices.

1.6 Physically based design of mathematical methods

Throughout this book, I will try to persuade you that physical considerations should play a
primary role in the design of the mathematical methods that we use in our models. There is
a tendency to think of numerical methods as one realm of research, and physical modeling
as a completely different realm. This is a mistake. The design of a numerical model
should be guided, as far as possible, by our understanding of the essential physics of the
processes represented by the model. This book emphasizes that very basic and inadequately
recognized point.
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As an example, to an excellent approximation, the mass of dry air does not change as the
atmosphere goes about its business. This physical principle is embodied in the continuity
equation, (1.1). Integrating (1.1) over the whole atmosphere, with appropriate boundary
conditions, we can show that

∫
WA

∇ · (ρV)dx3 = 0, (1.3)

and so (1.1) implies that

d
dt

∫
WA

ρdx3

= 0. (1.4)

In these two equations, “WA” stands for whole atmosphere. Equation (1.4) is a statement of
global mass conservation; in order to obtain (1.4), we had to use (1.3), which is a property
of the divergence operator with suitable boundary conditions.

In a numerical model, we replace (1.1) by an approximate discrete equation; examples
are given later. The approximate form of (1.1) entails a discrete approximation to the
divergence operator. The approximation inevitably involves errors, but because we are able
to choose or design the approximations, we have some control over the nature of the errors.
We cannot eliminate the errors, but we can refuse to accept certain kinds of errors. For
example, in connection with the continuity equation, we can refuse to accept any error in
the conservation of global mass. This means that we can choose to design our model so
that an appropriate analog of (1.4) is satisfied exactly.

In order to derive an analog of (1.4), we have to enforce an analog of (1.3); this means
that we have to choose an approximation to the divergence operator that “behaves like” the
exact divergence operator in the sense that the global integral (or, more precisely, a global
sum approximating the global integral) is exactly zero. This can be done, quite easily. You
will be surprised to learn how often it is not done.

There are many additional examples of important physical principles that can be en-
forced exactly by designing suitable approximations to differential and/or integral opera-
tors, including conservation of energy and conservation of potential vorticity. In practice, it
is only possible to enforce a few such principles exactly. We must choose which principles
to enforce, guided by our understanding of the physics.
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1.7 The utility of numerical models

A serious practical difficulty in the geophysical sciences is that it is usually impossible or at
least impractical (perhaps fortunately) to perform controlled experiments using the Earth.2

Even where experiments are possible, as with some micrometeorological phenomena, it is
usually not possible to draw definite conclusions, because of the difficulty of separating
any one physical process from the others. Until the beginning of numerical modeling in
the 1950s, the development of atmospheric science had to rely entirely upon observations
of the natural atmosphere, which is an uncontrolled synthesis of many mutually dependent
physical processes. Such observations can hardly provide direct tests of theories, which are
inevitably highly idealized.

Numerical modeling is a powerful tool for studying the atmosphere through an exper-
imental approach. A numerical model simulates the physical processes that occur in the
atmosphere. There are various types of numerical models, designed for various purposes.
One class of models is designed for simulating the actual atmosphere as closely as possible.
Examples are numerical weather prediction models and climate simulation models, which
include representations of many physical processes. Direct comparisons with observations
must be made for evaluation of the model results.

Once such comparisons have given us sufficient confidence that a model behaves like
the real atmosphere, we can use the model as a substitute for the real atmosphere. Nu-
merical experiments with such models can lead to discoveries that would not have been
possible with observations alone. Models can also be used as purely experimental tools.
For example, we could perform an experiment to determine how the general circulation of
the atmosphere would change if the Earth’s mountains were removed, and of course this
has been done (e.g., Manabe and Terpstra, 1974).

Simpler numerical models are also very useful for studying individual phenomena, in-
sofar as they can be isolated. Examples are models of tropical cyclones, baroclinic waves,
and clouds. Simulations with these models can be compared with observations or with
simpler models empirically derived from observations, or with simple theoretical models.

Numerical modeling has brought a maturity to atmospheric science. Theories, numer-
ical simulations and observational studies have been developed jointly in the last several
decades, and this will continue for the indefinite future. Observational and theoretical stud-
ies guide the design of numerical models. It is also true that numerical simulations can
suggest theoretical ideas and can be used to design and make use of efficient observational
systems.

We do not attempt, in this book, to present general rigorous mathematical theories of
numerical methods; such theories are a focus of the Mathematics Department. Instead,
we concentrate on practical aspects of the numerical solution of the specific differential

2Current discussions of geoengineering are very relevant here!
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equations of relevance to atmospheric modeling.

We deal mainly with “prototype” equations that are simplified or idealized versions of
equations that are actually encountered in atmospheric modeling. The various prototype
equations are used in dynamics, but many of them are also used in other branches of atmo-
spheric science, such as cloud physics or radiative transfer. They include the “advection
equation,” the “oscillation equation,” the “decay equation,” the “diffusion equation,” and
others. We also use the shallow water equations to explore some topics, including wave
propagation. Vertical coordinate systems and discretization get a chapter of their own,
because of the powerful effects of gravity and the importance of the atmosphere’s lower
boundary. Emphasis is placed on time-dependent problems, but we also briefly discuss
boundary-value problems.

1.8 Where we are going in this book

Chapter 2 introduces the basics of finite differences. You will learn how to measure the
“truncation error” of a finite-difference approximation to a derivative, and then how to de-
sign schemes that have the desired truncation error, for a differential operator of interest, in
(possibly) multiple dimensions, and on a (possibly) non-uniform grid. Chapter 3 presents
approximations to derivatives to construct an approximation to a simple differential equa-
tion, and examines some aspects of the solution of the finite-difference equation, including
its numerical stability. This leads to a survey of time-differencing methods, in Chapter 4.
Next comes the first of several chapters dealing with scalar advection, which is the process
by which scalar properties of the air are carried along with the air as it moves. Chapter
6 deals with solving sets of linear equations, a topic that has to be covered in prepara-
tion for the next chapter on diffusion. Chapter 8 focuses on waves, with an emphasis on
inertia-gravity waves. Chapter 9 gives a first look at momentum advection and related is-
sues. Chapter 10, which is quite long, deals with vertical coordinate systems and vertical
differencing. Chapter 11 gives a deeper look at momentum advection, including the issues
of energy and enstrophy conservation. Chapter 12 discusses finite-difference methods with
spherical geometry. Chapter 13 gives a brief introduction to spectral methods. Chapter 14
introduces finite-element methods. Chapter 15 presents a closing discussion.

Many of the topics covered in this book are presented with some historical background.
A comprehensive overview of the history of Earth System Modeling, including numerical
modeling of the atmosphere, is presented by Randall et al. (2019).
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Chapter 2

Finite-Difference Approximations to Derivatives

2.1 Finite-difference quotients

Consider the derivative d f/dx, where f = f (x), and x is the independent variable (which
could be either space or time). Finite-difference methods represent the continuous function
f (x) by a set of values defined at a finite number of discrete points in a specified (spatial
or temporal) region. Thus, we usually introduce a “grid” with discrete points where the
variable f is defined,

x{

∆x
j j +1j −1

j + 1
2

x

Figure 2.1: An example of a one-dimensional grid, with uniform grid spacing ∆x. The grid points
are denoted by the integer index j. Half-integer grid points can also be defined, as shown by the x
at j+ 1

2 .

as shown in Fig. 2.1. Sometimes the words “mesh” or “lattice” are used in place of “grid.”
The interval ∆x is called the grid spacing, grid size, mesh size, etc. For the time being,
we assume that the grid spacing is constant, and that x0 = 0; then x j = j∆x, where j is
the “index” used to identify the grid points. Note that x is defined only at the grid points
denoted by the integers j, j+1, etc.

Using the notation f j = f
(
x j
)
= f ( j∆x), we can define

the forward difference at the point j by f j+1− f j (2.1)
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the backward difference at the point j by f j− f j−1, and (2.2)

the centered difference at the point j+
1
2

by f j+1− f j. (2.3)

Note that f itself is not defined at the point j + 1
2 . From (2.1) - (2.3) we can define the

following “finite-difference quotients:”

the forward-difference quotient at the point j:

(
d f
dx

)
j, approx

=
f j+1− f j

∆x
; (2.4)

the backward-difference quotient at the point j:

(
d f
dx

)
j, approx

=
f j− f j−1

∆x
; (2.5)

and the centered-difference quotient at the point j+ 1
2 :

(
d f
dx

)
j+ 1

2 , approx
=

f j+1− f j

∆x
. (2.6)

In addition, the centered-difference quotient at the point j can be defined by

(
d f
dx

)
j, approx

=
f j+1− f j−1

2∆x
. (2.7)

Since (2.4) and (2.5) employ the values of f at two points, and give an approximation to
d f/dx at one of the same points, they are sometimes called two-point approximations. On
the other hand, (2.6) and (2.7) are three-point approximations, because the approximation
to d f/dx is defined at a location different from the locations of the two values of f on the
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right-hand side of the equals sign. When x is time, the time point is frequently referred to
as a “level.” In that case, (2.4) and (2.5) can be referred to as two-level approximations and
(2.6) and (2.7) as three-level approximations.

How accurate are these finite-difference approximations? “Accuracy” can be measured
in a variety of ways, as we shall see. One measure of accuracy is truncation error, which
refers to the truncation of an infinite series expansion. As an example, consider the forward
difference quotient

(
d f
dx

)
j, approx

=
f j+1− f j

∆x
≡ f [( j+1)∆x]− f ( j∆x)

∆x
. (2.8)

Expand f in a Taylor series about the point x j, as follows:

f j+1 = f j+∆x
(

d f
dx

)
j
+
(∆x)2

2!

(
d2 f
dx2

)
j
+
(∆x)3

3!

(
d3 f
dx3

)
j
+· · ·+ (∆x)n−1

(n−1)!

(
dn−1 f
dxn−1

)
j
+· · ·

(2.9)

The expansion (2.9) can be derived without any assumptions or approximations except that
the indicated derivatives exist (Arfken, 1985). When they do, the expansion is exact. This
means that if we know the function and all of its derivatives at a single point, we can (in
principle) calculate the value of the function anywhere else in the domain. That’s pretty
amazing. Eq. (2.9) can be rearranged to

f j+1− f j

∆x
=

(
d f
dx

)
j
+ ε, (2.10)

where

ε ≡ ∆x
2!

(
d2 f
dx2

)
j
+

(∆x)2

3!

(
d3 f
dx3

)
j
+ · · ·+ ∆xn−2

(n−1)!

(
dn−1 f
dxn−1

)
j
+ · · · (2.11)

is called the “truncation error.” If ∆x is small enough, the leading term on the right-hand
side of (2.11) will be the largest part of the error. The lowest power of ∆x that appears
in the truncation error is called the “order of accuracy” of the corresponding difference
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quotient. For example, the leading term of (2.11) is of order ∆x, abbreviated as O(∆x),
and so we say that (2.10) is a first-order approximation or an approximation of first-order
accuracy. Obviously (2.5) is also first-order accurate.

Just to be as clear as possible, a first-order scheme for the first derivative has the form
(d f/dx) j, approx = (d f/dx) j + O [∆x], where (d f/dx) j,approx is an approximation to the
first derivative, and (d f/dx) j is the true first derivative. Similarly, a second-order accurate

scheme for the first derivative has the form (d f/dx) j, approx = (d f/dx) j +O
[
(∆x)2

]
, and

so on for higher orders of accuracy.

Similar analyses show that (2.6) and (2.7) are of second-order accuracy. For example,
we can write

f j−1 = f j +

(
d f
dx

)
j
(−∆x)+

(
d2 f
dx2

)
j

(−∆x)2

2!
+

(
d3 f
dx3

)
j

[
−(∆x)3

3!

]
+ · · · (2.12)

Subtracting (2.12) from (2.9) gives

f j+1− f j−1 = 2
(

d f
dx

)
j
(∆x)+

2
3!

(
d3 f
dx3

)
j

[
(∆x)3

]
+ · · ·odd powers only, (2.13)

which can be rearranged to

(
d f
dx

)
j
=

f j+1− f j−1

2∆x
−
(

d3 f
dx3

)
j

∆x2

3!
+O

[
(∆x)4

]
. (2.14)

Similarly,

(
d f
dx

)
j+ 1

2

∼=
f j+1− f j

∆x
−
(

d3 f
dx3

)
j+ 1

2

(∆x/2)2

3!
+O

[
(∆x)4

]
. (2.15)

From (2.14) and (2.15), we see that
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∣∣∣∣Error of(2.14)
Error of(2.15)

∣∣∣∣∼=
(

d3 f
dx3

)
j
∆x2

3!(
d3 f
dx3

)
j+ 1

2

(∆x/2)2

3!

=
4
(

d3 f
dx3

)
j(

d3 f
dx3

)
j+ 1

2

∼= 4. (2.16)

This shows that the error of (2.14) is about four times as large as the error of (2.15), even
though both finite-difference quotients have second-order accuracy. The point is that the
“order of accuracy” tells how rapidly the error changes as the grid is refined, but it does
not tell how large the error is for a given grid size. It is possible for a scheme of low-order
accuracy to give a more accurate result than a scheme of higher-order accuracy, if a finer
grid spacing is used with the low-order scheme.

Suppose that the leading (and dominant) term of the error has the form

ε ∼=C(∆x)p, (2.17)

where C is a constant. From (2.17) we see that ln(ε)∼= p ln(∆x)+ ln(C), and so

d [ln(ε)]
d [ln(∆x)]

∼= p. (2.18)

This means that if we plot ln(ε) as a function of ln(∆x) (i.e., plot the error as a func-
tion of the grid spacing on “log-log” paper), we will get (approximately) a straight line
whose slope is p. This is a simple way to determine empirically the order of accuracy of a
finite-difference quotient. Of course, in order to carry this out in practice it is necessary to
compute the error of the finite-difference approximation, and that can only be done when
the exact derivative is known. For that reason, this empirical approach is usually imple-
mented by using an analytical “test function.” Can you think of an approximate way to use
the empirical approach even when the exact solution is not known?

2.2 Quantifying the accuracy of finite-difference quotients

Suppose that we write

f j+2− f j−2

4∆x
=

(
d f
dx

)
j
+

1
3!

(
d3 f
dx3

)
j
(2∆x)2 + · · ·even powers only. (2.19)
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Here we have written a centered difference using the points j+2 and j−2 instead of j+1
and j−1, respectively. It should be clear that (2.19) is second-order accurate, although for
any given value of ∆x the error of (2.19) is expected to be larger than the error of (2.14). We
can combine (2.14) and (2.19) with a weight, w, so as to obtain a “hybrid” approximation
to (d f/dx) j:

(
d f
dx

)
j
=w
(

f j+1− f j−1

2∆x

)
+(1−w)

(
f j+2− f j−2

4∆x

)
− w

3!

(
d3 f
dx3

)
j
(∆x)2− (1−w)

3!

(
d3 f
dx3

)
j
(2∆x)2 +O

[
(∆x)4

]
.

(2.20)

Inspection of (2.20) shows that we can force the coefficient of (∆x)2 to vanish by choosing

w+(1−w)4 = 0, or w = 4/3. (2.21)

With this choice, (2.20) reduces to

(
d f
dx

)
j
=

4
3

(
f j+1− f j−1

2∆x

)
− 1

3

(
f j+2− f j−2

4∆x

)
+O

[
(∆x)4

]
. (2.22)

This is a fourth-order accurate scheme.

The derivation given above, in terms of a weighted combination of two second-order
schemes, can be interpreted as a linear extrapolation of the value of the finite-difference
expression to a smaller grid size, as illustrated in Fig. 2.2. Both extrapolation and interpo-
lation use weights that sum to one. In the case of interpolation, both weights lie between
zero and one, while in the case of extrapolation one of the weights is larger than one and the
other weight is negative. The concepts of extrapolation and interpolation will be discussed
in more detail, later in this chapter.

Are there more systematic ways to construct schemes of any desired order of accuracy?
The answer is “Yes,” and one such approach is as follows. Suppose that we write a finite-
difference approximation to (d f/dx) j in the following somewhat generalized form:

(
d f
dx

)
j, approx

∼=
1

∆x

∞

∑
j′=−∞

a j′ f
(
x j + j′∆x

)
. (2.23)
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df
dx

0 grid spacing2ΔxΔx2
3
Δx

Figure 2.2: Schematic illustrating an interpretation of the fourth-order scheme given by (2.22) in
terms of an extrapolation from two second-order schemes. The fourth-order scheme with grid spac-
ing ∆x produces approximately the same accuracy as a second-order scheme with grid spacing
2
3 ∆x.

Here the a j′ are coefficients or “weights,” which are undetermined at this point. We can
design a scheme by choosing suitable expressions for the a j′ . In most schemes, all but a
few of the a j′ will be zero, so that the sum (2.23) will actually involve only a few (non-
zero) terms. In writing (2.23), we have assumed for simplicity that ∆x is a constant; this
assumption will be relaxed soon. The index j′ in (2.23) is a counter that is zero at our
“home base,” grid point j. For j′ < 0 we count to the left, and for j′ > 0 we count to the
right. According to (2.23), our finite-difference approximation to (d f/dx) j has the form
of a weighted sum of values of f (x) at various grid points in the vicinity of point j. Every
finite-difference approximation that we have considered so far does indeed have this form,
but you should be aware that there are (infinitely many!) schemes that do not have this
form; a few of them will be discussed later.

Introducing a Taylor series expansion, we can write
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f
(
x j + j′∆x

)
= f 0

j + f 1
j
(

j′∆x
)
+ f 2

j
( j′∆x)2

2!
+ f 3

j
( j′∆x)3

3!
+ · · · (2.24)

Here we introduce a new short-hand notation: f n
j is the nth derivative of f , evaluated at the

point j. Using (2.24), we can rewrite (2.23) as

(
d f
dx

)
j, approx

∼=
1

∆x

∞

∑
j′=−∞

a j′

[
f 0

j + f 1
j
(

j′∆x
)
+ f 2

j
( j′∆x)2

2!
+ f 3

j
( j′∆x)3

3!
+ · · ·

]
. (2.25)

Let’s consider what happens with each of the various “pieces” of the right-hand side of
(2.25). The first piece is

1
∆x

∞

∑
j′=−∞

a j′ f
0
j . (2.26)

As ∆x goes to zero, this expression will blow up unless

∞

∑
j′=−∞

a j′ = 0. (2.27)

The condition (2.27) is, therefore, a requirement that any useful scheme has to satisfy. The
second piece of the right-hand side of (2.25) is

1
∆x

∞

∑
j′=−∞

a j′ f
1
j
(

j′∆x
)
= f 1

j

∞

∑
j′=−∞

a j′ j
′ (2.28)

Since f 1
j is the exact first derivative that we are trying to approximate, we want to require

that

∞

∑
j′=−∞

a j′ j
′ = 1. (2.29)
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In summary, these two results show that in order to have at least first-order accuracy, we
need

∞

∑
j′=−∞

a j′ = 0 and
∞

∑
j′=−∞

j′a j′ = 1. (2.30)

To achieve at least second-order accuracy, we must impose an additional requirement,
namely that the third piece of the right-hand side of (2.25) vanishes. This leads to

∞

∑
j′=−∞

j′2a j′ = 0. (2.31)

In general, to approximate the first derivative with at least nth-order accuracy (with uniform
grid spacing), we must require that

∞

∑
j′=−∞

j′ma j′ = δm,1 for 0≤ m≤ n. (2.32)

Here δm,1 is the Kronecker delta. In order to satisfy (2.32), we must solve a system of n+1
linear equations for the n+1 unknown coefficients a j′ .

According to (2.32), a scheme of nth-order accuracy can be constructed by satisfying
n+1 equations. In particular, because (2.30) involves two equations, a first-order scheme
has to involve at least two grid points, i.e., there must be at least two non-zero values of a j′ .
Pretty obvious, right? A second-order scheme must involve at least three grid points. Note
that we could make a first-order scheme that used fifty grid points if we wanted to – but
then, why would we want to? A scheme that is parsimonious in its use of points is called
“compact.”

Here is a simple example. Still assuming a uniform grid, a first order scheme for f 1
j can

be constructed using the points j and j + 1 as follows. From (2.30), we get a0 + a1 = 0
and a1 = 1. It follows that we must choose a1 =−1. Substituting into (2.23), we find that
the scheme is given by f 1

j
∼=
[

f
(
x j+1

)
− f

(
x j
)]
/∆x, i.e., it is the same as the one-sided

forward difference discussed earlier. In a similar way, we can also construct a first-order
scheme using the points j and j−1, with another one-sided and familiar result.

If we choose the points j + 1 and j− 1, imposing the requirements for first-order
accuracy, i.e., (2.30), will actually give us the centered second-order scheme, i.e., f 1

j
∼=

f
(
x j+1

)
− f

(
x j−1

)
2∆x

because (2.31) is satisfied “accidentally” or “automatically” – by luck,
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we manage to satisfy three equations using only two unknowns. If we choose the three
points j− 1, j, and j + 1, and require second-order accuracy, we get exactly the same
centered scheme, because a0 turns out to be zero.

It should now be apparent that (2.32) can be used to construct schemes of arbitrarily
high accuracy, simply by allocating enough grid points and solving the resulting system of
linear equations for the a j′ . Schemes that use a lot of grid points involve lots of arithmetic,
so there is a “law of diminishing returns” at work. As a rough rule of thumb, it is usually
not useful to go beyond 5th-order accuracy.

Next, we work out a generalization of the family of schemes given above, for the case
of (possibly) non-uniform grid spacing. Eq. (2.23) is replaced by

(
d f
dx

)
j, approx

∼=
∞

∑
j′=−∞

b j, j′ f (x j+ j′). (2.33)

Note that, since ∆x is no longer a constant, the factor of 1
∆x that appears in (2.23) has

been omitted in (2.33), and in view of this, in order to avoid notational confusion, we have
replaced the symbol a j′ by b j, j′ . Naturally, it is going to turn out that b j, j′ ∼ 1

∆x . The
subscript j is included on b j, j′ because for a given value of k the numerical values of the
coefficients are different for different values of j, i.e., at different places on the non-uniform
grid.

Similarly, (2.24) is replaced by

f
(
x j+ j′

)
= f 0

j + f 1
j (∆x) j, j′+ f 2

j
(∆x)2

j, j′

2!
+ f 3

j
(∆x)3

j, j′

3!
+ · · · (2.34)

Here (∆x) j, j′ ≡ x j+ j′ − x j takes the place of j′∆x in (2.24). Note that (∆x) j,0 = 0, and
(∆x) j, j′ < 0 for j′ < 0. Substitution of (2.34) into (2.33) gives

(
d f
dx

)
j, approx

∼=
∞

∑
j′=−∞

b j, j′

[
f 0

j + f 1
j (∆x) j, j′+ f 2

j
(∆x)2

j, j′

2!
+ f 3

j
(∆x)3

j, j′

3!
+ · · ·

]
. (2.35)

To have first-order accuracy with (2.35), we must require that

∞

∑
j′=−∞

b j, j′ = 0 and
∞

∑
j′=−∞

b j, j′(∆x) j, j′ = 1, for all j. (2.36)
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Compare with (2.30). It may appear that when we require first-order accuracy by enforcing

(2.36), the leading term of the error in (2.35), namely
∞

∑
j′=−∞

b j, j′ f
2
j
(∆x)2

j, j′

2!
, will be of order

(∆x)2, but this is not true because, as mentioned above and shown below, b j, j′ ∼ 1/∆x. To
achieve second-order accuracy with (2.35), we must require, in addition to (2.36), that

∞

∑
j′=−∞

b j, j′ (∆x)2
j, j′ = 0 for all j. (2.37)

Eq. (2.37) is the requirement that the first-order part of the error vanishes, so that we have
at least second-order accuracy. In general, to have at least nth-order accuracy, we must
require that

∞

∑
j′=−∞

b j, j′ (∆x)m
j, j′ = δm,1 for all j, and for 0≤ m≤ n. (2.38)

This is a generalization of Eq. (2.32).

As an example, consider the first-order accurate scheme using the points j and j+ 1.
Since we are using only those two points, the only non-zero coefficients are b j,0 and b j,1,
and they must satisfy the two equations corresponding to (2.36), i.e., b j,0 + b j,1 = 0 and
b j,1 = 1/(∆x) j,1. We see immediately that b j,0 = 1/(∆x) j,1. Referring back to (2.33), we
see that the scheme is f 1

j
∼=
[

f
(
x j+1

)
− f

(
x j
)]
/(∆x) j,1, which, not unexpectedly, has the

same form as the result that we obtained for the case of the uniform grid. Naturally, the
non-uniformity of the grid is irrelevant when we consider only two points.

To obtain a second-order accurate approximation to f 1
j on an arbitrary grid, using the

three points j−1, j, and j+1, we must require, from (2.36) that

b j,−1 +b j,0 +b j,1 = 0 and b j,−1(∆x) j,−1 +b j,1(∆x) j,1 = 1, (2.39)

which suffice for first-order accuracy, and additionally from (2.37) that

b j,−1 (∆x)2
j,−1 +b j,1 (∆x)2

j,1 = 0. (2.40)
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Note that (∆x) j,−1 ≡ x j−1− x j = −(∆x) j−1,1. The solution of this system of three linear
equations can be written as

b j,−1 =
(∆x) j,1

(∆x) j,−1

[
(∆x) j,1− (∆x) j,−1

] , (2.41)

b j,0 =−

[
(∆x) j,1 +(∆x) j,−1

(∆x) j,1(∆x) j,−1

]
, (2.42)

b j,1 =
−(∆x) j,−1

(∆x) j,1

[
(∆x) j,1− (∆x) j,−1

] . (2.43)

You should confirm that for the case of uniform grid-spacing this reduces to the centered
second-order scheme discussed earlier.

Here is a simple and very practical question: Suppose that we use a scheme that has
second-order accuracy on a uniform grid, but we go ahead and apply it on a non-uniform
grid. (People do this all the time!) What happens? As a concrete example, we use the
scheme

(
d f
dx

)
j, approx

∼=
f
(
x j+1

)
− f

(
x j−1

)
x j+1− x j−1

. (2.44)

By inspection, we have

b j,−1 =
−1

x j+1− x j−1
, (2.45)

b j,0 = 0, (2.46)
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b j,1 =
1

x j+1− x j−1
. (2.47)

Eqs. (2.45) - (2.47) do satisfy both of the conditions in (2.39), so that the scheme does have
first-order accuracy, even on the non-uniform grid. Eq. (2.41) - (2.43) are not satisfied,
however, so it appears that second-order accuracy is lost.

This argument is a bit too hasty, however. Intuition suggests that, if the grid-spacing
varies slowly enough, the scheme given by (2.44) should be nearly as accurate as if the
grid-spacing were strictly constant. Intuition can never prove anything, but it can suggest
ideas. Let’s pursue this idea to see if it has merit. Define (∆x) j+1/2≡ x j+1−x j for all j, and
let ∆ be the grid spacing at some reference grid point. We write the centered second-order
scheme appropriate to a uniform grid, but apply it on a non-uniform grid:

(
d f
dx

)
j, approx

=
f j+1− f j−1
x j+1−x j−1

=
[ f j+ f 1

j (∆x) j+1/2+
1
2! f 2

j (∆x)2
j+1/2+O(∆ 3)]−[ f j− f 1

j (∆x) j−1/2+
1
2! f 2

j (∆x)2
j−1/2+O(∆ 3)]

(∆x) j+1/2+(∆x) j−1/2
.

(2.48)

Here (∆x) j+1/2 ≡ x j+1− x j and (∆x) j−1/2 ≡ x j− x j−1. Eq. (2.48) can be simplified to

(
d f
dx

)
j, approx

= f 1
j +

1
2!

f 2
j

[
(∆x) j+1/2− (∆x) j−1/2

]
+O

(
∆

2) . (2.49)

There is indeed a “first-order term” in the error, as expected, but notice that it is proportional
to
[
(∆x) j+1/2− (∆x) j−1/2

]
, which is the difference in the grid spacing between neighbor-

ing points, i.e., it is a “difference of differences.” If the grid spacing varies slowly enough,
this term will be second-order. For example, if (∆x) j+1/2 = ∆(1+αx j+1/2), then

[
(∆x) j+1/2− (∆x) j−1/2

]
=∆(1+αx j+1/2)−∆(1+αx j−1/2)

=∆α
(
x j+1/2− x j−1/2

)
∼O

(
∆

2) ,
(2.50)
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provided that α ∼ O(1) or smaller.

Next, we observe that (2.33) can be generalized to derive approximations to higher-
order derivatives of f . For example, to derive approximations to the second derivative, f 2

j ,
on a (possibly) non-uniform grid, we write

(
d2 f
dx2

)
j, approx

∼=
∞

∑
j′=−∞

c j, j′ f
(
x j+ j′

)
. (2.51)

Obviously, it is going to turn out that c j, j′ ∼ 1
(∆x)2 . Substitution of (2.34) into (2.51) gives

(
d2 f
dx2

)
j, approx

=
∞

∑
j′=−∞

c j, j′

[
f 0

j + f 1
j (∆x) j, j′+ f 2

j
(∆x)2

j, j′

2!
+ f 3

j
(∆x)3

j, j′

3!
+ · · ·

]
. (2.52)

A first-order accurate approximation to the second derivative is ensured if we enforce the
three conditions

∞

∑
j′=−∞

c j, j′ = 0 ,
∞

∑
j′=−∞

c j, j′(∆x) j, j′ = 0 , and
∞

∑
j′=−∞

c j, j′ (∆x)2
j, j′ = 2! , for all j. (2.53)

To achieve a second-order accurate approximation to the second derivative, we must also
require that

∞

∑
j′=−∞

c j, j′ (∆x)3
j, j′ = 0 , for all j. (2.54)

In general, to have an nth-order accurate approximation to the second derivative, we must
require that

∞

∑
j′=−∞

c j, j′ (∆x)m
j, j′ = (2!)∆m,2 for all j, and for 0≤ m≤ n+1. (2.55)
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We thus have to satisfy n+ 2 equations to obtain an nth-order accurate approximation to
the second derivative, whereas we had to satisfy only n+1 equations to obtain an nth-order
accurate approximation to the first derivative.

Earlier we showed that, in general, a second-order approximation to the first derivative
must involve a minimum of three grid points, because three conditions must be satisfied
[i.e., (2.39) and (2.40)]. Now we see that, in general, a second-order approximation to the
second derivative must involve four grid points, because four conditions must be satisfied,
i.e., (2.53) and (2.54). Five points may be preferable to four, from the point of view of
symmetry. In the special case of a uniform grid, three points suffice.

At this point, you should be able to see (“by induction”) that on a (possibly) non-
uniform grid, an nth-order accurate approximation to the lth derivative of f takes the form

(
dl f
dxl

)
j, approx

∼=
∞

∑
j′=−∞

d j, j′ f
(
x j+ j′

)
, (2.56)

where

∞

∑
j′=−∞

(∆x)m
j, j′ d j, j′ = (l!)δm,l for 0≤ m≤ n+ l−1. (2.57)

This is a total of n+ l requirements, so in general a minimum of n+ l points will be needed.
It is straightforward to write a computer program that will automatically generate the co-
efficients for a compact nth-order-accurate approximation to the lth derivative of f , using
n+ l points on a nonuniform grid.

What is the meaning of (2.57) when l = 0?

2.3 Extension to two dimensions

The approach presented above can be generalized to multi-dimensional problems. We will
illustrate this using the two-dimensional Laplacian operator. The Laplacian appears, for
example, in the diffusion equation with a constant diffusion coefficient, which is

∂ f
∂ t

= K∇
2 f , (2.58)
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where t is time and K is a constant positive diffusion coefficient. A later chapter is entirely
devoted to solving equations similar to (2.58).

Earlier in this chapter, we discussed one-dimensional differences that could represent
either space or time differences, but our discussion of the Laplacian is unambiguously about
space differencing.

Consider a fairly general finite-difference approximation to the Laplacian, of the form

(
∇

2 f
)

j,approx
∼=

∞

∑
j′=−∞

e j, j′ f
(
x j+ j′,y j+k

)
. (2.59)

Here we use one-dimensional indices even though we are on a two-dimensional grid. The
grid is not necessarily rectangular, and can be non-uniform. The subscript j denotes a
particular grid point (“home base” for this calculation), whose coordinates are

(
x j,y j

)
.

Similarly, the subscript j + k denotes a grid point in the neighborhood of point j, whose
coordinates are

(
x j+ j′,y j+k

)
. In practice, a method is needed to compute (and perhaps

tabulate for later use) the appropriate values of k for the grid points in the neighborhood of
each j; for purposes of the present discussion this is an irrelevant detail.

The two-dimensional Taylor series is

f
(
x j+ j′,y j+k

)
= f

(
x j,y j

)
+
[
(∆x) j, j′

∂

∂x +(∆y) j, j′
∂

∂y

]
f + 1

2!

[
(∆x) j, j′

∂

∂x +(∆y) j, j′
∂

∂y

]2
f

+ 1
3!

[
(∆x) j, j′

∂

∂x +(∆y) j, j′
∂

∂y

]3
f + 1

4!

[
(∆x) j, j′

∂

∂x +(∆y) j, j′
∂

∂y

]4
f + · · ·

(2.60)

which can be written out in gruesome detail as

26



Revised Monday 23rd August, 2021 at 15:57

f
(
x j+ j′,y j+k

)
= f

(
x j,y j

)
+
[
(∆x) j, j′ fx +(∆y) j, j′ fy

]
+ 1

2!

[
(∆x)2

j, j′ fxx +2(∆x) j, j′(∆y) j, j′ fxy +(∆y)2
j, j′ fyy

]
+ 1

3!

[
(∆x)3

j, j′ fxxx +3(∆x)2
j, j′ (∆y) j, j′ fxxy +3(∆x) j, j′ (∆y)2

j, j′ fxyy +(∆y)3
j, j′ fyyy

]
+ 1

4!

[
(∆x)4

j, j′ fxxxx +4(∆x)3
j, j′ (∆y) j, j′ fxxxy +6(∆x)2

j, j′ (∆y)2
j, j′ fxxyy

+4(∆x) j, j′ (∆y)3
j, j′ fxyyy +(∆y)4

j, j′ fyyyy

]
+ · · ·

(2.61)

Here we use the notation

(∆x) j, j′ ≡ x j+ j′− x j and (∆y) j, j′ ≡ y j+k− y j, (2.62)

and it is understood that all of the derivatives are evaluated at the point
(
x j,y j

)
. Notice

the “cross terms” that involve products of (∆x)k and (∆y)k, and the corresponding cross-
derivatives. A more general form of (2.61) is

f (r+a) = f (r)+
∞

∑
n=1

1
n!
(a ·∇)n f (r), (2.63)

where r is a position vector, and a is a displacement vector (Arfken (1985), p. 309). In
(2.63), the operator (a ·∇)n acts on the function f (r). You should confirm for yourself
that the general form (2.63) is consistent with (2.61). Eq. (2.63) has the advantage that
it does not make use of any particular coordinate system. Because of this, it can be used
to work out the series expansion using any coordinate system, e.g., Cartesian coordinates
or spherical coordinates or polar coordinates, by using the form of ∇ in that coordinate
system.

Substituting from (2.61) into (2.59), we find that
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( fxx + fyy) j,approx
∼=

∞

∑
j′=−∞

e j, j′
{

f
(
x j,y j

)
+
[
(∆x) j, j′ fx +(∆y) j, j′ fy

]
+ 1

2!

[
(∆x)2

j, j′ fxx +2(∆x) j, j′(∆y) j, j′ fxy +(∆y)2
j, j′ fyy

]
+ 1

3!

[
(∆x)3

j, j′ fxxx +3(∆x)2
j, j′ (∆y) j, j′ fxxy +3(∆x) j, j′ (∆y)2

j, j′ fxyy +(∆y)3
j, j′ fyyy

]
+ 1

4!

[
(∆x)4

j, j′ fxxxx +4(∆x)3
j, j′ (∆y) j, j′ fxxxy +6(∆x)2

j, j′ (∆y)2
j, j′ fxxyy

+4(∆x) j, j′ (∆y)3
j, j′ fxyyy +(∆y)4

j, j′ fyyyy

]
+ · · ·

}
·

(2.64)

Notice that we have expressed the Laplacian on the left-hand side of (2.64) in terms of
Cartesian coordinates. The motivation is that we are going to use the special case of Carte-
sian coordinates (x,y) as an example, and in the process we are going to to “match up
terms” on the left and right sides of (2.64). The use of Cartesian coordinates in (2.64) does
not limit its applicability to Cartesian grids. In other words, we can use a Cartesian coor-
dinate system even if we are not using a Cartesian grid. Eq. (2.64) can be used to analyze
the truncation errors of a finite-difference Laplacian on any planar grid, regardless of how
the grid points are distributed.

To have first-order accuracy, we need

∞

∑
j′=−∞

e j, j′ = 0, for all j, (2.65)

∞

∑
j′=−∞

e j, j′(∆x) j, j′ = 0, for all j, (2.66)

∞

∑
j′=−∞

e j, j′(∆y) j, j′ = 0, for all j, and (2.67)

∞

∑
j′=−∞

e j, j′(∆x)2
j, j′ = 2!, for all j, (2.68)
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∞

∑
j′=−∞

e j, j′(∆x) j, j′(∆y) j, j′ = 0, for all j, (2.69)

∞

∑
j′=−∞

e j, j′(∆y)2
j, j′ = 2!, for all j. (2.70)

From (2.59) and (2.64), it is clear that e j, j′ is of order ∆−2, where ∆ is a shorthand for
“∆x or ∆y.” Therefore, the quantities inside the sums in (2.66)-(2.67) are of order ∆−1,
and those inside the sums in (2.68)-(2.70) are of order one. This is why (2.68)-(2.70) are
required, in addition to (2.65)-(2.67), to obtain first-order accuracy.

Eq. (2.65) implies (with (2.59)) that a constant field has a Laplacian of zero, as it
should. That’s nice.

So far, (2.65)-(2.70) involve six equations. This means that to ensure first-order accu-
racy for a two-dimensional grid, six grid points are needed for the general case. There are
exceptions to this rule. If we are fortunate enough to be working on a highly symmetrical
grid, it is possible that the conditions for second-order accuracy can be satisfied with a
smaller number of points. For example, if we satisfy (2.65)-(2.70) on a square grid, we will
get second-order accuracy “for free,” and, as you will show when you do the homework, it
can be done with only five points. More generally, with a non-uniform grid, we must also
satisfy the following four additional conditions to achieve second-order accuracy:

∞

∑
j′=−∞

e j, j′(∆x)3
j, j′ = 0, for all j, (2.71)

∞

∑
j′=−∞

e j, j′(∆x)2
j, j′(∆y) j, j′ = 0, for all j, (2.72)

∞

∑
j′=−∞

e j, j′(∆x) j, j′(∆y)2
j, j′ = 0, for all j, (2.73)
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∞

∑
j′=−∞

e j, j′(∆y)3
j, j′ = 0, for all j. (2.74)

In general, a total of ten conditions, i.e., Eqs. (2.65)-(2.74), must be satisfied to ensure
second-order accuracy on a non-uniform two-dimensional grid.

If we were working in more than two dimensions, we would simply replace (2.61)
by the appropriate multi-dimensional Taylor series expansion. The rest of the argument
would be parallel to that given above, although of course the requirements for second-order
accuracy would be more numerous.

2.4 Laplacians on rectangular grids

Consider a 3x3 block nine-points on a rectangular grid, as shown in Fig. 2.3. Because this
grid has a high degree of symmetry, is possible to obtain second-order accuracy with just
five points, and in fact this can be done in two different ways, corresponding to the two
five-point stencils shown by the grey boxes in the figure. Based on their shapes, one of the
stencils can be called “+”, and the other one “x”. We assume a grid spacing d in both the x
and y directions, and use a two-dimensional indexing system, with counters i and j in the x
and y directions, respectively.

Using the methods explained above, it can be shown that the second-order finite-difference
Laplacians are given by

(
∇

2 f
)

i, j,approx
∼=

fi, j+1 + fi−1, j + fi, j−1 + fi+1, j−4 fi, j

d2 with the + stencil, (2.75)

and

(
∇

2 f
)

i, j,approx
∼=

fi+1, j+1 + fi−1, j+1 + fi−1, j−1 + fi+1, j−1−4 fi, j(√
2d
)2 with the x stencil.

(2.76)

Inspection shows that the Laplacian based on the x stencil cannot “see” a checkerboard pat-
tern in the function represented on the grid, as shown by the plus and minus symbols in the
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+ +-

- -+

+ +-

+ +-

- -+

+ +-

x stencil+ stencil

- --

+ ++

- --

- --

+ ++

- --

Figure 2.3: The grey shading shows two five-point stencils that can be used to create second-order
Laplacians on a rectangular grid. In the upper two panels, the plus and minus symbols represent
an input function that has the form of a checkerboard. In the lower two panels the plus and minus
symbols represent an input function that has the form of a “rotated checkerboard,” which can also
be viewed as a set of horizontal stripes. (The checkerboard in the top two panels can be viewed as
“rotated stripes.”)

top two panels. What I mean by this is that the scheme returns a zero for the Laplacian even
when a checkerboard is present. A diffusion equation that uses this form of the Laplacian
cannot smooth out a checkerboard. That’s bad.

The + stencil is not necessarily the clear winner here, however. It under-estimates the
strength of the “rotated checkerboard” (which can also be called “stripes”) shown in the
bottom two panels of Fig. 2.3, while the x stencil feels it more strongly. A more general
second-order Laplacian uses all nine points, and can be obtained by writing a weighted
sum of the two Laplacians given by (2.75) and (2.76). What principle would you suggest
for choosing the values of the weights? The nine-point stencil will involve more arithmetic
than either of the two five-point stencils, but the benefit may justify the cost in this case.

2.5 Integral properties of the Laplacian

Here comes a digression, which deals with something other than the order of accuracy of
the scheme.

For the continuous Laplacian on a periodic domain or a closed domain with zero normal
derivatives on its boundary, we can prove the following two important properties:
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∫
A

(
∇

2 f
)

dA = 0, (2.77)

∫
A

f
(
∇

2 f
)

dA≤ 0. (2.78)

Here the integrals are with respect to area, over the entire domain; volume integrals can be
used in the same way for the case of three dimensions. These results hold for any suffi-
ciently differentiable function f . For the diffusion equation, (2.58), Eq. (2.77) implies that
diffusion does not change the area-averaged value of f , and the inequality (2.78) implies
that diffusion reduces the area-average of the square of f .

The finite-difference requirements corresponding to (2.77) and (2.78) are

∑
all j

(
∇

2 f
)

j,approxA j ∼= ∑
all j

[
∞

∑
j′=−∞

e j, j′ f
(
x j+ j′,y j+k

)]
A j = 0, (2.79)

and

∑
all j

f j
(
∇

2 f
)

j,approxA j ∼= ∑
all j

f j

[
∞

∑
j′=−∞

e j, j′ f
(
x j+ j′,y j+k

)]
A j ≤ 0, (2.80)

where A j is the area of grid-cell j . Suppose that we want to satisfy (2.79)-(2.80) regardless
of the numerical values assigned to f

(
x j,y j

)
. This may sound impossible, but it can be

done by suitable choice of the e j, j′ . As an example, consider what is needed to ensure that
(2.79) will be satisfied for an arbitrary distribution of f

(
x j,y j

)
. Each value of f

(
x j,y j

)
will appear more than once in the sum on the right-hand side of (2.79). We can “collect the
coefficients” of each value of f

(
x j,y j

)
, and require that the sum of the coefficients is zero.

To see how this works, define j′ ≡ j+ k, and write
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∑
all j

[
∞

∑
j′=−∞

e j,k f
(
x j+ j′, y j+k

)]
A j = ∑

all j

[
∑
all j′

e j, j′− j f
(
x j′, y j′

)
A j

]

= ∑
all j′

[
∑
all j

e j, j′− j f
(
x j′, y j′

)
A j

]

= ∑
all j′

[
f
(
x j′, y j′

)(
∑
all j

e j, j′− jA j

)]
= 0 .

(2.81)

In the second line above, we simply change the order of summation. The last equality
above is a re-statement of the requirement (2.79). The only way to satisfy it for an arbitrary
distribution of f

(
x j,y j

)
is to write

∑
all j

e j, j′− jA j = 0 for each j′, (2.82)

which is equivalent to

∑
all j

e j, j′A j = 0 for each k. (2.83)

If the e j, j′ satisfy (2.83) then (2.79) will also be satisfied.

Similar (but more complicated) ideas were used by Arakawa (1966), in the context of
energy and enstrophy conservation with a finite-difference vorticity equation. This will be
discussed in Chapter 11.

A finite-difference scheme with a property similar to (2.78) is discussed in Chapter 7.

2.6 Why be square?

As is well known, only three regular polygons tile the plane: equilateral triangles, squares,
and hexagons. Fig. 2.4 shows planar grids made from each of these three possible polygo-
nal elements.

On the triangular grid and the square grid, some of the neighbors of a given cell lie
directly across cell walls, while others lie across cell vertices. As a result, finite-difference
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12 neighbors,

3 wall neighbors

8 neighbors,

4 wall neighbors

6 neighbors,

6 wall neighbors

Figure 2.4: The upper row of figures shows small sections of grids made up of equilateral triangles
(left), squares (center), and hexagons (right). These are the only regular polygons that tile the
plane. The hexagonal grid has the highest symmetry. For example, all neighboring cells of a given
hexagonal cell are located across cell walls. In contrast, with either triangles or squares some
neighbors are across walls, while others are across corners. The lower row of figures shows the
“checkerboards” associated with each grid. The triangular and quadrilateral checkerboards have
two colors, while the hexagonal checkerboard has three colors.

operators constructed on these grids tend to use “wall neighbors” and “vertex neighbors”
in different ways. For example, the simplest second-order finite-difference approximation
to the gradient, on a square grid, uses only “wall neighbors;” vertex neighbors are ignored.
Although it is certainly possible to construct finite-difference operators on square grids
(and triangular grids) in which information from all nearest-neighbor cells is used (e.g.,
the Arakawa Jacobian, as discussed by Arakawa (1966) and in Chapter 11), the essential
anisotropies of these grids remain, and are unavoidably manifested in the forms of the
finite-difference operators.

In contrast, hexagonal grids have the property that all neighbors of a given cell lie
across cell walls; there are no “vertex neighbors.” In this sense, hexagonal grids are quasi-
isotropic. As a result, the most natural finite-difference Laplacians on hexagonal grids treat
all neighboring cells in the same way; they are as symmetrical and isotropic as possible.
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Further discussion of non-quadrilateral grids is given later.

2.7 Summary

This chapter demonstrates that it is straightforward to design finite-difference schemes to
approximate a derivative of any order, with any desired order of accuracy, on irregular
grids of any shape, and in multiple dimensions. It’s a done deal. The schemes can also
be designed to satisfy rules based on properties of the differential operators that they ap-
proximate; for example, we showed that it is possible to guarantee that the area-average
of a two-dimensional finite-difference Laplacian vanishes on a periodic domain. Finally,
we pointed out that some finite-difference schemes suffer from an inability to recognize
small-scale, “noisy” modes on the grid, such as checkerboard patterns.

2.8 Problems

1. Prove that a finite-difference scheme with errors of order n gives exact derivatives
for polynomial functions of degree n or less. For example, a first-order scheme gives
exact derivatives for linear functions. Give a completely general proof; avoid making
any unnecessary assumptions.

2. Choose a simple differentiable function f (x) that is not a polynomial. Find the exact
numerical value of d f/dx at a particular value of x, say x1. Then choose

(a) a first-order scheme, and

(b) a second-order scheme

to approximate (d f/dx)x=x1
. For each case, plot the log of the absolute value of the

total error of these approximations as a function of the log of ∆x. You can find the
total error by subtracting the approximate derivative from the exact derivative. By
inspection of the plot, verify that for sufficiently small ∆x the logs of the absolute
errors of the schemes decrease along almost-straight lines, with the expected slopes
(which you should estimate from the plots), as ∆x decreases. For sufficiently large
values of ∆x, the logs of the absolute errors will depart from straight lines, and (de-
pending on the function you choose) the second-order scheme may even give errors
larger than the first-order scheme. Extend your plot to include values of ∆x that are
large enough to show the departures from straight lines.

3. Both the + and x stencils allow second-order accuracy on a uniform square grid. Is
it possible to combine the + and x stencils with weights so as to achieve fourth-order
accuracy? Prove your answer.

4. Consider a two-dimensional Cartesian grid in which both ∆x and ∆y are spatially
uniform, but ∆x 6=∆y. Find the simplest second-order accurate scheme for the Lapla-
cian.
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5. For this problem, use equations (2.65)-(2.74), which state the requirements for second-
order accuracy of the Laplacian.

To standardize the notation, in all cases let d be the distance between grid-cell cen-
ters, as measured across cell walls. Write each of your solutions in terms of d, as
was done in (2.75) and (2.76).

(a) Consider a plane tiled with perfectly hexagonal cells. The dependent variable
is defined at the center of each hexagon. Find a second-order accurate scheme
for the Laplacian that uses just the central cell and its six closest neighbors, i.e.,
just seven cells in total. Make a sketch to explain your notation for distances in
the x and y directions. Hint: You can drastically simplify the problem by taking
advantage of the high degree of symmetry.

(b) Repeat for a plane tiled with equilateral triangles. You will have to figure out
which and how many cells to use, in addition to the central cell. Use the cen-
troids of the triangles to assign their positions. Make a sketch to explain your
notation for distances in the x and y directions. Hint: You can drastically sim-
plify the problem by taking advantage of the high degree of symmetry.

(c) Repeat for a plane tiled with squares, using the central cell and the neighboring
cells that lie diagonally across cell corners. Make a sketch to explain your no-
tation for distances in the x and y directions. Hint: You can drastically simplify
the problem by taking advantage of the high degree of symmetry.

(d) For the triangular and hexagonal grids, and assuming a doubly periodic domain
on a plane, can you find an example of a “checkerboard” for which the Lapla-
cian as computed by your second-order-accurate scheme is zero throughout the
entire domain even when the input field is not constant? Fig. 2.4 may help you
with this question. I am not asking you to answer the question for the square
grid because the answer is already given in the text.

6. (a) Invent a way to “index” the points on a hexagonal grid with periodic boundary
conditions. As a starting point, I suggest that you make an integer array like
this: NEIGHBORS(I,J). The first subscript would designate which point on the
grid is “home base” i.e., it would be a one-dimensional counter that covers the
entire grid. The second subscript would range from 0 to 6 (or, alternatively,
from 1 to 7). The smallest value (0 or 1) would designate the central point, and
the remaining 6 would designate its six neighbors. The indexing problem then
reduces to generating the array NEIGHBORS(I,J), which need only be done
once for a given grid.

(b) Set up a hexagonal grid to represent a square domain with periodic boundary
conditions. It is not possible to create an exactly square domain using a hexag-
onal grid. Therefore you have to set up a domain that is approximately square,
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with 100 points in one direction and the appropriate number of points (you get
to figure it out) in the other direction. The total number of points in the approx-
imately square domain will be very roughly 8000. This (approximately) square
domain has periodic boundary conditions, so it actually represents one “patch”
of an infinite domain. The period in the x-direction cannot be exactly the same
as the period in the y-direction, but it can be pretty close. Make sure that the
boundary conditions are truly periodic on your grid, so that no discontinuities
occur. Fig. 2.5 can help you to understand how to define the computational
domain and how to implement the periodic boundary conditions.

(c) Using the tools created under parts a) and b) above, write a program to compute
the Laplacian. Choose a continuous doubly periodic test function. Plot the test
function to confirm that it is really doubly periodic on your grid. Also attach
plots of both your approximate Laplacian and the exact Laplacian.

7. Consider a scheme for the Laplacian on a square grid that is given by a linear com-
bination of (2.75) and (2.76). These are both second-order schemes. Is it possible to
combine them to obtain a fourth-order scheme?

8. Using Cartesian coordinates (x,y), the Laplacian can be written as ∇2 f = fxx + fyy.
Consider a second Cartesian coordinate system, (x′,y′), that is rotated, with respect
to the first, by an angle θ . Prove by direct calculation that fxx + fyy = fx′x′ + fy′y′ .
This demonstrates that the Laplacian is invariant with respect to rotations of a Carte-
sian coordinate system. In fact, it can be demonstrated the the Laplacian takes the
same numerical value no matter what coordinate system is used. The meaning of
the Laplacian is independent of coordinate system, and in fact the Laplacian can be
defined without using a coordinate system.
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Figure 2.5: Sketch showing four copies of a periodic, nearly square domain on a (low-resolution)
hexagonal grid. All four corners of each domain are located in the centers of hexagonal cells. The
vertical edges of each domain run through vertical stacks of cells. Obviously the picture could be
rotated by 90◦ (or any other angle) without changing the idea.
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Chapter 3

Some Time-Differencing Schemes

3.1 Introduction

We have already analyzed the accuracy of finite-difference quotients. Now we analyze
the accuracy of finite-difference schemes. A finite-difference scheme is defined as a finite-
difference equation that approximates, term-by-term, a differential equation. Using the
methods outlined in Chapter 2, we can find approximations to each term of a differential
equation, and we have already seen that the error of such an approximation can be made as
small as desired, almost effortlessly. This is not our goal, however. Our goal is to find an
approximation to the solution of the differential equation. You might think that if we have
a finite-difference equation, F , that is constructed by writing down a good approximation
to each term of a differential equation, D, then the solution of F will “automatically” be a
useful approximation to the solution of D. Wouldn’t that be nice? Unfortunately, it’s not
true.

In this Chapter, we deliberately side-step the complexities of space differencing so that
we can focus on the problem of time differencing in isolation. Consider an arbitrary first-
order ordinary differential equation of the form:

dq
dt

= f [q(t), t] . (3.1)

The example below may help to make it clear how it is possible and what it means for f to
depend on both q(t) and t:

dq
dt

=−κq+asin(ωt) . (3.2)
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Here the first term represents decay towards zero (assuming that κ is positive), and the
second term represents a time-dependent external forcing (e.g., from the sun) that can drive
q away from zero.

In the following two subsections, we do not specify f [q(t), t], so the discussion is
“generic.” Starting in the next chapter we will consider particular choices of f [q(t), t].
Keep in mind that, in practice, f [q(t), t] could be very complicated.

Figure 3.1: In Eq. (3.4), we use a weighted combination of f n+1, f n, f n−1, ... f n−l to compute an
average value of f ≡ dq/dt over the time interval (1+m)∆ t.

Suppose that we integrate (3.1) with respect to time, from (n−m)∆ t to (n+1)∆ t. Here
we assume that m is either zero or a positive integer. Fig. 3.1 shows the meaning of m in a
graphical way. We also assume that n ≥ m, which may not be possible close to the initial
condition; this point is considered later. Integration of (3.1) gives

q [(n+1)∆ t]−q [(n−m)∆ t] =

(n+1)∆ t∫
(n−m)∆ t

f (q, t)dt. (3.3)

For larger values of m, the domain of integration “reaches back further” in time, before
t = n∆ t. Equation (3.3) is still “exact;” no finite-difference approximations have been
introduced.

3.2 A family of schemes

With a finite-difference-scheme, q and f are defined only at discrete time levels. We use
the symbol qn+1 in place of q [(n+1)∆ t], f n+1 in place of
f {q [(n+1)∆ t] , (n+1)∆ t}, and so on.

We now approximate the integral on the right-hand side of (3.3) using the values of f
at the discrete time levels. Eq. (3.3), divided by (1+m)∆ t, can be approximated by
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qn+1−qn−m

(1+m)∆ t
∼= β f n+1 +αn f n +αn−1 f n−1 +αn−2 f n−2 + . . .αn−l f n−l, (3.4)

where l can be zero or a positive integer. A family of schemes is defined by (3.4). In Chap-
ter 2, we discussed families of schemes that can be used to approximate finite-difference
operators. In (3.4) we are defining a family of schemes that can be used to approximate a
finite-difference equation.

Take a minute to look carefully at the form of (3.4), which is a slightly modified version
of an equation discussed by Baer and Simons (1970). The left-hand side is a “time step”
across a time interval of (1+m)∆ t, as illustrated in Fig. 3.1. The right-hand side consists
of a weighted sum of instances of the function f , evaluated at various time levels. The first
time level, n+1, is in “the future.” The second, n, is in “the present.” The remaining time
levels are in “the past.” Time level n− l is furthest back in the past; this is essentially the
definition of l.

In designing the scheme, we get to choose the value of l. We then get to choose the
values of l +3 parameters: namely, m, β , and the l +1 (potentially) non-zero values of α .

It is possible to have l > m or l < m or l = m. Viable schemes can be constructed with
all three possibilities, and examples are given below.

Here is some important and widely used terminology: A scheme is called “implicit”
if it has β 6= 0, and “explicit’ for’ β = 0. As discussed later, implicit schemes have nice
properties for some important choices of f . On the other hand, implicit schemes can be
complicated because the “unknown” or “future” value of q, namely qn+1, appears on the
right-hand-side of the equation, as an argument of the possibly complicated function f n+1.

Later in this chapter we will discuss schemes that do not necessarily fit into the family
defined by (3.4).

3.3 Discretization error

We need a way to measure the error of the time-differencing schemes defined by (3.4).
To start, we need some notation. Let q(t) denote the (exact) solution of the differential
equation, so that q(n∆ t) is the value of this exact solution at time n∆ t. We use the notation
qn to denote the “exact” solution of a finite-difference equation, at the same point. In
general, qn 6= q(n∆ t). We wish that they were equal!

Because qn is defined only at discrete times, it is not differentiable, and so we cannot
substitute qn into the differential equation. Instead, we substitute the true solution, q(t),
and the corresponding f [q(t), t], into the finite-difference equation (3.4). We then expand
the various terms using Taylor series around t = n∆ t. The result is
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1
(1+m)∆ t

{[
q+(∆ t)q′+

(∆ t)2

2!
q′′+

(∆ t)3

3!
q′′′+

(∆ t)4

4!
q′′′′+ . . .

]

−

[
q− (m∆ t)q′+

(m∆ t)2

2!
q′′− (m∆ t)3

3!
q′′′+

(m∆ t)4

4!
q′′′′ . . .

]}

= β

[
f +(∆ t) f ′+

(∆ t)2

2!
f ′′+

(∆ t)3

3!
f ′′′+ . . .

]
+αn f

+αn−1

[
f − (∆ t) f ′+

(∆ t)2

2!
f ′′− (∆ t)3

3!
f ′′′+ . . .

]

+αn−2

[
f − (2∆ t) f ′+

(2∆ t)2

2!
f ′′− (2∆ t)3

3!
f ′′′+ . . .

]

+αn−3

[
f − (3∆ t) f ′+

(3∆ t)2

2!
f ′′− (3∆ t)3

3!
f ′′′+ . . .

]
+ . . .

+αn−l

[
f − (l∆ t) f ′+

(l∆ t)2

2!
f ′′− (l∆ t)3

3!
f ′′′+ . . .

]
+ ε,

(3.5)

where ε is the discretization error and a prime denotes a time derivative. Multiplying
through by (1+m)∆ t, collecting powers of ∆ t, and using

q′ = f , q′′ = f ′, (3.6)

etc., we can rearrange (3.5) to obtain an expression for the discretization error:
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q′ [1− (β +αn +αn−1 +αn−2 +αn−3 + . . .+αn−l)]

+∆ tq′′
{

1
2

(
1−m2

1+m

)
−β +αn−1 +2αn−2 +3αn−3 + . . .+ lαn−l

}

+
(∆ t)2

2!
q′′′
{

1
3

(
1+m3

1+m

)
−β −αn−1−4αn−2−9αn−3− . . .− l2

αn−l

}

+
(∆ t)3

3!
q′′′′
{

1
4

(
1−m4

1+m

)
−β +αn−1 +8αn−2 +27αn−3 + . . .+ l3

αn−1

}
+ . . .

= ε .

(3.7)

Each line on the left-hand side of (3.7) goes to zero “automatically” as ∆ t→ 0, except for
the first line, which does not involve ∆ t at all. We therefore have to force the first line to be
zero, by requiring that

1 = β +αn +αn−1 +αn−2 +αn−3 + . . .+αn−l. (3.8)

Eq. (3.8) simply means that the sum of the coefficients on the right-hand side of (3.4) is
equal to one, so that the right-hand side is a kind of “average f .” Because (3.8) ensures at
least first-order accuracy, we call it the “consistency condition.”

When (3.8) is satisfied, the expression for the discretization error reduces to

ε = ∆ tq′′
{

1
2

(
1−m2

1+m

)
−β +αn−1 +2αn−2 +3αn−3 + . . .+ lαn−l

}
+O

[
(∆ t)2

]
. (3.9)

Recall that we started with l + 3 free parameters. Eq. (3.8) effectively uses up one of
those degrees of freedom, but we are still free to choose l + 2 coefficients. In particular,
we can require that the coefficient of ∆ t in (3.7) is also zero. This will give us a second-
order scheme, i.e., one in which the error, ε , goes to zero like (∆ t)2. Having required
second-order accuracy in this way, we still have l + 1 degrees of freedom. Obviously this
process can be continued, giving higher and higher accuracy, as long as the value of l is
large enough. Examples are given below.
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In summary, the order of accuracy of our time-differencing scheme can be made at least
as high as l + 2 by appropriate choices of the coefficients. One of these coefficients is β .
Recall that β = 0 for explicit schemes. Generally, then, the accuracy of an explicit scheme
can be made at least as high as l +1.

With the approach outlined above, schemes of higher-order accuracy are made possible
by bringing in more time levels. It is also possible to obtain schemes of higher accuracy in
other ways, which will be discussed later.

We now survey a number of time-differencing schemes, without (yet) specifying any
particular form for f . In this analysis, we can determine the order of accuracy of each
scheme. In the next Chapter, we investigate two particular choices for f .

3.4 Explicit schemes

m = 0, l = 0 (Forward scheme or Euler scheme)

For this simple and already-familiar case we have αn 6= 0, but all of the other α’s are
zero. The consistency condition, (3.8), immediately forces us to choose αn = 1. The
scheme (3.4) then reduces to

qn+1−qn

∆ t
= f n. (3.10)

The discretization error is ∆ t
2 q′′+O

(
∆ t2)= O(∆ t). Therefore, the scheme has first-order

accuracy.

m = 0, l > 0 (Adams-Bashforth schemes)

Better accuracy can be obtained by proper choice of the α’s, if we use l > 0. For l = 1,
the scheme reduces to

qn+1−qn

∆ t
= αn f n +αn−1 f n−1, (3.11)

the consistency condition, (3.8), reduces to

αn +αn−1 = 1, (3.12)
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and the discretization error is

ε = ∆ tq′′
(

αn−1 +
1
2

)
+O

(
∆ t2) . (3.13)

If we choose αn−1 = −1
2 and αn =

3
2 , the scheme has second-order accuracy. It is called

the second-order Adams-Bashforth scheme.

Although the right-hand side of (3.11) involves two different values of f , we only have
to evaluate f once per time step, if we simply save one “old” time level of f for use on the
next time step. Additional memory has to be allocated to save the “old” time level of f , but
often this is not a problem. Note, however, that something special will have to be done on
the first time step, because when n = 0 the time level n−1 is “before the beginning” of the
computation. This will be discussed later.

Table 3.1: Adams-Bashforth Schemes (β = m = 0, l > 0)

l αn αn−1 αn−2 αn−3 truncation error

1 3/2 −1/2 O
(
∆ t2)

2 23/12 −4/3 5/12 O
(
∆ t3)

3 55/24 −59/24 37/24 −9/24 O
(
∆ t4)

In a similar way, we can obtain Adams-Bashforth schemes with higher accuracy by
using larger l, and choosing the α’s accordingly. Table 3.1 shows the results for l = 1,
2, and 3. See the paper by Durran (1991) for an interesting discussion of the third-order
Adams-Bashforth scheme. We can think of the forward scheme as the “first-order Adams-
Bashforth scheme,” with l = 0.

m = 1, l = 0 (The leapfrog scheme)

The famous “leap-frog” scheme is given by

1
2∆ t

(
qn+1−qn−1)= f n. (3.14)

From (3.7) we can immediately see that the discretization error is ∆ t2

6 q′′′+O
(
∆ t4). For the

leap-frog scheme, the order of accuracy is higher than l+1 = 1, i.e., it is better than would

45



Revised Monday 23rd August, 2021 at 15:57

be expected from the general rule, stated earlier, for explicit schemes. The leapfrog scheme
has been very widely used, but it has some serious disadvantages, as will be discussed later.

m = 1, l = 1

Here there is no gain in accuracy. The highest accuracy (second order) is obtained for
αn−1 = 0, which gives the leapfrog scheme.

m = 1, l > 1 (Nystrom schemes)

We can increase the order of accuracy by choosing appropriate values of α if l > 1.

m > 1

Schemes with m > 1 are not of much interest and will not be discussed here.

3.5 Implicit schemes

For implicit schemes, with β 6= 0, we can achieve accuracy at least as high as l + 2. We
consider several special cases:

m = 0, l = 0

Eq. (3.4) reduces to

qn+1−qn

∆ t
= β f n+1 +αn f n. (3.15)

In this case, the consistency condition reduces to αn + β = 1. The discretization error
is ∆ tq′′

(1
2 −β

)
+O

(
∆ t2). For the special case β = 1, αn = 0, the scheme is called the

backward (implicit) scheme. It has first-order accuracy. It can be said to correspond to
l = −1. Higher accuracy is obtained for β = α = 1

2 , which gives the “trapezoidal” (im-
plicit) scheme. It has second-order accuracy, as we expect from the general rule for im-
plicit schemes. The trapezoidal implicit scheme has some nice properties, which will be
discussed later. It can be difficult to use, however.

m = 0, l > 0 (Adams-Moulton schemes)

These are analogous to the Adams-Bashforth schemes, except that β 6= 0. Table 3.2
summarizes the properties of the Adams-Moulton schemes, for l = 1, 2, and 3. For l = 0
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(not listed in the table), the maximum accuracy (2nd order) is obtained for β = 0, which
gives the leapfrog scheme.

Table 3.2: Adams-Moulton Schemes

l β αn αn−1 αn−2 αn−3 truncation error

1 5/12 8/12 −1/12 O
(
∆ t3)

2 9/24 19/24 −5/24 1/24 O
(
∆ t4)

3 251/720 646/720 −264/720 106/720 −19/720 O
(
∆ t5)

m = 1, l = 1 (Milne corrector)1

Eq. (3.4) reduces to

qn+1−qn−1

2∆ t
= β f n+1 +αn f n +αn−1 f n−1, (3.16)

where

β +αn +αn−1 = 1. (3.17)

The discretization error is

ε = ∆ tq′′ (−β +αn−1)+
∆ t2

2!
q′′′
(

1
3
−β −αn−1

)
+

∆ t3

3!
q′′′′ (−β +αn−1)+O

(
∆ t4) .

(3.18)

1If there is a “Milne corrector,” then there must be “Milne predictor.” (See Section 4.3 for an explanation
of this terminology.) In fact, the Milne predictor is an explicit scheme with

m = 3, l = 3, αn = 2/3, αn−1 =−1/3, αn−2 = 2/3, αn−3 = 0.
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The choices β = 1/6, αn = 4/6, αn−1 = 1/6, give fourth-order accuracy. This is again
more than would be expected from the general rule.

m = 1, l = 2

Here there is no gain in accuracy. The highest accuracy is obtained for αn−2 = 0, so
that the scheme reduces to the Milne corrector.

3.6 Iterative schemes

Iterative schemes are sometimes called “predictor-corrector” schemes. The idea is that we
obtain qn+1 through an iterative, multi-step procedure, which involves multiple evaluations
of the function f . In a two-step iterative scheme, the first step is called the “predictor,” and
the second step is called the “corrector.”

An advantage of iterative schemes is that we can gain higher accuracy, without increas-
ing m. A second advantage is that it may be possible to take longer time steps than with
non-iterative schemes.

A disadvantage of iterative schemes is computational expense, which increases because
of the multiple evaluations of f . Non-iterative schemes, such as those discussed earlier in
this chapter, involve only a single evaluation of f for each time step. This drawback of
iterative schemes may be tolerable if a longer time step is permitted.

Iterative schemes may or may not fit into the family of schemes discussed earlier in this
chapter, depending on what f [q(t) , t] is.

Consider (3.15) as an example. Change (3.15) by replacing f n+1 ≡ f
[
qn+1,(n+1)∆ t

]
by ( f n+1)∗ ≡ f

[
(qn+1)∗,(n+1)∆ t

]
, where (qn+1)∗ is obtained using the Euler scheme:

(qn+1)∗−qn

∆ t
= f n. (3.19)

Think of (qn+1)∗ as a “provisional” value of qn+1. We then complete the time step by
obtaining the “final” value of qn+1 using

qn+1−qn

∆ t
= β

∗( f n+1)∗+αn f n, (3.20)

where β ∗ and αn are coefficients that can be chosen to obtain the desired properties of the
scheme. When β ∗ = 1, αn = 0, Eq. (3.20) is an imitation of the backward (implicit) differ-
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ence scheme, and is called the Euler-backward scheme or the Matsuno scheme (Matsuno
(1966)). When β ∗ = 1

2 , αn = 1
2 , Eq. (3.20) is an imitation of the trapezoidal (implicit)

scheme and is called the Heun scheme. The Matsuno scheme has first-order accuracy, and
the Heun scheme has second-order accuracy.

Note that (3.20) does not “fit” into the framework (3.4), because ( f n+1)∗ does not ap-
pear on the right-hand side of (3.4), and in general ( f n+1)∗ cannot be written as a linear
combination of the f s that do appear there.

Also note that the Heun scheme is explicit, and does not require the past history (does
not require l > 0). Despite this, it has second order accuracy, because of the iteration. This
illustrates that iteration can increase the order of accuracy.

A famous example of an iterative scheme is the fourth-order Runge-Kutta scheme,
which is given by:

qn+1 = qn +∆ t (k1 +2k2 +2k3 + k4/6) ,

k1 = f (qn,n∆ t) , k2 = f
[
qn + k1∆ t/2,

(
n+ 1

2

)
∆ t
]
,

k3 = f
[
qn + k2∆ t/2,

(
n+ 1

2

)
∆ t
]
, k4 = f [qn + k3∆ t,(n+1)∆ t] .

(3.21)

Each of the ks can be interpreted as an approximation to f . The ks have to be evaluated
successively, which means that the function f has to be evaluated four times to take one
time step. None of these f s can be “re-used” on the next time step. For this reason, the
scheme is not very practical unless a long time step can be used. Fortunately, long time
steps are often possible.

Fig. 3.2 provides a simple fortran example to illustrate more clearly how the fourth-
order Runge-Kutta scheme actually works. The appendix to this chapter provides a proof
that the scheme really does have the advertised fourth-order accuracy.

3.7 What’s next?

This chapter has presented a survey of some potentially useful time-differencing schemes,
including a discussion of their order of accuracy. Two key issues have not yet been ad-
dressed, however. These are computational stability and computational modes in time. The
next chapter will introduce those topics, in the context of two simple but important ordinary
differential equations.
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c ! Initial conditions for time-stepped variables X, Y, and Z. 

c ! The time step is dt, and dt2 is half of the time step. 

! X = 2.5 
! Y = 1. 
! Z = 0. 

! do n=1,nsteps 

c ! Subroutine dot evaluates time derivatives of X, Y, and Z. 

! call dot(X, Y, Z,Xdot1,Ydot1,Zdot1) 

c ! First provisional values of X, Y, and Z. 

! X1 = X + dt2 * Xdot1 
! Y1 = Y + dt2 * Ydot1 
! Z1 = Z + dt2 * Zdot1 

! call dot(X1,Y1,Z1,Xdot2,Ydot2,Zdot2) 

c ! Second provisional values of X, Y, and Z. 

! X2 = X + dt2 * Xdot2 
! Y2 = Y + dt2 * Ydot2 
! Z2 = Z + dt2 * Zdot2 
! call dot(X2,Y2,Z2,Xdot3,Ydot3,Zdot3) 

c ! Third provisional values of X, Y, and Z. 

! X3 = X + dt * Xdot3 
! Y3 = Y + dt * Ydot3 
! Z3 = Z + dt * Zdot3 

! call dot(X3,Y3,Z3,Xdot4,Ydot4,Zdot4) 

c ! “Final” values of X, Y, and Z for this time step. 

! X = X + dt * (Xdot1 + 2.*Xdot2 + 2.*Xdot3 + Xdot4)/6. 
! Y = Y + dt * (Ydot1 + 2.*Ydot2 + 2.*Ydot3 + Ydot4)/6. 
! Z = Z + dt * (Zdot1 + 2.*Zdot2 + 2.*Zdot3 + Zdot4)/6. 

! end do 

Figure 3.2: A simple fortran program that illustrates how the fourth-order Runge-Kutta scheme
works. Note the four calls to subroutine “dot.”
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Chapter 4

The Oscillation and Decay Equations

4.1 Introduction

In this Chapter, we focus on two simple ordinary differential equations that are very relevant
to atmospheric modeling. We will define and discuss how to test the computational stability
of finite-difference schemes for those equations. We will also consider to what extent the
solutions of the finite-difference schemes correspond to the solutions of the differential
equations.

The two equations are actually quite similar to each other. The first is the “oscillation
equation,” which is given by

dq
dt

= iωq , (4.1)

where i≡
√
−1, q is complex, and ω is real. The second is the “decay equation,” which is

dq
dt

=−κq, (4.2)

where q and κ are both real, and κ is positive. The right-hand sides of both (4.1) and
(4.2) are proportional to q, but the solutions of the two equations are very different, as dis-
cussed below. The oscillation equation (4.1) is relevant to advection and wave propagation,
among other things, and the decay equation is relevant to many physical parameterizations,
including diffusion, radiative transfer, cloud microphysics, and convection.
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4.2 Computational stability

In almost all physical problems, including both (4.1) and (4.2), the true solution is bounded.
We now investigate the behavior of the discretization error, qn−q(n∆ t), as n increases, for
fixed ∆ t. Does the error remain bounded for any initial condition? If so, the scheme is said
to be stable; otherwise it is unstable.

There are at least three ways in which the stability of a scheme can be tested. These
are: 1) the direct method, 2) the energy method, and 3) von Neumann’s method.

The direct method establishes stability by demonstrating that the largest absolute value
of qn+1 on the grid does not increase with time. We ask, “Is | qn+1 | bounded after an
arbitrary number of time steps?”

Unfortunately, the direct method cannot be used to check the stability of complicated
schemes. The energy method is more widely applicable, even for some nonlinear equations,
and it is quite important in practice. With the energy method we ask: “Is

(
qn+1)2 bounded

after an arbitrary number of time steps?” The energy method is only applicable when q is
real.

For ordinary differential equations, all schemes can be written in the form

qn+1 = λqn, (4.3)

where λ , a very important quantity, is called the amplification factor. With von Neumann’s
method, we work out the form of λ , and check its absolute value. If | λ |< 1, the scheme is
stable. If | λ |< 1, the scheme is said to be neutral. If | λ |> 1, the scheme unstable.

We show in the next chapter that von Neumann’s method can also be applied to separa-
ble partial differential equations.

For problems that do not involve space differencing, such as the oscillation and de-
cay equations discussed in this chapter, von Neumann’s method and the direct method are
equivalent. We show in the next chapter that the two methods are quite different when
space differencing is included. The energy method is distinct from the direct method and
von Neumann’s method, even without space differencing.

4.3 The oscillation equation

4.3.1 The solution of the continuous oscillation equation

The exact solution of (4.1) is
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q(t) = q̂eiωt , (4.4)

where the constant q̂ is the “initial” value of q, at t = 0. Eq. (4.4) describes circular motion
in the complex plane. The state of the system can be characterized by an amplitude and a
phase. We first show that the amplitude of the solution is independent of time. Here and
frequently throughout the remainder of this book we will use Euler’s formula (I should say
one of Euler’s formulas), which says that

eiγ = cosγ + isinγ, (4.5)

where γ is any real number. Since sin2
γ + cos2 γ = 1, we see that

∣∣eiγ ∣∣= 1 . (4.6)

It follows from (4.4) and (4.6) that

|q|= |q̂| for all time. (4.7)

In view of (4.7), it is reasonable to say that a “good” scheme for the oscillation equation
will give a solution that has a time-independent amplitude. From (4.4) we can show that

q [(n+1)∆ t] = eiΩ q(n∆ t) , (4.8)

where

Ω ≡ ω∆ t (4.9)

is the change in phase over the time interval ∆ t.
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4.3.2 Amplitude errors and phase errors

Comparing (4.3) with (4.8), we see that the exact value of λ , based on the solution of the
differential equation, is given by

λT = eiΩ . (4.10)

As discussed above, Euler tells us that

|λT |= 1. (4.11)

If the |λ | of the solution of a numerical scheme for (4.1) is not equal to one, we say that the
scheme has “amplitude errors,” which means that the amplitude of the numerical solution
is spuriously growing or decaying. If the numerically simulated phase change per time
step is not equal to Ω , we say that the scheme has “phase errors,” which means that the
numerically simulated oscillation is either too fast or too slow. As discussed later, some
schemes have no amplitude error at all, but they still have phase errors.

For the solution of a finite-difference equation, the phase change per time step can be
expressed in terms of the real and imaginary parts of λ . We write

λ = λr + iλi

= |λ |eiθ ,

where θ = tan−1
(

λi

λr

)
,λr = |λ |cosθ , and λi = |λ |sinθ .

(4.12)

Here θ is the change in phase per time step. Positive θ (like positive ω) denotes counter-
clockwise rotation in the complex plane. For example, if θ = π

2 , it takes four time steps
to complete one oscillation. This is the case in which λ is purely imaginary. For the case
θ = π

2 , the discrete numerical solution may look as shown schematically in Fig. 4.1; here
the ordinate represents the imaginary part of qn.

From the preceding discussion, we see that the amplitude error per time step is |λ |−1,
and the phase error per time step is θ −Ω . Following Takacs (1985), the relative error, ε ,
can be defined by

λ ≡ (1+ ε)λT . (4.13)
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n
2 4 6 8 10

Figure 4.1: Schematic illustration of the solution of the oscillation equation for the case in which λ

is pure imaginary and the phase changes by θ = π

2 on each time step. The horizontal axis is the
time step counter, and the vertical axis is the imaginary part of the solution. The initial condition is
assumed to be real in this example.

The relative error can be separated into its real and imaginary parts:

ε ≡ εR + iεI. (4.14)

If we know λ and λT , we can determine εR and εI . With these definitions, we can write for
the oscillation equation

|λ |2 ≡|1+ ε|2

=(1+ εR)
2 + ε

2
I

≡1+ ε|λ | ,

(4.15)

where

ε|λ | = 2εR + ε
2
R + ε

2
I (4.16)

can be interpreted as a measure of the amplitude error. Similarly, we define εϕ as a measure
of the phase error, such that

θ ≡Ω + εϕ , (4.17)
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and it can be shown, with the use of a trigonometric identity, that

εϕ = tan−1
(

εI

εR +1

)
. (4.18)

Equations (4.16) and (4.18) will be used later.

4.3.3 Non-iterative two-level schemes for the oscillation equation

In principle, any of the schemes described in Chapter 3 is a candidate for application to the
oscillation equation, (4.1). Each scheme has its own properties, as discussed below.

A family of (possibly) implicit schemes is given by

qn+1−qn = iω∆ t
(
αqn +βqn+1) . (4.19)

We require α + β = 1 in order to guarantee consistency. The explicit Euler scheme is
obtained (as a special case) with α = 1, β = 0; the backward implicit scheme with α =
0, β = 1; and the trapezoidal-implicit scheme with α = β = 1

2 . Eq. (4.19) can easily be
solved for qn+1:

(1− iΩβ )qn+1 = (1+ iΩα)qn, (4.20)

or

qn+1 =

(
1+ iΩα

1− iΩβ

)
qn

≡λqn.

(4.21)

In the second equality of (4.21) we make use of the definition of λ .

For the forward (Euler) scheme, α = 1, β = 0, and so from (4.21) we find that

λ = 1+ iΩ , (4.22)
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and

|λ |=
√

1+Ω 2 > 1. (4.23)

This means that, for the oscillation equation, the forward scheme is unconditionally un-
stable. From (4.12) and (4.22), we see that the phase change per time step, θ , satisfies
tanθ = Ω , so that θ ∼= Ω for small ∆ t, as expected.

For the backward scheme, α = 0, β = 1, and

λ =
1

1− iΩ

=
1+ iΩ
1+Ω 2 .

(4.24)

so that

|λ |=
√

1+Ω 2

1+Ω 2

=
1√

1+Ω 2
< 1.

(4.25)

The backward scheme is, therefore, unconditionally stable. The amplitude of the oscillation
decreases with time, however. This is an error, because the amplitude is supposed to be
constant with time. As with the forward scheme, the phase change per time step satisfies
tanθ = Ω , so again the phase error is small for small ∆ t. The real part of λ (the cosine
part) is always positive, which means that, no matter how big we make the time step, the
phase change per time step satisfies−π

2 < θ < π

2 . This scheme can be used for the Coriolis
terms in a model, but because of the damping it is not a very good choice.

For the trapezoidal implicit scheme, given by α = 1
2 β = 1

2 , we find that

λ =
1+ iΩ

2

1− iΩ
2

=

(
1− Ω 2

4

)
+ iΩ

1+ Ω 2

4

(4.26)
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so that |λ | = 1. This scheme is unconditionally stable; in fact, it has no amplitude error
at all. The phase error per time step is small. It is a very nice scheme for the oscillation
equation.

4.3.4 Iterative schemes for the oscillation equation

Now consider a family of iterative schemes for the oscillation equation, given by

qn+1∗−qn = iΩqn, (4.27)

qn+1−qn = iΩ
(
αqn +β

∗qn+1∗) . (4.28)

|!|

"=#$t

Exact and Trapezoidal

Backward

Euler
HeunMatsuno

0 1 2 3 4

1

2

3

4

Figure 4.2: The magnitude of the amplification factor λ as a function of Ω ≡ ω∆ t, for various
difference schemes. The Euler, backward, trapezoidal, Matsuno, and Heun schemes are shown.
The magnitude of the amplification factor for the trapezoidal scheme coincides with that of the true
solution for all values of Ω . Caution: This does not mean that the trapezoidal scheme gives the
exact solution!
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Recall that α = 0, β ∗ = 1 gives the Matsuno scheme, and α = β ∗ = 1
2 gives the Heun

scheme. Eliminating qn+1∗ between (4.27) and (4.28) for the Matsuno scheme, we obtain

λ =
(
1−Ω

2)+ iΩ , (4.29)

so that

|λ |=
√

1−Ω 2 +Ω 4


> 1 for Ω > 1

= 1 for Ω = 1

< 1 for Ω < 1 .

(4.30)

This is, therefore, a conditionally stable scheme; the condition for stability is Ω ≤ 1. Sim-
ilarly, for the Heun scheme, we find that

λ =
(
1−Ω 2/2

)
+ iΩ , (4.31)

and

|λ |=
√
(1−Ω 2/2)2

+Ω 2 =
√

1+Ω 4/2 > 1 . (4.32)

This shows that the Heun scheme is unconditionally unstable when applied to the oscilla-
tion equation, but for small Ω it is not as unstable as the forward scheme. It can be used in
a model that includes some physical damping.

The results discussed above are summarized in Fig. 4.2 and Fig. 4.3.

4.3.5 Computational modes in time

The leapfrog scheme, which is illustrated in Fig. 4.4, is not “self-starting” because when
we are sitting at n = 0 q at n = −1, so we can’t step from n = −1 to n = +1. A special
procedure is therefore needed to start the solution. We really need two initial conditions
to solve the finite-difference problem, even though only one initial condition is needed to
solve the exact equation. A similar problem arises with any scheme that involves more than
two time levels. One of the two required initial conditions is the “physical” initial condition
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1
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Backward

Figure 4.3: Variations of the real and imaginary components of the amplification factor, as Ω

changes “parametrically.” The actual values of Ω are not shown in the figure. Both the exact
solution and the trapezoidal scheme lie on the unit circle.

that is needed for the differential equation. The second initial condition arises because of
the form of the finite-difference scheme itself, and has nothing to do with the physics. It
can be called a “computational” initial condition.

Figure 4.4: The leapfrog scheme.

The leapfrog analogue scheme for the oscillation equation is

qn+1−qn−1 = 2iΩqn, (4.33)

where, as before, Ω ≡ ω∆ t. First, consider the special case ω = 0. Then (4.33) gives

qn+1−qn−1 = 0, (4.34)
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which is, of course, the right answer. The initial condition at n = 0 will determine the
solution for all even values of n. To obtain the solution for odd values of n, we have to give
an initial condition at n = 1. If you perversely make the two initial conditions different,
i.e., q1 6= q0, then an oscillation will occur, as shown in Fig. 4.5. On the other hand, if
you sensibly assign q1 = q0, then the solution will be constant. This shows that judicious
selection of q1 is essential for schemes with more than two time levels.

n
2 4 6 8 10

q(n)

Figure 4.5: An oscillatory solution that arises with the leapfrog scheme for dq
dt = 0, in case the two

initial values of q are not the same.

Now rewrite (4.23) as

qn+1−2iΩqn−qn−1 = 0. (4.35)

We look for a solution of the form qn+1 = λqn, for all n. Then (4.35) reduces to

λ
2−2iΩλ −1 = 0. (4.36)

Make sure that you understand where (4.36) came from. The solutions of (4.36) are

λ1 = iΩ +
√

1−Ω 2, λ2 = iΩ −
√

1−Ω 2, (4.37)

i.e., there are two “modes,” satisfying

q1
n+1 = λ1q1

n, q2
n+1 = λ2q2

n. (4.38)
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The differential equation only has one solution, so the fact that the finite-difference equation
has two solutions is bad.

Consider the limiting values of λ1 and λ2 as Ω → 0 (which we interpret as ∆ t → 0).
Notice that λ1 → 1, while λ2 → −1. We know that for the true solution λ = 1, and so
we can identify q1 as the “physical” mode, and q2 as a “computational mode.” Notice that
q2

n+1 generally does not approach q2
n as ∆ t → 0! This means that you can’t get rid of a

computational mode by making the time step smaller. The computational mode arises from
the structure of the scheme.

Two-level time-differencing schemes do not have computational modes. A scheme that
uses l + 1 time levels (see the right-hand side of Eq. (3.4)) has l computational modes.
The existence of computational modes is a major disadvantage of all schemes that involve
more than two time levels. There are people in the numerical modeling community who ad-
vocate using only two-time-level schemes, which are sometimes called “forward-in-time”
schemes1. We have already seen that two-time-level schemes can be quite accurate; for
example, the fourth-order Runge-Kutta scheme is a two-time-level scheme.

The current discussion is about computational modes in time. There are also computa-
tional modes in space, which will be explained later.

From (4.38) we see that after n time steps our two solutions will be

q1
n = λ1

nq1
0, and q2

n = λ2
nq2

0. (4.39)

The general solution is a linear combination of these two modes, i.e.,

qn = aλ1
nq0

1 +bλ2
nq0

2, (4.40)

where a and b are constant coefficients. We would like to have b = 0, because in that case
the computational mode has zero amplitude.

Because we have two solutions, we have to provide two initial conditions. These are
the values of q0 and q1. We already know that the first time step cannot use the leapfrog
scheme, because q−1 is not available. The first leapfrog step needs both q0 and q1, and is
used to predict the value of q2. We have to predict q1 by starting from q0, using a “forward-
in-time” scheme. For example, we could use the Euler forward scheme, or the Matsuno
scheme, or the fourth-order Runge-Kutta scheme.

1This terminology is potentially confusing; it does not necessarily refer to the Euler-forward scheme.
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The values of a and b, i.e., the amplitudes of the physical and computational modes,
depend in part on how we choose the computational initial condition. With reference to
(4.40), the two initial conditions can be written this way:

q0 = aq0
1 +bq0

2 for n = 0, (4.41)

and

q1 = λ1
(
aq0

1
)
+λ2

(
bq0

2
)

for n = 1. (4.42)

Here we have used λ1 and λ2 to advance q1 and q2 from time level 0 to time level 1. We
can solve (4.41) and (4.42) for aq0

1 and bq0
2 in terms of q0 and q1, and substitute the results

back into (4.40). This gives

qn =

(
q1−λ2q0)λ1

n−
(
q1−λ1q0)λ2

n

λ1−λ2
. (4.43)

Notice that (4.43) applies for any choice of f (q, t); it is not specific to the oscillation equa-
tion.

“By inspection” of (4.43), the initial values of the physical and computational modes are[
q1−λ2q0

λ1−λ2

]
and −

[
q1−λ1q0

λ1−λ2

]
, respectively. Which mode dominates in the numerical solution

will depend on how we determine q1. If we can choose q1 such that q1−λ1q0 = 0, then
the computational mode will have zero amplitude. The condition q1− λ1q0 = 0 simply
means that q1 is predicted from q0 using exactly the amplification factor for the physical
mode. That makes sense, right? Unfortunately, in realistically complicated models, this is
impossible to arrange, but we can come close by using an accurate method to predict q1 by
starting from q0.

In this idealized example, if the amplitude of the computational mode is initialized
to (almost) zero through the use of a sufficiently accurate scheme to predict q1, then it
will remain small for all time. In a real numerical model, however, the computational
mode can be excited, in the middle of a simulation, by various ongoing processes (e.g.,
nonlinear terms and parameterized physics) that have been omitted for simplicity in the
present discussion. Given this reality, a model that uses leapfrog time differencing needs a
way to damp the computational mode, as a simulation progresses.
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One simple approach is to “restart” the model periodically, e.g., once per simulated day.
A restart means repeating the procedure used on the initial start, i.e., taking one time step
with a forward-in-time scheme. One of the two leapfrog solutions is abandoned or killed
off, while the other lives on.

A second approach is to use a time filter, as suggested by Robert (1966) and Asselin
(1972). We write

qn = qn +α

(
qn−1−2qn +qn+1

)
(4.44)

Here the overbar denotes a filtered quantity, and α is a parameter that controls the strength
of the filter. For α = 0 the filter is “turned off.” Models that employ this so-called Asselin
filter often use α = 0.5.

To apply the filter, the procedure is to predict qn+1 in the usual way, then use (4.44) to
filter qn. The filtered value of qn, i.e., qn, is used to take the next leapfrog step from n to
n+1. Note that (4.44) also uses qn−1. As an example, suppose that qn−1 = qn+1 = 1, and
qn =−1. This is a zig-zag in time. Eq. (4.32) will give qn =−1+α (1+2+1) =−1+4α .
If we choose α = 0.5, we get qn = 1, and the zig-zag is eliminated.

The filter damps the computational mode, but it also damps the physical mode and
reduces the overall order of accuracy of the time-differencing procedure from second-order
(leapfrog without filter) to first-order (leapfrog with filter). Many authors have suggested
alternative filtering approaches (e.g., Williams (2013)).

4.3.6 The leapfrog scheme for the oscillation equation

To evaluate the stability of the leapfrog scheme as applied to the oscillation equation, con-
sider three cases.

Case (i): |Ω |< 1

In this case, the factor
√

1−Ω 2 in (4.37) is real, and we find that |λ1|= |λ2|= 1. This
means that both the physical and the computational modes are neutral, so we have phase
errors but no amplitude errors. Let the phase changes per time step of the physical and
computational modes be denoted by θ1 and θ2, respectively. Then

λ1 = eiθ1 and λ2 = eiθ2. (4.45)

Comparing (4.45) with (4.37), and using Euler’s formula, we find by inspection that
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cosθ1 =
√

1−Ω 2, cosθ2 =−
√

1−Ω 2,

sinθ1 = Ω , sinθ2 = Ω .
(4.46)

From (4.46), you should be able to see that θ2 = π−θ1. For Ω → 0, we find that θ1 ∼= Ω

(good), and θ2 ∼= π (bad). The apparent frequency of the physical mode is θ1/∆ t, which is
approximately equal to ω . Then we can write

qn+1
1 = eiθ1qn

1 (4.47)

for the physical mode, and

qn+1
2 = ei(π−θ1)qn

2 (4.48)

for the computational mode. Recall that the true solution is given by

q [(n+1)∆ t] = eiΩ q(n∆ t) . (4.49)

Panels a and b of Fig. 4.6 respectively show plots of λ1 and λ2 in the complex λ -plane.
The figures have been drawn for the case of θ1 =

π

8 . The absolute value of λ is, of course,
always equal to 1. Panel c shows the graph of the real part of qn

1 versus its imaginary part.
Recall that qn

1 = λ1
nq0

1 = einθ1q0
1. Panel d gives a similar plot for qn

2. Here we see that the
real and imaginary parts of the computational mode of qn both oscillate from one time step
to the next. Graphs showing each part versus n are given in Figure 4.7. The physical mode
looks nice. The computational mode is ugly.

Case (ii): |Ω |= 1

Here λ1 = λ2 = iΩ = i (see (4.37)), i.e., both λ ’s are purely imaginary with modulus
one (i.e., both are neutral), as shown in Fig. 4.8. This means that both solutions rotate
through π

2 on each time step, so that the period is 4∆ t. The phase errors are very large; the
correct phase change per time step is 1 radian, and the computed phase change is π

2 radians,
which implies an error of 57%.

This illustrates that a scheme that is stable but on the verge of instability is usually
subject to large discretization errors and may give a very poor solution; you should not be
confident that you have a good solution just because your model does not blow up!
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Figure 4.6: Panels a and b show the amplification factors for the leapfrog scheme as applied to
the oscillation equation with |Ω | < 1. Panel a is for the physical mode, and panel b is for the
computational mode. Panels c and d show solutions of the oscillation as obtained with the leapfrog
scheme for |Ω |< 1. Panel c is for the physical mode, and panel d is for the computational mode. In
making these figures it has been assumed that θ1 =

π

8 .

Case (iii): |Ω |> 1

Here again both λ1 and λ2 are purely imaginary, so again both solutions rotate by π

2 on
each time step, regardless of the value of ω . Eq. (4.38) can be written as

λ1 = i
(

Ω +
√

Ω 2−1
)

and λ2 = i
(

Ω −
√

Ω 2−1
)
. (4.50)

If Ω > 1 then |λ1| > 1 and |λ2| < 1, and if Ω < −1, then |λ1| < 1 and |λ2| > 1. In both
cases, one of the modes is damped and the other amplifies. Since one of the modes amplifies
either way, the scheme is unstable.

Panels a and b of Fig. 4.9 give a graphical representation of λ in the complex plane, for
the case |Ω |> 1. Note that λ1 =

∣∣∣Ω +
√

Ω 2−1
∣∣∣ei π

2 and λ2 =
∣∣∣Ω −√Ω 2−1

∣∣∣ei π

2 . Panel c
of Fig. 4.9 shows a plot of the evolving solution, qn, in the complex plane, for the modes
corresponding to λ1 and λ2 for Ω > 1. The phase changes by π

2 on each step, because λ
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Figure 4.7: Graphs of the real and imaginary parts of the physical and computational modes for the
solution of the oscillation equation as obtained with the leapfrog scheme for |Ω |< 1.

Figure 4.8: Panel a shows the amplification factors for the leapfrog scheme as applied to the os-
cillation equation with |Ω | = 1. Panel b shows the real and imaginary parts of the corresponding
solution, for n = 0, 1, 2, and 3.

is purely imaginary, and so the period is 4∆ t; this period is a recognizable characteristic of
the instability of the leapfrog scheme for the oscillation equation (a clue!). Panel d of Fig.
4.9 schematically shows qn as a function of n for the amplifying mode corresponding to λ1
i.e., q1 is unstable and q2 is damped.

In summary, the centered or leapfrog scheme is second-order-accurate and gives a neu-
tral solution when |Ω | ≤ 1. For |Ω |> 1, which means large ∆ t, the scheme is unstable. In
short, the leapfrog scheme is conditionally stable when applied to the oscillation equation.

The leapfrog scheme is explicit, has a higher accuracy than the general rule, and is
neutral if Ω ≤ 1. For this reason it has been very widely used. On the other hand, the
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Figure 4.9: Panels a and b show the amplification factors for the oscillation equation with the
leapfrog scheme, with |Ω | > 1. Panel c shows the corresponding solution. The solid curve shows
the unstable mode, which is actually defined only at the black dots. The dashed curve shows the
damped mode, which is actually defined only at the grey dots. Panel d is a schematic illustration of
the amplification of the unstable mode. Note the period of 4∆ t, which is characteristic of this type
of instability.

leapfrog scheme allows a computational mode in time, which is bad. Once again, we have
trade-offs.

The trapezoidal implicit scheme is also neutrally stable for the oscillation equation
but, compared with an explicit scheme, it is more difficult to use in complicated nonlinear
problems.

4.3.7 The second-order Adams-Bashforth Scheme for the oscillation equation

The second-order Adams-Bashforth scheme and its third-order cousin (Durran, 1991) have
some very nice properties. The second-order Adams-Bashforth scheme for the oscillation
equation is

qn+1−qn = iΩ
(

3
2

qn− 1
2

qn−1
)
. (4.51)
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Like the leapfrog scheme, this is a three-level scheme, so it has a computational mode. The
right-hand side of (4.51) represents a linear extrapolation (in time) of q from qn−1 and qn

to n+ 1
2 . It can be interpreted in terms of a scheme centered around time level n+ 1

2 . The
amplification factor satisfies

λ
2−λ

(
1+

3
2

iΩ
)
+ i

1
2

Ω = 0. (4.52)

The two solutions of (4.52) are

λ1 =
1
2

(
1+

3
2

iΩ +

√
1− 9

4
Ω 2 + iΩ

)
, (4.53)

and

λ2 =
1
2

(
1+

3
2

iΩ −
√

1− 9
4

Ω 2 + iΩ

)
, (4.54)

Since λ1 → 1 as Ω → 0, the first mode is the physical mode and corresponds to the true
solution as ∆ t→ 0. Note, however, that λ2→ 0 as Ω → 0. This means that the “computa-
tional” mode is damped, which is good.

In order to examine |λ |, we will make some approximations based on the assumption
that Ω << 1, because the expressions in (4.54) - (4.66) are complicated and in practice Ω

is usually small. Using the binomial theorem, we can approximate λ1 by

λ1 ∼= 1+ iΩ − 9
16

Ω
2 ∼= 1+ iΩ − 1

2
Ω

2, (4.55)

so that

|λ1| ∼=
√

1+
Ω 4

4
∼= 1+

Ω 4

8
. (4.56)
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which is always greater than 1. The physical mode is, therefore, unconditionally unstable.
If ∆ t (and Ω ) are sufficiently small, however, the solution is only weakly unstable. If
physical damping is included in the problem the instability may be rendered harmless.

4.3.8 A survey of time differencing schemes for the oscillation equation

Baer and Simons (1970) summarized the properties of various explicit and implicit schemes,
which are listed in Table 4.1. Properties of these schemes are shown in Fig. 4.10 and Fig.
4.11.
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Figure 4.10: Amplification factors of various schemes as applied to the oscillation equation (after
Baer and Simons (1970)). The horizontal axis in each panel is Ω . See Table 4.1.

As discussed in books on numerical analysis, there are many other schemes of higher-
order accuracy. Since our meteorological interest mainly leads us to partial differential
equations, the solutions to which will also suffer from discretization error due to space dif-
ferencing, we cannot hope to gain much by increasing the accuracy of the time differencing
scheme alone.
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Figure 4.11: Magnitude of the amplification factor and θ/Ω for various schemes as applied to the
oscillation equation (after Baer and Simons (1970)). The horizontal axis in each panel is Ω . See
Table 4.1.

4.4 The decay equation

The exact solution of the decay equation is

q(t) = q(0)e−κt . (4.57)

This describes a simple exponential decay with time. For large time, q→ 0. A good scheme
should therefore give qn+1→ 0 as κ∆ t→ ∞. The “true” value of λ is given by

λT = e−κ∆ t < 1 (4.58)
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Table 4.1: List of the time differencing schemes surveyed by Baer and Simons (1970). Schemes
whose names begin with “E” are explicit, while those whose names begin with “I” are implicit. The
numerical indices in the names are m, which is the number of “time intervals” over which the scheme
steps, as defined in Eq. (3.4) and Fig. 3.1; and l, which controls the number of values of f used,
again as defined in (3.4).

β αn αn−1 αn−2 αn−3 αn−4

∆t( )2

∆t( )3

∆t( )4

∆t( )5

∆t( )2

∆t( )3

∆t( )4

∆t( )2

∆t( )3

∆t( )4

∆t( )5

∆t( )4

∆t( )5

∆t( )6

Scheme 
identifier

(m, l)

Name Order of 
Accuracy

E01 Adams- 
Bashforth 3/2 -1/2

E02 Adams- 
Bashforth 23/12 -4/3 5/12

E03 55/24 -59/24 37/24 -9/24

E04 1901/720 -2774/720 2616/720 -1274/720 251/720

E11 Leapfrog 1

E12 7/6 -2/6 1/6

E33 Milne 
Predictor 2/3 -1/3 2/3

I01 Trapezoida
l Implicit 1/2 1/2

I02 5/12 8/12 -1/12

I03 Moulton 
Corrector 9/24 19/24 -5/24 1/24

I04 251/720 646/720 -264/720 106/720 -19/720

I13 Milne 
Corrector 1/6 4/6 1/6

I14 29/180 124/180 24/180 4/180 -1/180

I35 Milne II 
Corrector 14/180 64/180 24/180 64/180 14/180

�1

This differs from the oscillation equation, for which | λT |= 1.

For the Euler (forward) scheme, the finite-difference analogue of (4.2) is
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qn+1−qn =−Kqn, (4.59)

where K ≡ κ∆ t. The solution is

qn+1 = (1−K)qn . (4.60)

Note that λ = 1−K is real. For |1−K|< 1, which is satisfied for κ or ∆ t small enough to
give K ≤ 2, the scheme is stable. This is, therefore, a conditionally stable scheme. Note,
however, that it gives an unphysical damped oscillation for 1 < K < 2. The oscillatory
instability that occurs with the Euler forward scheme for K ≥ 2 is an example of what is
called “overstability,” in which the restoring force that is supposed to damp the perturbation
goes too far and spuriously causes the perturbation to grow in the form of an amplifying
oscillation.

The backward implicit scheme for the decay equation is

qn+1−qn =−Kqn+1, (4.61)

with solution

qn+1 =
qn

1+K
. (4.62)

Here λ = 1/(1+K)< 1, so the solution is unconditionally stable. As a bonus, for K→ ∞

we get qn+1 → 0, which is consistent with the solution to the differential equation. For
these reasons, the backward implicit scheme is a pretty good choice for the decay equation,
although of course it has only first-order accuracy.

It is easy to show that, when applied to the decay equation,

• the trapezoidal implicit scheme is unconditionally stable, with better (second-order)
accuracy than the backward implicit scheme;

• the Matsuno (Euler-Backward) scheme is conditionally stable;

• the Heun scheme is conditionally stable; and

• the second-order Adams-Bashforth scheme is conditionally stable.
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There are many other possibilities, but in general implicit schemes are best for the decay
equation.

The energy method can also be applied to analyze the stability of these schemes for the
decay equation.

Finally, the leapfrog scheme for the decay equation is

qn+1−qn−1 =−2Kqn, (4.63)

and so λ satisfies

λ
2 +2Kλ −1 = 0. (4.64)

The two roots are

λ1 =−K +
√

K2 +1,λ2 =−K−
√

K2 +1. (4.65)

Since 0≤ λ1 ≤ 1, and λ1→ 1 as K→ 0, we see that λ1 corresponds to the physical mode.
On the other hand, |λ2| is always greater than one, so the leapfrog scheme is unconditionally
unstable when applied to the decay equation. Actually λ2 ≤ −1 (λ2→−1 as ∆ t→ 0) so
the computational mode oscillates in sign from one time level to the next, and amplifies.
It’s just awful.

A simple interpretation is as follows. Suppose that we have q = 0 at n = 0 and q > 0
at n = 1, as shown in Fig. 4.12. From (4.64) we see that the restoring effect computed
at n = 1 is added to q0, resulting in a negative deviation at n = 2. The positive “restoring
effect” computed at n = 2 is added to q1, which is already positive, resulting in a more
positive value at n = 3, as illustrated in Fig. 4.12. And so on. This is overstability again.
Overstability is why the leapfrog scheme is a disastrous choice for the decay equation. In
fact, the leapfrog scheme is a bad choice for any “damping” component of a model, e.g.,
diffusion. You should remember this fact forever.

Note that the first-order backward implicit scheme gives a good solution for the decay
equation, while the “more accurate” leapfrog scheme gives a bad solution. This illustrates
again that accuracy is a vague concept.
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Figure 4.12: An illustration of how the leapfrog scheme leads to instability with the decay equation.
The solution plotted represents the computational mode only and would be superimposed on the
physical mode.

4.5 Damped oscillations

What should we do if we have an equation of the form

dq
dt

= (iω−κ)q? (4.66)

The exact solution of (4.66) is a damped oscillation. One possible scheme is based on a
“mix” of the leapfrog and forward or backward schemes in the following manner. We write
the finite-difference analogue of (4.66) as

qn+1−qn−1 = 2iΩqn−2Kqn−1, (4.67)
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(decay term forward differenced), or as

qn+1−qn−1 = 2iΩqn−2Kqn+1, (4.68)

(decay term backward differenced). The oscillation terms on the right-hand sides of (4.67)
and (4.68) are in “centered” form, whereas the damping terms have an uncentered form.
These schemes are conditionally stable.

4.6 Nonlinear damping

In real applications, it is quite typical that κ depends on q, so that the decay equation be-
comes nonlinear. Kalnay and Kanamitsu (1988) studied the behavior of ten time-differencing
schemes for a nonlinear version of (4.2), given by

dq
dt

=
(
−κqP)q+S, (4.69)

where P is a non-negative exponent, and S is a source or sink whose form is unspecified.
The reason for introducing S is simply to allow non-zero equilibrium values of q. In real
applications, there is usually a term corresponding to S. In case P = 0 and S = 0, (4.69)
reduces to (4.2).

An example of a real application that gives rise to an equation of the form (4.69) is
boundary-layer parameterization. The soil temperature, Tg, satisfies an equation roughly of
the form

C
dTg

dt
=−ρacpcTV (Tg−Ta)+Sg, (4.70)

where C is the heat capacity of the soil layer, ρa is the density of the air, Ta is the temperature
of the air at some level near the ground (often taken to be 2 m above the soil surface), cT is
a “transfer coefficient” that depends on (Tg−Ta), V is the wind speed at a level near the
ground (often taken to be 10 m above the soil surface), and Sg represents all other processes
that affect the soil temperature, e.g., solar and infrared radiation, the latent heat flux, and
the conduction of heat through the soil.

The air temperature is governed by a similar equation:
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ρaDcp
dTa

dt
= ρacpcTV (Tg−Ta)+Sa. (4.71)

Here cp is the specific heat of air at constant pressure, and D is the depth of the layer of air
whose temperature is represented by Ta. Virtually all atmospheric models involve equations
something like (4.70) and (4.71).

Comparison of (4.70) with (4.71) shows that

d (Tg−Ta)

dt
=−ρacpcTV (Tg−Ta)

(
1
C
+

1
ρaDcp

)
+

(
Sg

C
− Sa

ρaDcp

)
. (4.72)

The analogy between (4.69) and (4.72) should be clear. The two equations are essentially
the same if the transfer coefficient cT has a power-law dependence on Tg−Ta, which is a
realistic possibility.

From what we have already discussed, it should seem plausible that an implicit scheme
would be a good choice for (4.69), i.e.,

qn+1−qn

∆ t
=−κ

(
qn+1)P+1

+S. (4.73)

Such a scheme is in fact unconditionally stable, but for arbitrary P it must be solved iter-
atively, which can be expensive. For this practical reason, (4.73) may not be considered
a viable choice, except where P is a small integer, in which case (4.73) can be solved
analytically.

As mentioned earlier, linearization about an equilibrium solution is a necessary prelim-
inary step before von Neumann’s method can be applied to a nonlinear equation. Let q̄
denote an equilibrium solution of (4.69), so that

κ q̄P+1 = S. (4.74)

We are assuming for simplicity that S is independent of q and time. Let q′ denote a depar-
ture from the equilibrium, so that q = q̄+q′. Then (4.70) can be linearized as follows:
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d
dt

(
q̄+q′

)
=−κ q̄P+1−κ (P+1) q̄Pq′+S, (4.75)

which reduces to

dq′

dt
=−κ (P+1)(q̄)Pq′. (4.76)

This linearized equation with constant coefficients can be analyzed using von Neumann’s
method.

As an example, the forward time-differencing scheme, applied to (4.76), gives

qn+1−qn =−α (P+1)qn, (4.77)

where we use the shorthand notation

α ≡ κ(q̄)P
∆ t, (4.78)

and we have dropped the “prime” notation for simplicity. We can rearrange (4.77) to

qn+1 = [1−α (P+1)]qn, (4.79)

from which we see that

λ = 1−α (P+1) . (4.80)

From (4.80), we see that the forward time-differencing scheme is conditionally stable, and
that the criterion for stability is more difficult to satisfy when P is large.

Table 4.2 summarizes the ten schemes that Kalnay and Kanamitsu analyzed, and gives
the amplification factors and stability criteria for each. For the nonlinear forward explicit,
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Table 4.2: Schemes for the nonlinear decay equation, as studied by Kalnay and Kanamitsu (1988).
The source/sink term is omitted here for simplicity.

Table 4.4 summarizes the ten schemes that Kalnay and Kanamitsu analyzed, and gives the 
amplification factors and stability criteria for each. In the table, A  is a parameter used to adjust 

Name of Scheme Form of Scheme Amplification Factor Linear stability 
criterion

Forward Explicit qn+1 − qn

Δt
= −κ qn( )P+1 1−α P +1( ) α P +1( ) < 2

Backward Implicit qn+1 − qn

Δt
= −κ qn+1( )P+1

1
1+α P +1( )

Unconditionally 
stable

Centered Implicit qn+1 −qn
Δt

=−κ qn +qn+1
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

P+1

1−α P −1( )+ αP( )2

1+α( )2
Unconditionally 

stable

Explicit coefficient, 
implicit q

qn+1 − qn

Δt
= −κ qn( )P qn+1

1−αP
1+α( )2 α P −1( ) < 2

Predictor-Corrector 
coefficient, implicit q

q̂ − qn

Δt
= −κ qn( )P q̂

qn+1 − qn

Δt
= −κ q̂( )P qn+1

1−α P −1( ) + αP( )2

1+α( )2
α P −1( ) <1

Average coefficient, 
implicit q

q̂− qn
Δt =κ qn( )P q̂

qn+1 − qn
Δt = −κ

κ qn( )P + q̂( )P

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
qn+1

1−α P−1( )−α
2P
2 +

αP( )2
2

1+α( )2
α P − 2( ) < 2

Explicit coefficient, 
extrapolated q

qn+1 −qn
Δt

=−κ qn( )P 1−γ( )qn⎡
⎣

⎤
⎦

1−α P +1−γ( )
1+αγ α P +1− 2γ( ) < 2

Explicit coefficient, 
implicit q, with time 
filter

q̂ − qn

Δt
= −κ qn( )P q̂

qn+1 = 1− A( ) q̂ + Aqn
1− A( ) 1−αP( )

1+α
+ A α P 1− A( )−1− A⎡

⎣
⎤
⎦

< 2

Double time step, 
explicit coefficient, 
implicit q with time 
average filter

q̂ − qn

2Δt
= −κ qn( )P q̂

qn+1 = q̂ + q
n

2

1−α P −1( )
1+ 2α

α P − 3( ) < 2

Linearization of 
backward implicit 
scheme

qn+1−qn
Δt =

−κ qn⎛
⎝⎜

⎞
⎠⎟
P
P+1⎛

⎝⎜
⎞
⎠⎟
qn+1−Pqn⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1+αP
1+α P +1( )

Unconditionally 
stable

Table 4.4. Schemes for the nonlinear decay equation, as studied by Kalnay and Kanamitsu (1988). The 
source/sink term is omitted here for simplicity.
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backward implicit and centered implicit schemes, the amplification factor has been ob-
tained by linearization, but the “linear stability criteria” are not misleading. In the table, A
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is a parameter used to adjust the properties of a time filter; and γ > 1 is an “extrapolation”
parameter. For a detailed discussion, see the paper by Kalnay and Kanamitsu (1988), which
you should find quite understandable at this stage.

4.7 Summary

It is possible to construct time-differencing schemes of arbitrary accuracy by including
enough time levels, and/or through iteration. Schemes of very high accuracy (e.g., tenth
order) can be constructed quite easily, but highly accurate schemes involve a lot of arith-
metic and so are expensive. In addition they are complicated. An alternative approach to
obtain high accuracy is to use a simpler low-order scheme with a smaller time step. This
also involves a lot of arithmetic, but on the other hand the small time step makes it possible
to represent the temporal evolution in more detail.

Schemes with smaller discretization errors are not always better. For example, the
second-order leapfrog scheme is unstable when applied to the decay equation, while the
first-order backward implicit scheme is unconditionally stable and well behaved for the
same equation. A stable but less accurate scheme is obviously preferable to an unstable but
“more accurate” scheme. This is an example of how “accuracy” in the Taylor-series sense
can be misleading.

For the advection and oscillation equations, discretization errors can be separated into
amplitude errors and phase errors. Neutral schemes, like the leapfrog scheme and the
trapezoidal implicit scheme, have phase errors, but no amplitude errors.

Implicit schemes are well suited to the decay equation, but can be difficult to implement
when the decay term is nonlinear.

Computational modes in time are permitted by differencing schemes that involve three
or more time levels. To control these modes, there are four possible approaches:

• Choose a scheme that involves only two time levels;

• Choose the computational initial condition well, and periodically “re-start” the model
by taking a two-level time step;

• Choose the computational initial condition well, and use a time filter (e.g., Asselin
(1972)) to suppress the computational mode;

• Choose the computational initial condition well, and choose a scheme that intrinsi-
cally damps the computational mode more than the physical mode, e.g., an Adams-
Bashforth scheme.

Finally, we update our list of the properties of “good” schemes:

• High accuracy.
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• Stability.

• Simplicity.

• Computational economy.

• No computational modes in time, or else damped computational modes in time.

• Graceful behavior in the limit of large time steps, as with the backward implicit
scheme applied to the decay equation.

4.8 Problems

1. Find the exact solution of

dq
dt

= iωq−κq. (4.81)

(a) Let q(t = 0) = 100, ω

2π
= 0.1, κ = 0.1. Plot the real part of the solution for

0≤ t ≤ 100.

(b) Find the stability criterion for the scheme given by

qn+1−qn−1 = 2iΩqn−2Kqn+1. (4.82)

(c) Plot the neutral stability boundary (where |λ | = 1) as a curve in the (K,Ω)
plane, for K and Ω in the range 0 to 2, as in the sketch below. Here Ω ≡ ω∆ t,
K ≡ κ∆ t.

Indicate which part(s) of the (K,Ω) plot correspond to instability.

(d) Code the equation given in part (b) above. Use a forward time step for the first
step only. Use q(t = 0) = 100, and ∆ t = 1. Plot the solution out to t = 100 for
the following cases:
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ω

2π
= 0.1, κ = 0

ω

2π
= 0, κ = 0.1

ω

2π
= 0.1, κ = 0.1

(4.83)

(e) For each case, plot Re{q} for 0≤ t ≤ 100 and compare with the exact solution.
Discuss the numerical results as they relate to the stability analysis of part (b)
above.

(f) Derive an equation satisfied by the amplification factor for the second-order
Adams-Bashforth scheme applied to Eq. (4.82). (The result is quite compli-
cated.) Contour plot |λ | as a function of both ω and κ . Find an approximate
solution valid for sufficiently small ∆ t.

2. The trapezoidal-implicit scheme for the oscillation equation is given by

qn+1−qn =
iΩ
2
(
qn +qn+1) . (4.84)

Analyze the stability of this scheme using von Neumann’s method.

3. Determine the orders of the discretization errors of the Matsuno and Heun schemes.

4. Find the stability criterion for the fourth-order Runge-Kutta scheme applied to the
oscillation equation.

5. Work out the stability criteria for the Matsuno scheme and the Heun scheme as ap-
plied to the decay equation, and compare with the corresponding criteria for the
backward implicit and trapezoidal implicit schemes, respectively.

6. Plot θ as a function of Ω for the exact solution of the oscillation equation, and for
the Euler, trapezoidal, Matsuno, and Heun schemes, and also the leapfrog scheme’s
physical mode, q1. Consider −π ≤Ω ≤ π .

7. The equations of Lorenz’s famous butterfly model are

82



Revised Monday 23rd August, 2021 at 15:57

Ẋ =−σ (X−Y ) ,

Ẏ =−XZ + rX−Y,

Ż =XY −bZ.

(4.85)

The model has three equilibria, one of which is X = Y = Z = 0.

(a) Linearizing the system about the equilibrium solution mentioned above, ana-
lyze the stability for the time continuous case. Assume that σ = 10, b = 8

3 , and
r = 24.74.

(b) For the case of the forward time-differencing scheme, use von Neumann’s
method to find the amplification factor. Compare with the effective amplifi-
cation factor for the continuous case. Suggest a good choice for the value of the
time step.

(c) Program the model twice, using forward time-differencing in one case and the
fourth-order Runge-Kutta method in the other. As in part (a), use the parameter
settings σ = 10, b = 8

3 , and r = 24.74. Start the model from the initial condition
(X ,Y,Z) = (0.1,0,0), which is close to the equilibrium mentioned above. Ex-
periment to determine the longest permissible time step with each scheme. Run
the model long enough to see the butterfly. Plot the results for both schemes,
and compare them.

8. Prove that the phase error εϕ , defined by θ = Ω + εϕ , satisfies εϕ = tan−1
(

εI
εR+1

)
.

9. Find the phase and amplitude errors of the upstream scheme for advection, and plot
them as functions of µ and k∆x.
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Chapter 5

Riding along with the air

The purpose of this chapter is to review the physical nature of advection, because the design
or choice of a numerical method should always be motivated as far as possible by our
understanding of the physical process at hand.

In Lagrangian form, the advection equation, in any number of dimensions, is simply

DA
Dt

= 0. (5.1)

This means that the value of A does not change following a particle. We say that A is
“conserved” following a particle. In fluid dynamics, we consider an infinite collection of
fluid particles. According to (5.1), each particle maintains its value of A as it moves. If
we do a survey of the values of A in our fluid system, let advection occur, and conduct a
“follow-up” survey, we will find that exactly the same values of A are still in the system.
The locations of the particles presumably will have changed, but the maximum value of
A over the population of particles is unchanged by advection, the minimum value is un-
changed, the average is unchanged, and in fact all of the statistics of the distribution of A
over the mass of the fluid are completely unchanged by the advective process. This is an
important property of advection.

Here is another way of describing this property: If we worked out the probability den-
sity function (PDF) of A, by defining narrow “bins” and counting the mass associated with
particles having values of A falling within each bin, we would find that the PDF was un-
changed by advection. For instance, if the PDF of A at a certain time is Gaussian (or “bell
shaped”), it will still be Gaussian at a later time (and with the same mean and standard
deviation) if the only intervening process is advection and if no mass enters or leaves the
system.

Consider a simple function of A, such as A2. Since A is unchanged during advection,
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for each particle, A2 will also be unchanged. Obviously, any other function of A will also
be unchanged. It follows that the PDF of any function of A is unchanged by advection.

In many cases of interest, A is non-negative more or less by definition. For example,
the mixing ratio of water vapor cannot be negative; a negative mixing ratio would have no
physical meaning. Some other variables, such as the zonal component of the wind vector,
can be either positive or negative; for the zonal wind, our convention is that positive values
denote westerlies and negative values denote easterlies.

Suppose that A is conserved under advection, following each particle. It follows that if
there are no negative values of A at some initial time, then, to the extent that advection is
the only process at work, there will be no negative values of A at any later time either. This
is true whether the variable in question is non-negative by definition (like the mixing ratio
of water vapor) or not (like the zonal component of the wind vector).

Typically the variable A represents an “intensive” property, which is defined per unit
mass. An example is the mixing ratio of some trace species, such as water vapor. A second
example is temperature, which is proportional to the internal energy per unit mass. In the
most troublesome case, A is a component of the wind field itself.

Of course, in general these various quantities are not really conserved following parti-
cles, simply because various sources and sinks cause the value of A to change as the particle
moves. For instance, if A is temperature, one possible source is radiative heating. To de-
scribe more general processes that include not only advection but also sources and sinks,
we can replace (5.1) by

DA
Dt

= S, (5.2)

where S is the source of A per unit time. (A negative value of S represents a sink.) We still
refer to (5.2) as a “conservation” equation; it says that A is conserved except to the extent
that sources or sinks come into play.

In addition to conservation equations for quantities that are defined per unit mass, we
need a conservation equation for mass itself. This “continuity equation” can be written as

∂ρ

∂ t
=−∇ · (ρV) , (5.3)

where ρ is the density (mass per unit volume) and V is the velocity vector. We can also
write (5.3) as
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Dρ

Dt
=−ρ∇ ·V. (5.4)

Eq. (5.4) tells us that, in general, ρ is not constant following a particle. If we have an
incompressible fluid, i.e., one for which ρ is an immutable property of the fluid so that
Dρ/Dt = 0, then (5.4) implies that ∇ ·V = 0. In other words, incompressibility implies
nondivergence. In reality, there is no such thing as an incompressible fluid, but some fluids
(like liquid water) are much less compressible than others (like air).

We can expand (5.2) into the Eulerian advection form of the conservation equation for
A:

∂A
∂ t

=−(V ·∇)A+S. (5.5)

Multiply (5.3) by A, and (5.5) by ρ , and add the results to obtain

∂

∂ t
(ρA) =−∇ · (ρVA)+ρS. (5.6)

This is called the flux form of the conservation equation for A. Notice that if we put A≡ 1
and S ≡ 0 (because there is no “source of 1”!) then (5.6) reduces to (5.3). This is an
important point that can and should be used in the design of advection schemes, i.e., we
can and should design the flux form of an advection scheme for A in such a way that for
A≡ 1 we get the scheme for the continuity equation.

If A is uniform throughout the domain (e.g., if A ≡ 1), and if S ≡ 0 throughout the
domain, then A will remain uniform under advection. An advection scheme that has this
property is called “compatible.”

Suppose that we integrate (5.3) over a closed or periodic domain R. Here“closed”
means that there is no flux of mass across the boundary of R, and “periodic” means that the
domain has no boundaries (e.g., a spherical shell). For either closed or periodic boundaries
we find, using Gauss’s Theorem, that

d
dt

∫
R

ρdR = 0. (5.7)
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This simply states that mass is conserved within the domain. Similarly, for the case of
closed or periodic boundaries we can integrate (5.6) over R to obtain

d
dt

∫
R

ρAdR =
∫

R
ρSdR. (5.8)

This says that the mass-weighted average value of A is conserved within the domain, except
for the effects of sources and sinks. We can describe (5.7) and (5.8) as integral forms of the
conservation equations for mass and A, respectively.

It may seem that the ideal way to simulate advection in a model is to define a collection
of particles, to associate various properties of interest with each particle, and to let the par-
ticles be carried about by the wind. In such a Lagrangian model, the properties associated
with each particle would include its spatial coordinates, e.g., of its longitude, latitude, and
height. These would change in response to the predicted velocity field. Such a Lagrangian
approach has been demonstrated, and will be discussed later in this chapter.

At the present time, however, virtually all models in atmospheric science are based on
Eulerian methods. For the case of vertical advection, the Eulerian vertical coordinate is
sometimes permitted to “move” as the circulation evolves (e.g., Phillips (1957); Hsu and
Arakawa (1990)). This will be discussed in a later chapter.
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Chapter 6

The upstream scheme

6.1 Introduction

Consider the one-dimensional advection equation, given by

(
∂A
∂ t

)
x
+ c
(

∂A
∂x

)
t
= 0, (6.1)

where A = A(x, t). The physical meaning of (6.1) is that A remains constant at the position
of a particle that moves in the x-direction with speed c. We can interpret A as a “conserved”
property of the particle. We will assume for now that c is a constant. Eq. (6.1) is a first-
order linear partial differential equation with a constant coefficient, namely c. It looks
harmless, but it causes no end of trouble.

Suppose that

A(x,0) = F (x) for−∞ < x < ∞. (6.2)

This is an “initial condition.” Our goal is to determine A(x, t). This is a simple exam-
ple of an initial-value problem. We first work out the analytic solution of (6.1), for later
comparison with our numerical solution. Define

ξ ≡ x− ct, so that
(

∂x
∂ t

)
ξ

= c. (6.3)
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The value of ξ does not change as the particle moves. If ξ = 0 at the location of the particle,
then the value of ξ measures distance from the particle. Using the chain rule, we write

(
∂A
∂x

)
ξ

=

(
∂A
∂x

)
t
+

(
∂A
∂ t

)
x

(
∂ t
∂x

)
ξ

=

(
∂A
∂x

)
t
+

(
∂A
∂ t

)
x

1
c

= 0 .

(6.4)

Figure 6.1: Figure used in the derivation of the first line of (6.4). *** Redraw this figure.

The first line of (6.4) can be understood by reference to Fig. 6.1. The third line comes by
use of (6.1) or (6.3). Similarly,

(
∂A
∂ t

)
ξ

=

(
∂A
∂ t

)
x
+

(
∂A
∂x

)
t

(
∂x
∂ t

)
ξ

=

(
∂A
∂ t

)
x
+

(
∂A
∂x

)
t
c

= 0 .

(6.5)

Again, the last equality follows from (6.1). We can interpret (∂A/∂ t)
ξ

as the time rate
of change of A that we would see if we were riding on the moving particle of air, so
the advection equation describes what happens as particles of air move around without
changing their values of A. From (6.4) and (6.5), we conclude that

A = f (ξ ) (6.6)
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is the general solution to (6.1). This means that A depends only on ξ , in the sense that if
you tell me the value of ξ , that’s all the information I need to tell you the value of A. (Note
that “A depends only on ξ ” does not mean that A is independent of x for fixed t, or of t for
fixed x.)

The initial condition is

ξ ≡ x and A(x) = f (x) at t = 0, (6.7)

i.e., the shape of f (ξ ) is determined by the initial condition. Eq. (6.6) means that A is
constant along the line ξ = constant. In order to satisfy the initial condition, we chose
f ≡ F [see Eq. (6.2)]. Referring to (6.6) , we see that A(ξ ) = F (ξ ) ≡ F (x− ct) is the
solution to (6.1) that satisfies the initial condition (6.7). An initial value simply “moves
along” the lines of constant ξ , which are called characteristics. The initial shape of A(x),
namely F (x), is just carried along by the wind. From a physical point of view this is
obvious. Partial differential equations whose solutions are constant along characteristics
are called hyperbolic equations. The advection equation is hyperbolic. Further discussion
is given later.

Keeping in mind the exact solution, we now investigate the solution of one possible
numerical scheme for (6.1). We construct a grid, as in Fig. 6.2. One of the infinitely many
possible finite-difference approximations to (6.1) is

An+1
j −An

j

∆t
+ c
(An

j −An
j−1

∆x

)
= 0 . (6.8)

Here we have used the forward difference quotient in time and the backward difference
quotient in space. If we know An

j at some time level n for all j, then we can solve (6.8)
for An+1

j at the next time level, n+1. For c > 0, (6.8) is called the “upstream” scheme. It
is one-sided or asymmetric in both space and time. It seems naturally suited to modeling
advection, in which air comes from one side and goes to the other, as time passes by. The
upstream scheme has some serious weaknesses, but it also has some very useful properties.
It is a scheme worth remembering. That’s why I put it in a box.

Because

An+1
j −An

j

∆t
→ ∂A

∂ t
as ∆t→ 0, (6.9)
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Figure 6.2: A grid for the solution of the one-dimensional advection equation.

and

An
j −An

j−1

∆x
→ ∂A

∂x
as ∆x→ 0, (6.10)

we can say that (6.8) does approach (6.1) as ∆t and ∆x both approach zero. In view of (6.9)
and (6.10), it may seem obvious that the solution of (6.8) approaches the solution of (6.1)
as ∆x→ 0 and ∆t→ 0. Unfortunately, that is not necessarily true.

6.2 The discretization error of the upstream scheme

Let A(x, t) denote the (exact) solution of the differential equation, so that A( j∆x,n∆t) is the
value of this exact solution at the discrete point ( j∆x,n∆t) on the grid shown in Fig. 6.2.
We use the notation An

j to denote the “exact” solution of a finite-difference equation, at the
same point. In general, An

j 6= A( j∆x,n∆t). To find the discretization error of the upstream
scheme, we substitute the solution of the differential equation into the finite-difference
equation. For the upstream scheme given by (6.8), we get

91



Revised Monday 23rd August, 2021 at 15:57

{
A [ j∆x,(n+1)∆t]−A( j∆x,n∆t)

∆t

}
+ c
{

A( j∆x,n∆t)−A [( j−1)∆x,n∆t]
∆x

}
= ε (6.11)

The discretization error, ε , is a measure of how accurately the solution A(x, t) of the original
differential equation (6.1), satisfies the finite-difference equation, (6.8). It is far from a
perfect measure of accuracy, however, as will become evident.

If we obtain the terms of (6.11) from a Taylor Series expansion of A(x, t) about the
point ( j∆x,n∆t), and use the fact that A(x, t) satisfies (6.1), we find that

ε =

(
1
2!

∆t
∂ 2A
∂ t2 + · · ·

)
+ c
(
− 1

2!
∆x

∂ 2A
∂x2 + · · ·

)
. (6.12)

We say this is a “first-order scheme” because the first powers of ∆t and ∆x appear in (6.12).
The notations O(∆t,∆x) or O(∆t) + O(∆x) can be used to express this. The upstream
scheme is first-order accurate in both space and time.

A scheme is said to be “consistent” with the differential equation if the discretization
error of the scheme approaches zero as ∆t and ∆x approach zero. We have demonstrated
above that the upstream scheme is consistent. Consistency is necessary, but it is a “low
bar,” and nowhere near sufficient to make a good scheme.

6.3 Convergence

Given acceptable levels of discretization error, we must also consider the error of the solu-
tion of the discrete equation, i.e., the difference between the solution of the discrete equa-
tion and the solution of the continuous differential equation, i.e., An

j −A( j∆x,n∆t). How
does the solution of the finite-difference scheme change as ∆t and ∆x→ 0? If the solution
of the finite-difference scheme approaches the solution of the differential equation as the
grid is refined, then we say that the solution converges.

Fig. 6.3 illustrates a situation in which the solution does not converge as the grid is
refined. The thin diagonal line in the figure shows the characteristic along which A is
“carried” i.e., A is constant along the line. This is the exact solution. To work out the
numerical approximation to this solution, we first choose ∆x and ∆t such that the grid
points are the dots in the figure. The set of grid points carrying values of A on which An

j
depends is called the “domain of dependence.” The shaded area in the figure shows the
domain of dependence for the upstream scheme, (6.8).
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Figure 6.3: The shaded area represents the “domain of dependence” of the solution of the upstream
scheme at the point ( j∆x,n∆t).

We could increase the accuracy of the scheme by cutting ∆x and ∆t in half, or by a factor
of 100, but the domain of dependence would not change as long as the ratio c∆t

∆x remains
the same. This is a clue that c∆t/∆x is an important quantity. We will give it a name:

µ ≡ c∆t
∆x

. (6.13)

Suppose that the line through the point ( j∆x,n∆t), i.e., x− ct = x0, where x0 is a con-
stant, does not lie in the domain of dependence. This is the situation shown in Fig. 6.3. In
general, there is no hope of obtaining smaller discretization error, no matter how small ∆x
and ∆t become, as long as mu is unchanged, because the true solution depends only on the
initial value of A at the single point (x0,0) which cannot influence An

j . You could change
A(x0,0) (and hence the exact solution A( j∆x,n∆t) ), but the computed solution An

j would
remain the same. In such a case, the error of the solution usually will not be decreased by
refining the grid. This illustrates that if the value of c is such that x0 lies outside of the
domain of dependence, it is not possible for the solution of the finite-difference equation to
approach the solution of the differential equation, no matter how fine the mesh becomes.
The finite-difference equation converges to the differential equation, but the solution of the
finite-difference equation does not converge to the solution of the differential equation. The
truncation error goes to zero, but the discretization error does not. Bummer.
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The discussion above shows that

0≤ µ ≤ 1 (6.14)

is a necessary condition for convergence of the upstream scheme.

Notice that if c is negative (giving what we might call a “downstream” scheme), then
the characteristic lies outside the domain of dependence shown in the figure. Of course, for
c < 0 we can use

An+1
j −An

j

∆t
+ c
(An

j+1−An
j

∆x

)
= 0, (6.15)

in place of (6.8). For c < 0, Eq. (6.15) is the appropriate form of the upstream scheme.

A computer program can have an “if-test” that checks the sign of c, and uses (6.8) if
c≥ 0, and (6.15) if c < 0. If-tests can cause slow execution on certain types of computers,
and besides, if-tests are ugly and reduce the readability of a code. If we define

c+ ≡
c+ |c|

2
≥ 0, and c− ≡

c−|c|
2
≤ 0, (6.16)

then a “generalized” upstream scheme can be written as

An+1
j −An

j

∆t
+ c+

(An
j −An

j−1

∆x

)
+ c−

(An
j+1−An

j

∆x

)
= 0. (6.17)

This form avoids the use of if -tests and is also convenient for use in pencil-and-paper
analysis, as discussed later.

In summary: Truncation error measures the accuracy of an approximation to a differ-
ential operator or operators. It is a measure of the accuracy with which the terms of a
differential equation have been approximated. Discretization error measures the accuracy
with which the solution of the differential equation has been approximated. Reducing the
truncation error to acceptable levels is usually easy. Reducing the discretization error can
be much harder.
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6.4 Interpolation and extrapolation

Referring back to (6.8), we can rewrite the upstream scheme as

An+1
j = An

j (1−µ)+An
j−1µ. (6.18)

This scheme has the form of either an interpolation or an extrapolation, depending on the
value of µ . To see this, refer to Figure 6.4. Along the line plotted in the figure

A = An
j−1−

(
x− x j−1

)(An
j −An

j−1

x j− x j−1

)

= An
j

[
1−
(

x− x j−1

x j− x j−1

)]
j
+An

j−1

(
x− x j−1

x j− x j−1

)
,

(6.19)

which has the same form as our scheme if we identify

A≡ An+1
j and µ ≡

x− x j−1

x j− x j−1
. (6.20)

For 0≤ µ ≤ 1 we have interpolation. For µ < 0 or µ > 1 we have extrapolation.

x
jj −1

A

Aj
n

Aj−1
n

Figure 6.4: Diagram illustrating the concepts of interpolation and extrapolation. See text for details.
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For the case of interpolation, the value of An+1
j will be intermediate between An

j−1

and An
j , so it is impossible for An+1

j to “blow up,” no matter how many time steps we take.
After a number of time steps, however, the repeated interpolation can produce an unrealistic
smoothing of the solution.

Interpolation also implies that if An
j−1 and An

j are both positive, then An+1
j will be posi-

tive too. This is a good thing, for example, if A represents the mixing ratio of water vapor.
More discussion is given later.

For the case of extrapolation, An+1
j will lie outside the range of An

j−1 and An
j . This is

not necessarily a problem if we are only taking one (reasonably small) time step, but after
a sufficient number of time steps the solution will become useless.

Both interpolation and extrapolation are used extensively in atmospheric modeling.
Much more discussion of both is given later.

6.5 Computational stability of the upstream scheme

We will now use the direct method, the energy method, and von Neumann’s method to test
the stability of the upstream scheme for advection.

6.5.1 The direct method

As mentioned earlier, the direct method establishes stability by demonstrating that the
largest absolute value of An+1

j on the grid does not increase with time. Recall that with
the upstream scheme An+1

j is a weighted mean of An
j and An

j−1. Provided that 0 ≤ µ ≤ 1
(the necessary condition for convergence according to (6.14)), we can write

∣∣∣An+1
j

∣∣∣≤ ∣∣An
j
∣∣(1−µ)+

∣∣An
j−1
∣∣µ. (6.21)

Therefore,

max
( j)

∣∣∣An+1
j

∣∣∣≤max
( j)

∣∣An
j
∣∣(1−µ)+max

( j)

∣∣An
j−1
∣∣µ

=max
( j)

∣∣An
j
∣∣ ,

(6.22)

where max( j) denotes the largest value at any point on the grid. The second line of (6.22)

follows because max( j)

∣∣∣An
j

∣∣∣ = max( j)

∣∣∣An
j−1

∣∣∣. Eq. (6.22) demonstrates that the scheme is
stable provided that our assumption
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0≤ µ ≤ 1 (6.23)

is satisfied. This means that the solution remains bounded for all time provided that
0 ≤ µ ≤ 1, and so it is a sufficient condition for stability. For the upstream scheme, a
sufficient condition for stability has turned out to be the same as the necessary condition
for convergence. In other words, if the scheme is convergent it is stable, and vice versa.

In the solution of the exact advection equation, the maxima and minima of A(x, t) never
change. They are just carried along to different spatial locations. So, for the exact solution,
the equality in (6.22) would hold.

Eq. (6.22), the sufficient condition for stability, is actually obvious from (6.18), because
when 0 ≤ µ ≤ 1, An+1

j is obtained by linear interpolation in space, from the available An
j

to the point x = j∆x− c∆t. This is reasonable, because the nature of advection is such that
the time rate of change at a point is closely related to the spatial variations upstream of that
point.

6.5.2 The energy method

The direct method cannot be used to check the stability of more complicated schemes. The
energy method is more widely applicable, even for some nonlinear equations, and it is quite
important in practice. We illustrate it here by application to the upstream scheme. With the

energy method we ask: “Is ∑
j

(
An

j

)2
bounded after an arbitrary number of time steps?”

Here the summation is over the entire domain. If the sum is bounded, then each An
j must

also be bounded. Whereas in the direct method we checked, max( j)

∣∣∣An+1
j

∣∣∣, with the energy

method we check ∑
j

(
An

j

)2
. The two approaches are somewhat similar.

Returning to (6.18), squaring both sides, and summing over the domain, we obtain

∑
j

(
An+1

j

)2
=∑

j

[(
An

j
)2
(1−µ)2 +2µ (1−µ)An

jA
n
j−1 +µ

2(An
j−1
)2
]

=(1−µ)2
∑

j

(
An

j
)2

+2µ (1−µ)∑
j

An
jA

n
j−1 +µ

2
∑

j

(
An

j−1
)2
.

(6.24)

If A is periodic in x, then
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∑
j

(
An

j−1
)2

= ∑
j

(
An

j
)2
. (6.25)

By starting from ∑
j

(
An

j −An
j−1

)2
≥ 0, and using (6.25), we can show that

∑
j

An
jA

n
j−1 ≤∑

j

(
An

j
)2
. (6.26)

Another way to derive (6.26) is to use (6.25) and Schwartz’s inequality (e.g., Arfken (1985),
p. 527), i.e.,

(∑
j

a jb j)
2 ≤ (∑

j
a j

2)(∑
j

b j
2), (6.27)

which holds for any sets of a’s and b’s. An interpretation of Schwartz’s inequality is that the
square of the dot product of two vectors is less than or equal to the product of the squares
of the magnitudes of the two vectors. Use of (6.25) and (6.26) in (6.24) gives

∑
j

(
An+1

j

)2
≤∑

j

(
An

j
)2
, (6.28)

provided that µ (1−µ)≥ 0, which follows from 0≤ µ ≤ 1. We conclude that

∑
j

(
An+1

j

)2
≤∑

j

(
An

j
)2
, provided that 0≤ µ ≤ 1. (6.29)

The conclusion is the same as that obtained using the direct method, i.e., 0 ≤ µ ≤ 1 is a
sufficient condition for stability.

6.5.3 von Neumann’s method

A very powerful tool for testing the stability of linear partial difference equations with con-
stant coefficients is von Neumann’s method. It will be used extensively in this book. Solu-
tions to linear partial differential equations can be expressed as superpositions of waves, by
means of Fourier series. Von Neumann’s method simply tests the stability of each Fourier
component. If all of the Fourier components are stable, then the scheme is stable. The

98



Revised Monday 23rd August, 2021 at 15:57

method can only be applied to linear or linearized equations with constant coefficients,
however. Because of that, it can sometimes give misleading results.

To illustrate von Neumann’s method, we return to the exact advection equation, (6.1).
We assume for simplicity that the domain is infinite. First, we look for a solution with the
wave form

A(x, t) = Re
[
Â(t)eikx

]
, (6.30)

where
∣∣∣Â(t)

∣∣∣ is the amplitude of the wave. Here k is called the wave number. It is indepen-
dent of t and x because we have assumed that c is constant in space and time. For now, we
consider a single wave number, for simplicity, but we can (and soon will) generalize (6.30)
by replacing the right-hand side by a sum over a range of wave numbers. Substituting
(6.30) into (6.1), we find that

dÂ
dt

+ ikcÂ = 0. (6.31)

By this substitution, we have converted the partial differential equation (6.1) into an ordi-
nary differential equation, (6.31), whose solution is

Â(t) = Â(0)e−ikct , (6.32)

where Â(0) is the initial value of Â. Substituting (6.32) back into (6.30), we find that the
full solution to (6.31) is

A(x, t) = Re
[
Â(0)eik(x−ct)

]
, (6.33)

provided that c = constant. As can be seen from (6.33), the sign convention used here
implies that for c > 0 the signal will move towards larger x. Note that the exponent in
(6.33) is a constant times ξ = x− ct, which is the line (the characteristic) along which the
solution of (6.1)is expected to be constant.

For a finite-difference equation, the assumed form of the solution, given by Eq. (6.30),
is replaced by
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An
j = Re

[
Âneik j∆x

]
. (6.34)

Here
∣∣∣Ân
∣∣∣ is the amplitude of the wave at time-level n. Recall that the wavelength is 2π

divided by the wave number. It follows that the shortest resolvable wave, with wavelength
L = 2∆x, has k∆x = π , while longer waves have k∆x < π . This means that there is no need
to consider k∆x > π .

We now introduce the amplification factor, λ , which was defined in Eq. (4.3). We can
write

Ân+1 ≡ λ Ân . (6.35)

The amplification factor can be a complex number, but have a special interest in its magni-
tude, which reveals the stability of a numerical scheme. Note that

∣∣∣Ân+1
∣∣∣= |λ | ∣∣∣Ân

∣∣∣ . (6.36)

In general, λ depends on k, so we could write λk or λ (k), but here we suppress that urge
for the sake of keeping the notation simple. The value of λ also depends on the size of the
time step. As shown below, we can work out the form of λ for a particular finite-difference
scheme.

Before doing that, we use Eq. (6.35) to identify the effective value of λ for the exact
solution to the differential equation. From (6.32), we find that

for the exact advection equation Â(t +∆t)≡ eikc∆t Â(t) , (6.37)

from which it follows “by inspection” that

for the exact advection equation λ = eikc∆t . (6.38)

Eq. (6.38) implies that
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for the exact advection equation |λ |= 1, (6.39)

regardless of the value of ∆t. To go from (6.38) to (6.39), we have used Euler’s formula.

It will be shown later that for processes other than advection the exact value of |λ | can
differ from 1, and can depend on ∆t.

From (6.35) we see that after n time steps, starting from n = 0, the solution will be

Ân = Â0
λ

n. (6.40)

From (6.40), the requirement for stability, i.e., that the solution remains bounded after
arbitrarily many time steps, implies that

|λ | ≤ 1 . (6.41)

Therefore, to evaluate the stability of a finite-difference scheme using von Neumann’s
method, we need to work out the value of |λ | for that scheme, and check it to see whether
or not (6.41) is satisfied.

Consider the particular case of the upstream scheme, as given by (6.8). Substituting
(6.34) into (6.8) leads to

Ân+1− Ân

∆t
+

(
1− e−ik∆x

∆x

)
cÂn = 0. (6.42)

Notice that the true advection speed, c, is multiplied, in (6.42), by the factor
(

1−e−ik∆x

∆x

)
.

Comparing (6.42) with (6.31), we see that
(

1−e−ik∆x

∆x

)
c is “taking the place” of ikc in the

exact solution. In fact, you should be able to show that,

lim
∆x→0

(
1− e−ik∆x

∆x

)
= ik. (6.43)
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This is a clue that, for a given value of k, the upstream scheme does not advect A at the
correct speed. We return to this point later.

For now, we use the definition of λ , i.e., (6.35), together with (4.5) and (6.42), to infer
that

λ = 1−µ (1− cosk∆x+ isink∆x) . (6.44)

Note that λ is complex. This is to be expected, because the effective value of λ for the
exact solution of the differential equation is also complex. Computing the square of the
modulus of both sides of (6.44), we obtain

|λ |2 = 1+2µ (µ−1)(1− cosk∆x) . (6.45)

According to (6.45), the amplification factor |λ | depends on the wave number, k, and also
on µ . As an example, for µ = 1

2 , (6.45) reduces to

|λ |2 = 1− 1
2
(1− cosk∆x) . (6.46)

Fig. 3.5 shows that the upstream scheme damps for 0 ≤ µ ≤ 1 and is unstable for µ < 0
and µ > 1. For µ close to zero, the scheme is close to neutral, but many time steps are
needed to complete a given simulation. For µ close to one, the scheme is again close to
neutral, but it is also close to instability. If we choose intermediate values of µ , the shortest
modes are strongly damped, and such strong smoothing is usually unacceptable. No matter
what we do, there are problems with the scheme.

Although λ depends on k, it does not depend on x (i.e., on j) or on t (i.e., on n). Why
not? The reason is that out “coefficient,” namely the wind speed c, has been assumed to be
independent of x and t.

The fact that von Neumann’s method can only be used to analyze the stability of a
linearized version of the equation, with constant coefficients, is an important limitation of
the method, because the equations used in numerical models are typically nonlinear and/or
have spatially variable coefficients – if this were not true, we would solve them analytically!
The key point is that von Neumann’s method can sometimes tell us that a scheme is stable,
when in fact it is unstable. In such cases, the instability arises from nonlinearity and/or
through the effects of spatially variable coefficients. This type of instability can be detected
using the energy method, and will be discussed in a later chapter.
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Figure 6.5: The square of the amplification factor for the upstream scheme is shown on the vertical
axis. The front axis is k∆x, and the right-side axis is µ.

If von Neumann’s method says that a scheme is unstable, you can be confident that it
is really is unstable.

As mentioned above, the full solution for An
j can be expressed as a Fourier series. For

simplicity, we assume that the solution is periodic in x, with period L0. You might want to
think of L0 as the distance around a latitude circle. Then An

j can be written as

An
j =Re

[
∞

∑
m=−∞

Ân
meimk0 j∆x

]

=Re

[
∞

∑
m=−∞

Â0
meimk0 j∆x(λm)

n

]
,

(6.47)

where

k ≡ mk0, (6.48)

k0 ≡
2π

L0
, (6.49)
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and m is a nondimensional integer (i.e., a “pure number”), which is analogous to what we
call the “zonal wave number” in large-scale dynamics. We can interpret k0 as the lowest
non-zero wave number in the solution, so if L0 is the distance across the model’s spatial
domain then the lowest wave number k0 corresponds to one “high” and one “low” within
the domain. In (6.47), the summation has been formally taken over all integers, although
of course only a finite number of m’s can be used in a real application. We can interpret
|λm| as the amplification factor for mode m. This means that different wave numbers have
different amplification factors. If any wave number is unstable, then the scheme is unstable.
We can write

∣∣An
j
∣∣≤ ∣∣∣∣∣ ∞

∑
m=−∞

Â0
meimk0 j∆x(λm)

n

∣∣∣∣∣
≤

∞

∑
m=−∞

∣∣∣Â0
meimk0 j∆x(λm)

n
∣∣∣

=
∞

∑
m=−∞

∣∣∣Â0
m

∣∣∣ |λ |n.
(6.50)

If |λ | ≤ 1 is satisfied for all m, then

∣∣An
j
∣∣≤ ∞

∑
m=−∞

∣∣∣Â0
m

∣∣∣. (6.51)

Therefore,
∣∣∣An

j

∣∣∣ will be bounded provided that
∞

∑
m=−∞

Â0
meimk0 j∆x, which gives the initial

condition, is an absolutely convergent Fourier series. The point is that |λ | ≤ 1 for all m is
sufficient for stability. It is also necessary, because if |λ |> 1 for a particular m, say m=m1,
then the solution for the initial condition um1 = 1 and um = 0 for all m 6= m1 is unbounded.

From (6.18), λm for the upstream scheme is given by

λ = 1−µ (1− cosmk0∆x+ isinmk0∆x) . (6.52)

The amplification factor is

|λ |=
√

1+2µ (µ−1)(1− cosmk0∆x). (6.53)
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From (6.53) we can show that |λ | ≤ 1 holds for all m, if and only if µ (µ−1) ≤ 0, which
is equivalent to 0≤ µ ≤ 1. This is the necessary and sufficient condition for the stability of
the scheme.

6.6 How to take into account periodic boundary conditions

To explicitly allow for a finite periodic domain, the upstream scheme can be written in
matrix form as



An+1
1

An+1
2

· · ·

An+1
j−1

An+1
j

An+1
j+1

· · ·

An+1
J−1

An+1
J



=



1−µ 0 · · · 0 0 0 · · · 0 µ

µ 1−µ · · · 0 0 0 · · · 0 0

0 µ · · · 0 0 0 · · · 0 0

0 0 · · · 1−µ 0 0 · · · 0 0

0 0 · · · µ 1−µ 0 · · · 0 0

0 0 · · · 0 µ 1−µ · · · 0 0

0 0 · · · 0 0 µ · · · 0 0

0 0 · · · 0 0 0 · · · 1−µ 0

0 0 · · · 0 0 0 · · · µ 1−µ





An
1

An
2

· · ·

An1
j−1

An
j

An
j+1

· · ·

An
J−1

An
J



,

(6.54)

or

[
An+1

j

]
= [M]

[
An

j
]
, (6.55)

where [M] is the matrix written out on the right-hand side of (6.54). In writing (6.54), the
cyclic boundary condition

An+1
1 = (1−µ)An

1 +µAn
J (6.56)
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has been assumed, and that is why µ appears in the top-right corner of the matrix. From
the definition of λ , (6.35), we can write



An+1
1

An+1
2

· · ·

An+1
j−1

An+1
j

An+1
j+1

· · ·

An+1
J−1

An+1
J



=



λ 0 · · · 0 0 0 · · · 0 0

0 λ · · · 0 0 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 0

0 0 · · · λ 0 0 · · · 0 0

0 0 · · · 0 λ 0 · · · 0 0

0 0 · · · 0 0 λ · · · 0 0

0 0 · · · 0 0 0 · · · 0 0

0 0 · · · 0 0 0 · · · λ 0

0 0 · · · 0 0 0 · · · 0 λ





An
1

An
2

· · ·

An1
j−1

An
j

An
j+1

· · ·

An
J−1

An
J



(6.57)

or

[
An+1

j

]
= λ [I]

[
An

j
]
, (6.58)

where [I] is the identity matrix. Comparing (6.55) and (6.58), we see that

([M]−λ [I])
[
An

j
]
= 0. (6.59)

This equation must hold regardless of the values of the An
j . It follows that the amplification

factors, λ , are the eigenvalues of [M], obtained by solving

|[M]−λ [I]|= 0, (6.60)

where the absolute value signs denote the determinant. For the current example, we can
use (6.60) to show that

λ = 1−µ

(
1− ei 2mπ

J

)
,m = 0,1,2, . . . ,J−1. (6.61)
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This has essentially the same form as (6.44), and so it turns out that 0 ≤ µ ≤ 1 is the
stability condition again.

6.7 Does the solution improve if we increase the number of grid
points and cut the time step?

Consider what happens when we increase the number of grid points, while fixing the do-
main size, D, the wind speed, c, and the wave number k of the advected signal. We would
like to think that the solution is improved by increasing the resolution, but this must be
checked because higher spatial resolution also means a shorter time step (for stability), and
a shorter time step means that more time steps are needed to simulate a given interval of
time. Each time step leads to some damping, which is an error. The increased spatial res-
olution is a good thing, but the increased number of time steps is a bad thing. Does the
solution improve, or not?

Consider grid spacing ∆x, such that

D = J∆x. (6.62)

As we decrease ∆x, we increase J correspondingly, so that D does not change, and

k∆x =
kD
J
. (6.63)

Substituting this into (6.45), we find that the amplification factor satisfies

|λ |2 = 1+2µ (µ−1)
[

1− cos
(

kD
J

)]
. (6.64)

In order to maintain computational stability, we keep µ fixed as ∆x decreases, so that

∆t =
µ∆x

c

=
µD
cJ

.

(6.65)
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The time required for the air to flow through the domain is

T =
D
c
. (6.66)

Let N be the number of time steps needed for the air to flow through the domain, so that

N =
T
∆t

=
D

c∆t

=
D

µ∆x

=
J
µ

(6.67)

To obtain the last line of (6.67), we have substituted from (6.62). The total amount of
damping that “accumulates” as the air moves across the domain is given by

|λ |N =
(
|λ |2

)N/2
= {1−2µ (1−µ) [1− cos(kD/J)]}

J
2µ . (6.68)

Here we have used (6.64) and (6.67).

As we increase the resolution with a fixed domain size, J increases. In Fig. 6.6, we
show the dependence of |λ |N on J, for two different fixed values of µ . The wavelength
is assumed to be half the domain width, so that kD = 4π . This causes the cosine factor
in (6.68) to approach 1, which weakens the damping associated with |λ | < 1; but on the
other hand it also causes the exponent in (6.68) to increase, which strengthens the damping.
Which effect dominates? The answer can be seen in Fig. 6.6. Increasing J leads to less
total damping for a given value of µ , even though the number of time steps needed to cross
the domain increases. This is good news.

On the other hand, if we fix J and decrease µ (by decreasing the time step), the damping
increases, so the solution becomes less accurate. This means that, for the upstream scheme,
the amplitude error can be minimized by using the largest stable value of µ . We minimize
the error by living dangerously.
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Figure 6.6: “Total” damping experienced by a disturbance crossing the domain, as a function of J,
the number of grid points across the domain, for two different fixed values of µ. In these examples
we have assumed D/L = 2, i.e., the wavelength is half the width of the domain.

6.8 Summary

This chapter gives a quick introduction to the solution of a finite-difference equation, using
the upstream scheme for the advection equation as an example. We have encountered the
concepts of convergence and stability, and three different ways to test the stability of a
scheme.

Suppose that we are given a non-linear partial differential equation and wish to solve it
by means of a finite-difference approximation. The usual procedure would be as follows:

• Check the truncation errors. This is done by using a Taylor series expansion to
find the leading terms of the errors in approximations for the various derivatives that
appear in the governing equations of the model.

• Check linear stability for a simplified (linearized, constant coefficients) version of
the equation. The most commonly used method is that of von Neumann.

• Check nonlinear stability, if possible. This can be accomplished, in some cases, by
using the energy method. Otherwise, empirical tests are needed. More discussion is
given in Chapter 11.

Increased accuracy as measured by discretization error does not always imply a better
scheme. For example, consider two schemes A and B, such that scheme A is first-order
accurate but stable, while scheme B is second-order accurate but unstable. Given such a
choice, the “less accurate” scheme is definitely better.

Almost always, the design of a finite-difference scheme is an exercise in trade-offs. For
example, a more accurate scheme is usually more complicated and expensive than a less
accurate scheme. We have to ask whether the additional complexity and computational
expense are justified by the increased accuracy. The answer depends on the particular
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application.

In general, “good” schemes have the following properties, among others:

• High accuracy.

• Stability.

• Simplicity.

• Computational economy.

Later, we will extend this list.

6.9 Problems

1. Program the upstream scheme on a periodic domain with 100 grid points. Give a
sinusoidal initial condition with a single mode such that exactly four wavelengths fit
in the domain. Integrate for µ = -0.1, 0.1, 0.5, 0.9, 1 and 1.1. In each case, take
enough time steps so that in the exact solution the signal will just cross the domain.
Plot and discuss your results.

2. Consider the following pair of equations, which describe inertial oscillations:

du
dt

= f v, (6.69)

dv
dt

=− f u. (6.70)

(a) Show that kinetic energy is conserved by this system.

(b) Using the energy method, determine the stability of the forward time-differencing
scheme as applied to these two equations.

3. Analyze the stability of

An+1
j −An

j

∆t
+ c
(An

j+1−An
j−1

2∆x

)
= 0 (6.71)

using von Neumann’s method.
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Chapter 7

“Forward in time” advection schemes

Further examples of schemes for the advection equation can be obtained by combining
centered space-differencing with two-level time-differencing schemes (see Chapter 4).

7.1 Accuracy and stability of a family of advection schemes

Following Takacs (1985), we define a fairly general family of schemes of the form

An+1
j −

∞

∑
j′=−∞

a j′A
n
j′ = 0. (7.1)

Here j′ denotes various points on the grid that are used to evaluate the time-rate-of-change
of A at the point j. We assume for simplicity that the grid spacing is uniform. Recall from
Chapter 3 that the discretization error, which is a measure of the accuracy of the finite-
difference scheme, can be evaluated by substituting the exact solution of the differential
equation into the finite-difference equation. Replacing the various A’s in (7.1) by the cor-
responding values of the true solution, represented in terms of Taylor series expansions
around the point ( j∆x,n∆t), and replacing the right-hand side of (7.1) by the discretization
error of the scheme, denoted by ε , we find that

(
A+∆t

∂A
∂ t

+
∆t2

2!
∂ 2A
∂ t2 + . . .

)
−

∞

∑
j′=−∞

a j′

[
A+

(
j′∆x

) ∂A
∂x

+
( j′∆x)2

2!
∂ 2A
∂x2 + . . .

]
= ε,

(7.2)

where all quantities are evaluated at (x, t) =
(
x j, tn). We now use the continuous advection

equation in the forms
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∂A
∂ t

=−c
∂A
∂x

,
∂ 2A
∂ t2 = c2 ∂ 2A

∂x2 , etc. . (7.3)

These relations only hold if c is constant, so the results derived below are only approxi-
mately valid when c is variable. For derivatives of order m, (7.3) generalizes to

∂ mA
∂ tm = (−c)m ∂ mA

∂xm . (7.4)

This allows us to write

∆tm ∂ mA
∂ tm = (−µ)m

∆xm ∂ mA
∂xm , (7.5)

or

∆xm ∂ mA
∂xm =

(
∆t
−µ

)m
∂ mA
∂ tm , (7.6)

where µ is the usual CFL parameter. With the use of (7.6), we can rewrite (7.2) as

(
A+∆t

∂A
∂ t

+
∆t2

2!
∂ 2A
∂ t2 + . . .

)
−

∞

∑
j′=−∞

a j′

[
A−

(
j′∆t
µ

)
∂A
∂ t

+
1
2!

(
j′∆t
µ

)2
∂ 2A
∂ t2 + . . .

]
= ε,

(7.7)

Inspection of (7.7) shows that in order to ensure first-order accuracy in both time and space,
we need

1−
∞

∑
j′=−∞

a j′ = 0 (7.8)

and
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1+
∞

∑
j′=−∞

a j′
j′

µ
= 0. (7.9)

To have second-order accuracy in both time and space, we need

1−
∞

∑
j′=−∞

a j′

(
j′

µ

)2

= 0. (7.10)

In general, to have mth-order accuracy in both time and space, we must require (7.8), (7.9),
and

∞

∑
j′=−∞

(
j′
)l a j′ = (−µ)l for l = 2 to m. (7.11)

Using the binomial theorem, it can be shown from (7.8) through (7.11) that for a scheme
of mth-order accuracy

∞

∑
j′=−∞

(
j′+µ

)la j′ = 0 for 1≤ l ≤ m . (7.12)

This will be used later.

We close this section by finding the amplification factor for the family of schemes given
by (7.1). As usual, we look for a solution of the form

An
j = Re

[
Âneik j∆x

]
. (7.13)

It follows from (7.1) and (7.13) that the amplification factor is given by

λ =
∞

∑
j′=−∞

a j′e
ik j∆x. (7.14)

In the following sections, we discuss several schemes to which the preceding analysis
is directly applicable.
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7.2 Matsuno time-differencing with centered space differencing

In the case of the Matsuno scheme, the first approximation to An+1
j comes from

An+1∗
j −An

j

∆t
+ c
(An

j+1−An
j−1

2∆x

)
= 0, (7.15)

and the final value from

An+1
j −An

j

∆t
+ c

(
An+1∗

j+1 −An+1∗
j−1

2∆x

)
= 0. (7.16)

Eliminate the terms with ( )∗ from (7.16) by using (7.15) twice (first with j replaced by
j+1, then with j replaced by j−1). The result can be written as

An+1
j −An

j

∆t
+ c
(An

j+1−An
j−1

2∆x

)
=

c2∆t

(2∆x)2

(
An

j+2−2An
j +An

j−2
)
. (7.17)

It should be clear that (7.17) is a member of the family given by (7.1). The term on the
right-hand side of (7.17) approaches zero as ∆t→ 0, and thus (7.17) is consistent with the
one-dimensional advection equation, but has only first-order accuracy. If we let ∆x→ 0
(and ∆t → 0 to keep stability), this term approaches c2

∆t∂ 2A/∂x2. In effect, it acts as a
diffusion term that damps spatial variations. The “diffusion coefficient” is c2

∆t, which
goes to zero as ∆t→ 0. We say that the centered-in-space advection scheme with Matsuno
time differencing is “diffusive.”

7.3 The Lax-Wendroff scheme

A similarly diffusive scheme, called the Lax-Wendroff scheme, has second-order accuracy.
Consider an explicit two-level scheme of the form:

An+1
j −An

j

∆t
+

c
∆x

(
a j−1An

j−1 +a jAn
j +a j+1An

j+1
)
= 0. (7.18)

The scheme given by Eq. (7.22) was proposed by Lax and Wendroff (1960), and rec-
ommended by Richtmyer (1963). It is a member of the family given by (7.1). For the
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centered-in-space approximation to ∂A/∂x, we would have a j−1 = −1/2, a j = 0, and
a j+1 = 1/2, but the Lax-Wendroff scheme does not use those values. To ensure at least
first-order accuracy in both time and space, we must require that

a j−1 +a j +a j+1 = 0, and −a j−1 +a j+1 = 1. (7.19)

To obtain second-order accuracy in both time and space, we must also enforce

µ +a j−1 +a j+1 = 0. (7.20)

Solving (7.19) and (7.20) for the parameters of the scheme, we find that

a j−1 =
−1−µ

2
, a j = µ and a j+1 =

1−µ

2
. (7.21)

For µ > 0 (which means c > 0), the absolute value of the upstream coefficient, a j−1, is
larger than the absolute value of the downstream coefficient, a j+1. Something similar hap-
pens if µ < 0. In short, the scheme is automatically “upstream-weighted” regardless of
which way the wind is blowing, even though the stencil is centered. Substituting from
(7.21) into (7.18), we can write the scheme as

An+1
j −An

j

∆t
+ c
(An

j+1−An
j−1

2∆x

)
=

c2∆t
2∆x2

(
An

j+1−2An
j +An

j−1
)
. (7.22)

Compare (7.22) with (7.17), which is the corresponding result for the Matsuno scheme.
The left-hand side of (7.22) looks like “forward in time, centered in space,” which would
be unstable. But the right-hand side looks like diffusion, and can stabilize the scheme
if the time step is small enough. Note that (7.22) is second-order accurate in time, even
though it involves only two time levels; this result depends on our assumption that c is a
constant. The scheme achieves second-order accuracy in space through the use of three
grid points. This illustrates that a non-iterative two-time-level scheme is not necessarily a
first-order scheme. The right-hand-side of (7.22) looks like a diffusion term. This is similar
to what happens when the Matsuno time differencing scheme is combined with centered
space differencing.
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The Lax-Wendroff scheme is equivalent to and can be interpreted in terms of the fol-

lowing procedure: First calculate A
n+ 1

2
j+ 1

2
and A

n+ 1
2

j1 1
2

from

A
n+ 1

2
j+ 1

2
− 1

2

(
An

j+1 +An
j

)
1
2∆t

=−c
(An

j+1 +An
j

∆x

)
, (7.23)

A
n+ 1

2
j− 1

2
− 1

2

(
An

j +An
j−1

)
1
2∆t

=−c
(An

j −An
j−1

∆x

)
, (7.24)

and then use these to obtain An+1
j from

An+1
j −An

j

∆t
=−c

A
n+ 1

2
j+ 1

2
−A

n+ 1
2

j− 1
2

∆x

 . (7.25)

Note that (7.25) is “centered in time.” If (7.23) and (7.24) are substituted into (7.25), we
recover (7.22). This helps to rationalize why it is possible to obtain second-order accuracy
in time with this two-time-level scheme.

For the Lax-Wendroff scheme, the amplification factor is

λ = 1−2µ
2sin2

(
k∆x

2

)
− iµ sin(k∆x) , (7.26)

To obtain (7.26), we have used the trigonometric identity 2sin2 (θ

2

)
= 1− cosθ . We find

that

|λ |2 =
[

1−4µ
2sin2

(
k∆x

2

)
+4µ

4sin4
(

k∆x
2

)]
+µ

2sin2 (k∆x)

= 1−4µ
2 (1−µ

2)sin4
(

k∆x
2

)
.

(7.27)
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To obtain the second line of (7.27), we have used the trigonometric identity sin(2θ) =
2sinθ cosθ . Since (7.27) involves only µ2, the stability criterion does not depend on the
direction of the wind. If µ2 < 1, then |λ | < 1 and the scheme is dissipative. Fig. 7.1
shows how |λ |2 depends on µ and L, for both the upstream and Lax-Wendroff schemes.
The damping of the Lax-Wendroff scheme is more scale selective.

7.4 Implicit schemes for the advection equation

There are also various implicit schemes, such as the trapezoidal implicit scheme, which are
neutral and unconditionally stable, so that in principle any ∆t can be used if the phase error
can be tolerated. Such schemes are not members of the family defined by (7.1). Implicit
schemes have the drawback that an iterative procedure is usually needed to solve the system
of equations involved. In many cases, the iterative procedure may take as much computer
time as a simpler non-iterative scheme with a smaller ∆t.
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Figure 7.1: The amplification factors for the Lax-Wendroff and upstream schemes, for two different
wavelengths, plotted as a function of µ2.

7.5 Two-dimensional advection

Variable currents more or less have to be multi-dimensional. Before we discuss variable
currents, in a later chapter, it is useful to consider constant currents in two-dimensions.

Let A be an arbitrary quantity advected, in two dimensions, by a constant basic current.
The advection equation is

∂A
∂ t

+u
∂A
∂x

+ v
∂A
∂y

= 0, (7.28)

where u and v are the x and y components of the current, respectively. We assume here that
U and V are spatially constant, but of course that won’t be the case in a real model.
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Let i and j be the indices of grid points in the x and y directions, on a rectangular
grid. Replacing ∂A/∂x and ∂A/∂y by the corresponding centered difference quotients, we
obtain

dAi, j

dt
+u

1
2∆x

(
Ai+1, j−Ai−1, j

)
+ v

1
2∆y

(
Ai, j+1−Ai, j−1

)
= 0. (7.29)

Assume that A has the form

Ai, j = Re
{

Â(t)ei˜[(ki∆x)+(l j∆y)]
}
, (7.30)

where i˜≡ √−1, and k and l are wave numbers in the x and y directions, respectively.
Substitution gives the oscillation equation again:

dÂ
dt

= iωÂ , (7.31)

where this this time the frequency is given by

ω ≡−
[

u
sin(k∆x)

∆x
+ v

sin(l∆y)
∆y

]
. (7.32)

If we were to use leapfrog time-differencing, the stability criterion would be

∣∣∣∣usin(k∆x)
∆x

+ v
sin(l∆y)

∆y

∣∣∣∣∆t ≤ 1. (7.33)

Since

∣∣∣∣usin(k∆x)
∆x

+ v
sin(l∆y)

∆y

∣∣∣∣∆t ≤
(∣∣∣∣usin(k∆x)

∆x

∣∣∣∣+ ∣∣∣∣vsin(l∆y)
∆y

∣∣∣∣)∆t

≤
(
|u|
∆x

+
|v|
∆y

)
∆t,

(7.34)
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a sufficient condition to satisfy (7.33) is

(
|u|
∆x

+
|v|
∆y

)
∆t ≤ 1. (7.35)

If we require the scheme to be stable for all possible k and l, and for all combinations of u
and v, then (7.35) is also a necessary condition.

How does the stability criterion depend on the direction of the flow and the shapes of
the grid cells? To answer this, define

|u| ≡ Scosα and |v| ≡ S sinα, (7.36)

where the wind speed S≥ 0 and 0≤α ≤ π/2. For α = 0, the flow is zonal, and for α = π/2
it is meridional. Then (7.35) becomes

S
(

cosα

∆x
+

sinα

∆y

)
∆t ≤ 1. (7.37)

In order for the scheme to be stable for any orientation of the current, we must have

S
(

cosαm

∆x
+

sinαm

∆y

)
∆t ≤ 1, (7.38)

where αm is the “worst-case” α , which makes the left-hand side of (7.37) a maximum. We
can show that αm satisfies

tanαm =
∆x
∆y

, so that sinαm =
∆x√

(∆x)2 +(∆y)2
and cosαm =

∆y√
(∆x)2 +(∆y)2

. (7.39)

As shown in Fig. 7.2, αm measures the angle of the “diagonal” across a grid box. For
example, when ∆y

∆x << 1, we get αm → π/2, which means that the most dangerous flow
direction is meridional, because that the direction in which the grid cell is “narrowest.” As
a second example, for ∆x = ∆y, we get αm = π/4.
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From (7.38) and (7.39) we see that the stability criterion can be written as

C∆t√
(∆x)2 +(∆y)2

(
∆y
∆x

+
∆x
∆y

)
≤ 1. (7.40)

In particular, for ∆x = ∆y = d,

C∆t
d
≤ 1√

2
< 1. (7.41)

αm

Δx

Δy

π
2
−αm

Figure 7.2: Sketch illustrating the angle αm on a rectangular grid.
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Chapter 8

Finite-volume methods

8.1 Definitions

As discussed in Appendix B, the divergence, curl, and gradient operators can be defined in
terms of the limits of surface integrals as the enclosed volume shrinks to zero. These defi-
nitions can be used to formulate a class of finite-difference methods called “finite-volume
methods,” in which the definition of the operator is used but the volume takes the form of a
finite “grid cell.”

For example, the divergence operator can be defined using

∇ ·Q≡ lim
V→0

 1
V

∮
S

n ·QdS

 (8.1)

where S is the surface bounding a volume V , and n is the outward normal on S. Here the
terms “volume” and “bounding surface” are used in the following generalized sense: In a
three-dimensional space, “volume” is literally a volume, and “bounding surface” is literally
a surface. In a two-dimensional space, “volume” means an area, and “bounding surface”
means the curve bounding the area. In a one-dimensional space, “volume” means a curve,
and “bounding surface” means the end points of the curve. The limit in (8.2) is one in
which both the volume and the area of its bounding surface shrink to zero.

Eq. (8.1) can be used, for example, to formulate an approximation to an advective flux
divergence in terms of the normal components of the flux on the wall of the volume. The
flux on each grid-cell wall adds or subtracts from the contents of the grid cell, like deposits
and withdrawals from a bank account.

A definition of the gradient operator that does not make reference to any coordinate
system is:
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∇A≡ lim
V→0

 1
V

∮
S

nAdS

 , (8.2)

This can be used, for example, for formulate an approximation to the pressure-gradient
force. The pressure on each grid-cell wall tries to accelerate the mass in the grid cell in the
direction normal to the wall. If all of the pressures are equal, then they cancel each other
out and there is no net force on the mass in the cell. But when the pressures differ from one
wall to another, there can be a net force. For example, if the pressure on the front of your
car is higher than the pressure on the back, then the car will experience a net “drag” force
that tries to slow it down.

A definition of the curl operator that does not make reference to any coordinate system
is:

∇×Q≡ lim
V→0

 1
V

∮
S

n×QdS

 (8.3)

This can be used to formulate an approximation to the vorticity in terms of the tangential
wind components on the wall of the volume.

Finally, the Jacobian on a two-dimensional surface can be defined by

J (A,B) = lim
C→0

[∮
C

A∇B · tdl
]
, (8.4)

where t is a unit vector that is tangent to the bounding curve C. This can be used to
formulate an approximation to the Jacobian operator in terms of the grid-point values of
the scalars A and B.

8.2 How is discrete conservation defined?

When we design finite-difference schemes to represent advection, we strive, as always, for
accuracy, stability, simplicity, and computational economy. In addition, it is often required
that a finite-difference scheme for advection be conservative in the sense that

∑
j

ρ
n+1
j dR j = ∑

j
ρ

n
j dR j, (8.5)
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and

∑
j
(ρA)n+1

j dR j = ∑
j
(ρA)n

j dR j +∆t ∑
j
(ρS)n

j dR j. (8.6)

These are finite-difference analogs to the integral forms (5.7) and (5.8), respectively. In
(8.6), we have assumed for simplicity that the effects of the source, S, are evaluated using
forward time differencing, although this need not be the case in general.

We may also wish to require conservation of some function of A, such as A2. This
might correspond, for example, to conservation of kinetic energy. Energy conservation can
be arranged, as we will see.

There are various additional requirements that we might like to impose. Ideally, for
example, the finite-difference advection operator would not alter the PDF of A over the
mass. Unfortunately this cannot be guaranteed with Eulerian methods, although we can
minimize the effects of advection on the PDF, especially if the shape of the PDF is known
a priori. This will be discussed later. In a model based on Lagrangian methods, advection
does not alter the PDF of the advected quantity. That’s very attractive.
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Chapter 9

Conservative advection schemes

9.1 Continuous advection in one dimension

Let A be a “conservative” variable, satisfying the following one-dimensional conservation
law:

∂

∂ t
(ρA)+

∂

∂x
(ρuA) = 0. (9.1)

Here ρ is the density of the air, and ρu is a mass flux. Putting A ≡ 1 in (9.1) gives mass
conservation:

∂ρ

∂ t
+

∂

∂x
(ρu) = 0. (9.2)

By combining (9.1) and (9.2), we can write the “advective form” of the conservation equa-
tion for A as

ρ

(
∂A
∂ t

+u
∂A
∂x

)
= 0. (9.3)

The continuity equation itself can be rewritten as

∂ρ

∂ t
+u

∂ρ

∂x
+ρ

∂u
∂x

= 0. (9.4)
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When the wind field is non-divergent, this reduces to an “advection equation” for the den-
sity:

∂ρ

∂ t
+u

∂ρ

∂x
= 0. (9.5)

Note, however, that in general the density is not conserved following a particle, because in
general the wind field is divergent.

9.2 Conserving mass

Suppose that we approximate (9.2) by:

dρ j

dt
+

(ρu) j+ 1
2
− (ρu) j− 1

2

∆x j
= 0, (9.6)

This is an example of a “differential-difference equation” (sometimes called a semi-discrete
equation), because the time-rate-of-change term is in differential form, while the spatial
derivative has been approximated using a finite-difference quotient. We will keep time
derivatives continuous for now because the issues that we are going to discuss are mostly
about space differencing.

The density ρ is defined at integer points, while u and ρu are defined at half-integer
points. See Fig. 9.1. In order to use this approach, the wind-point quantities ρ j+ 1

2
and

ρ j− 1
2

must be interpolated somehow from the predicted values of ρ . This is an example of
a “staggered” grid. The properties of staggered grids, in multiple spatial dimensions, are
discussed in detail in later chapters.

... ...
u
j−1
2

u
j+1
2

u
j+ 3
2

ρ jρ j−1 ρ j+1

Figure 9.1: The staggered grid used in (9.10) and (9.6).

Multiply (9.6) through by ∆x j, and sum over the domain, to obtain

d
dt

J

∑
j=0

(
ρ j∆x j

)
+(ρu)J+ 1

2
− (ρu)− 1

2
= 0. (9.7)
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If

(ρu)J+ 1
2
= (ρu)− 1

2
(9.8)

(these are periodic boundary conditions), then we obtain

d
dt

J

∑
j=0

(
ρ j∆x j

)
= 0, (9.9)

which expresses conservation of mass (9.9). Compare with (8.5). Note that (9.9) holds
regardless of the form of the interpolation used for ρ j+ 1

2
.

9.3 Conserving an intensive scalar

In a similar way, we approximate (9.1) by

d
dt

(
ρ jA j

)
+

(ρu) j+ 1
2
A j+ 1

2
− (ρu) j− 1

2
A j− 1

2

∆x j
= 0, (9.10)

Here A, like ρ , is defined at integer points. The half-integer values of A, i.e., A j+ 1
2
, and

A j− 1
2
, must be interpolated somehow from the predicted values of A. Note that if we put

A ≡ 1, (9.10) reduces to the finite-difference continuity equation, (9.6). As mentioned
earlier, schemes that have this property are called “compatible.”

Multiply (9.10) through by ∆x j, and sum over the domain:

d
dt

J

∑
j=0

(
ρ jA j∆x j

)
+(ρu)J+ 1

2
AJ+ 1

2
− (ρu)− 1

2
A− 1

2
= 0, (9.11)

If

(ρu)J+ 1
2
AJ+ 1

2
= (ρu)− 1

2
A− 1

2
, (9.12)
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(these are periodic boundary conditions), then we obtain

d
dt

J

∑
j=0

(
ρ jA j∆x j

)
= 0, (9.13)

which expresses conservation of the mass-weighted value of A. Compare with (8.6). Note
that (9.13) holds regardless of the form of the interpolation used for A j+ 1

2
.

A scheme that conserves the mass-weighted value of A will also conserve any linear
function of A.

9.4 An advective form

By combining (9.1) and (9.2), we obtain the advective form of our conservation law:

ρ
∂A
∂ t

+ρu
∂A
∂x

= 0. (9.14)

From (9.10) and (9.6), we can derive a finite-difference “advective form,” analogous to
(9.14):

ρ j
dA j

dt
+

(ρu) j+ 1
2

(
A j+ 1

2
−A j

)
+(ρu) j− 1

2

(
A j−A j− 1

2

)
∆x j

= 0. (9.15)

Since (9.15) is consistent with (9.10) and (9.6), use of (9.15) and (9.6) will allow conserva-
tion of the mass-weighted value of A (and of mass itself). Also note that if A is uniform over
the grid, then (9.15) gives dA j

dt = 0, which is “the right answer.” This is ensured because
(9.10) reduces to (9.6) when A is uniform over the grid. If the flux-form advection equation
did not reduce to the flux-form continuity equation when A is uniform over the grid, then a
uniform tracer field would not remain uniform under advection.

If ρ and u are spatially uniform, then (9.15) reduces to

dA j

dt
+u

(
A j+ 1

2
−A j− 1

2

∆x j

)
= 0. (9.16)
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Schemes of this form are discussed later in this chapter.

9.5 Conserving a function of an advected scalar

We have already discussed the fact that, for the continuous system, conservation of A itself
implies conservation of any function of A, e.g., A2, A17, ln(A), etc. This is most easily seen
from the Lagrangian form:

DA
Dt

= 0. (9.17)

According to (9.17), A is conserved “following a particle.” As discussed earlier, this implies
that

D
Dt

[F (A)] = 0, (9.18)

where F(A) is an arbitrary function of A only. We can derive (9.18) by multiplying (9.17)
by dF/dA.

In a finite-difference system, we can force conservation of at most one non-linear func-
tion of A, in addition to A itself. Here’s how that works: Let Fj denote F

(
A j
)
, where F is

an arbitrary function, and let F ′j denote
d[F(A j)]

dA j
. Multiplying (9.15) by F ′j gives

ρ j
dFj

dt
+

(ρu) j+ 1
2
F ′ j
(

A j+ 1
2
−A j

)
+(ρu) j− 1

2
F ′ j
(

A j−A j− 1
2

)
∆x j

= 0. (9.19)

Now use (9.6) to rewrite (9.19) in “flux form”:

d
dt

(
ρ jFj

)
+

1
∆x j

{
(ρu) j+ 1

2

[
F ′ j
(

A j+ 1
2
−A j

)
+Fj

]
− (ρu) j− 1

2

[
−F ′ j

(
A j−A j− 1

2

)
+Fj

]}
= 0.

(9.20)
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Inspection of (9.20) shows that, to ensure conservation of F(A), we must choose

Fj+ 1
2
= F ′j

(
A j+ 1

2
−A j

)
+Fj, (9.21)

Fj− 1
2
=−F ′j

(
A j−A j− 1

2

)
+Fj. (9.22)

Let j→ j+1 in (9.22), giving

Fj+ 1
2
=−F ′j+1

(
A j+1−A j+ 1

2

)
+Fj+1. (9.23)

Eliminating Fj+ 1
2

between (9.21) and (9.23), we find that A j+ 1
2

must satisfy

A j+ 1
2
=

(
F ′ j+1A j+1−Fj+1

)
−
(
F ′ jA j−Fj

)
F ′ j+1−F ′ j

. (9.24)

The conclusion is that by choosing A j+ 1
2

according to (9.24), we can guarantee conservation
of both A and F(A) (apart from time-differencing errors).

As an example, suppose that F (A) = A2. Then F ′ (A) = 2A, and we find that

A j+ 1
2
=

(
2A2

j+1−A2
j+1
)
−
(
2A2

j−A2
j
)

2
(
A j+1−A j

) =
1
2
(
A j+1 +A j

)
. (9.25)

This arithmetic-mean interpolation allows conservation of the square of A. It may or may
not be an accurate interpolation for A j+ 1

2
. Note that x j+1, x j, and x j+ 1

2
do not appear in

(9.25). This means that our spatial interpolation does not contain any information about
the spatial locations of the various grid points involved - a rather awkward and somewhat
strange property of the scheme. If the grid spacing is uniform, (9.25) gives second-order
accuracy in space. If the grid spacing is highly nonuniform, the accuracy drops to first-
order, but if the grid spacing varies smoothly second-order accuracy can be maintained, as
discussed in Chapter 2.

Substituting (9.25) back into (9.15) gives
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ρ j
dA j

dt
+

1
2∆x j

[
(ρu) j+ 1

2

(
A j+1−A j

)
+(ρu) j− 1

2

(
A j−A j−1

)]
= 0. (9.26)

This is the advective form that allows conservation of A2 (and of A).

9.6 Lots of ways to interpolate

There are infinitely many ways to interpolate a variable. We can spatially interpolate A
itself in a linear fashion, e.g.,

A j+ 1
2
= α j+ 1

2
A j +

(
1−α j+ 1

2

)
A j+1, (9.27)

where 0 ≤ α j+ 1
2
≤ 1 is a weighting factor that might be a constant, as in (9.25), or might

be a function of x j, x j+1 and x j+ 1
2
, or a function of µ ≡ c∆t/∆x. Alternatively, we can

interpolate so as to conserve an arbitrary function of A, as in (9.24).

Another approach is to compute some function of f (A), interpolate f (A) using a form
such as (9.27), and then extract an interpolated value of A by applying the inverse of f (A)
to the result. A practical example of this would be interpolation of the water vapor mixing
ratio by computing the relative humidity from the mixing ratio, interpolating the relative
humidity, and then converting back to mixing ratio. This type of interpolation does not (in
general) have the property that when the two input values of A are the same the interpolated
value of A is equal to the input value; instead, when the two input values of f (A) are the
same the interpolated value of f (A) is equal to the input value.

We can also make use of “averages” that are different from the simple and familiar
arithmetic mean given by (9.25). Examples are the “geometric mean,”

A j+ 1
2
=
√

A jA j+1. (9.28)

and the “harmonic mean,”

A j+ 1
2
=

2A jA j+1

A j +A j+1
, (9.29)
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 a b

c d

Figure 9.2: Four interpolations as functions of the input values. a) arithmetic mean, b) geometric
mean, c) harmonic mean, d) Eq. (9.30), which makes the interpolated value close to the larger of
the two input values. In all plots, black is close to zero, and white is close to one.

both of which are plotted in Fig. 9.2. Note that both (9.28) and (9.29) give A j+ 1
2
= C if

both A j+1 and A j are equal to C, which is what we expect from an interpolation. They are
both nonlinear interpolations. For example, the geometric mean of A plus the geometric
mean of B is not equal to the geometric mean of A+B, although it will usually be close.
The geometric mean and the harmonic mean both have the potentially useful property that
if either A j+1 or A j is equal to zero, then A j+ 1

2
will also be equal to zero. More generally,

both (9.28) and (9.29) tend to make the interpolated value close to the smaller of the two
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input values.

Here is another interpolation that has the opposite property, i.e., it makes the interpo-
lated value close to the larger of the two input values. Define r as a normalized value of
A, such that 0≤ r ≤ 1. For example, we could define r j, j+ 1

2
≡ A j

Max{A j,A j+1} and r j+1 j+ 1
2
≡

A j+1

Max{A j,A j+1} . We could then interpolate r to the cell wall using

r j+ 1
2
=

r j, j+ 1
2
+ r j+1, j+ 1

2
−2r j, j+ 1

2
r j+1, j+ 1

2

2−
(

r j, j+ 1
2
+ r j+1, j+ 1

2

) . (9.30)

We would then compute the cell-wall value of A using A j+ 1
2
≡ r j+ 1

2
Max

{
A j,A j+1

}
. It can

be confirmed that when r j, j+ 1
2
= r j+1, j+ 1

2
Eq. (9.30) gives r j+ 1

2
= r j, j+ 1

2
= r j+1, j+ 1

2
, so

(9.30) can be interpreted as an interpolation. Eq. (9.30) is also plotted in Fig. 9.2.

All of the interpolations described above can be reformulated in terms of r. The inter-
polation given by (9.30) can be interpreted as one minus the harmonic mean formulated in
terms of r.

The fact that there are infinitely many ways to average and/or interpolate can be viewed
as a good thing, because it means that we have the opportunity to choose the best way for
a particular application.

9.7 Fixers

For reasons that will be discussed later, some models do not use conservative forms of the
continuity equation. It is possible to “fix” conservation of mass by checking at the end of
the time step (or perhaps at the end of a simulated day) to see how much mass has been
gained or lost globally, and then just subtracting or adding whatever it takes to restore the
total mass at the beginning of the time step. These ad hoc procedures are called “fixers”
(not to be confused with shady attorneys). I don’t recommend them. For further discussion
of fixers, see Takacs (1988) and Diamantakis and Flemming (2014).

9.8 A flux form of the upstream scheme

In Chapter 3, we discussed the upstream scheme in advective form. Can we write it in flux
form, so that it conserves the mass-weighted value of the advected quantity? In order to do
so, we must choose the interpolated values of A in the flux-form equation (9.10) so that the
corresponding advective form is the upstream scheme.

Suppose that (ρu) j+ 1
2

and (ρu) j− 1
2

are both positive. Then the spatial differencing of
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(9.15) is consistent with the upstream scheme if we choose A j+ 1
2
= A j and A j− 1

2
= A j−1,

and (9.15) reduces to

ρ j
dA j

dt
+

(ρu) j− 1
2

(
A j−A j−1

)
∆x j

= 0. (9.31)

On the other hand, if (ρu) j+ 1
2

and (ρu) j− 1
2

are both negative, we can get the upstream
scheme with A j+ 1

2
= A j+1 and A j− 1

2
= A j, in which case (9.15) becomes

ρ j
dA j

dt
+

(ρu) j+ 1
2

(
A j+1−A j

)
∆x j

= 0. (9.32)

To see how to proceed more generally, regardless of the signs of the mass fluxes, we go
back to the flux form, (9.10), and write

d
dt

(
ρ jA j

)
+

Max
{
(ρu) j+ 1

2
,0
}

A j +Min
{
(ρu) j+ 1

2
,0
}

A j+1

∆x j



−

Max
{
(ρu) j− 1

2
,0
}

A j−1 +Min
{
(ρu) j− 1

2
,0
}

A j

∆x j

= 0 .

(9.33)

By setting A≡ 1 in (9.33), we see that a “compatible” form of the continuity equation is

dρ j

dt
+

Max
{
(ρu) j+ 1

2
,0
}
+Min

{
(ρu) j+ 1

2
,0
}

∆x j



−

Max
{
(ρu) j− 1

2
,0
}
+Min

{
(ρu) j− 1

2
,0
}

∆x j

= 0 ,

(9.34)

which is equivalent to (9.6). Of course, compatibility would also imply the use of forward
time-differencing in the continuity equation. That will be unstable in combination with
centered-in-space differencing for the density. How do we know that it will be unstable?
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Because, as shown in Chapter 4, the oscillation equation is unstable with the Euler forward
scheme.

Recall, moreover, that the continuity equation itself reduces to “advection of density”
when the fluid is incompressible and the wind field is non-divergent. We are thus led
to consider an upstream version of the continuity equation. All we have to do is choose
ρ j+ 1

2
= ρ j when u j+ 1

2
> 0, and ρ j+ 1

2
= ρ j+1 when u j+ 1

2
< 0, with corresponding choices

for ρ j− 1
2
. We write

Max
{
(ρu) j+ 1

2
,0
}
= ρ jMax

{
u j+ 1

2
,0
}

(9.35)

and

Min
{
(ρu) j+ 1

2
,0
}
= ρ j+1Min

{
u j+ 1

2
,0
}
. (9.36)

Eqs. (9.35) and (9.36) can be substituted back into both (9.33) and (9.34).

9.9 Problems

1. Find a one-dimensional advection scheme that conserves both A and ln(A). Keep the
time derivative continuous.

2. Consider the continuity equation

dρ j

dt
+

(ρ̂u) j+ 1
2
− (ρ̂u) j− 1

2

∆x
= 0, (9.37)

and the advection equation

dA j

dt
+

1
2

(
u j+ 1

2
+u j− 1

2

)(A j+1−A j−1

2∆x

)
= 0. (9.38)

Does this scheme conserve the mass-weighted average value of A? Give a proof to
support your answer.
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3. Program the following one-dimensional shallow-water model with a tracer A:

(hA) j
n+1− (hA) j

n−1

2∆t
+

(
ĥu
)n

j+ 1
2
Ân

j+ 1
2
−
(
ĥu
)n

j− 1
2
Ân

j− 1
2

∆x
= 0,

h j
n+1−h j

n−1

2∆t
+

(
ĥu
)n

j+ 1
2
−
(
ĥu
)n

j− 1
2

∆x
= 0,

un+1
j+ 1

2
−un−1

j+ 1
2

2∆t
+

(
kn

j+1− kn
j

∆x

)
+g
(

hn
j+1−hn

j

∆x

)
= 0.

(9.39)

Use a forward time step for the first step only. Take

∆x = 105m,

g = 0.1ms−2,

ĥ j+ 1
2
=

1
2
(
h j +h j+1

)
,

k j =
1
4

(
u2

j+ 1
2
+u2

j− 1
2

)
.

(9.40)

Use 100 grid points, with periodic boundary conditions. Let the initial condition be

u j+ 1
2
= 0 for all j,

h j = 1000+50sin
(

2π j
20

)
,

A j = 11+10cos
(

2π j
4

)
.

(9.41)

(a) Use von Neumann’s method to estimate the largest time step that is consistent
with numerical stability.

(b) Construct the model, and experiment with time steps “close” to the predicted
maximum stable ∆t (within a factor of 2), in order to find a value that is stable
in practice.

(c) Run the model for the following two choices of Â j+ 1
2
:
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Â j+ 1
2
=

1
2
(
A j +A j+1

)
,

Â j+ 1
2
=
√

Max
{

0,A jA j+1
}
.

(9.42)

Run out to t = 1.5× 106 seconds. If you encounter A < 0, invent or choose
a method to enforce A ≥ 0 without violating conservation of A. Explain your
method.

(d) Check the conservation of A and A2 for both cases. Explain how you do this.

4. Consider a periodic domain with cells numbered by 0≤ j ≤ 100, with initial condi-
tions

q j = 100,45≤ j ≤ 55,

q j = 0 otherwise.
(9.43)

Integrate

∂q
∂ t

+ c
∂q
∂x

= 0, (9.44)

using

(a) Upstream.

(b) Lax Wendroff.

(c) Trapezoidal in time, and second-order centered in space. In order to do this,
you will have to solve a linear algebra problem.

Choose µ = 0.7 in each case. Run the model long enough so that for the exact
solution the signal crosses the domain once. Plot the results for the end of
the run, and also the half-way point. Compare the solutions, with particular
attention to amplitude errors, phase errors, dispersion, sign preservation, and
monotonicity.

5. Determine the order of accuracy of

(
∂A
∂x

)
j

∼=
A j+ 1

2
−A j− 1

2

∆x
(9.45)
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when

A j+ 1
2
=

2A jA j+1

A j +A j+1
(9.46)

is used for interpolation to the cell walls. Assume uniform grid spacing.

6. Discuss the meaning of Eq. (9.24) for the special cases F(A) = A, and F(A) = 1.

7. Consider the advection equation with centered second-order space differencing on a
uniform grid. We use the trapezoidal implicit time-differencing scheme.

(a) Using von Neumann’s method, prove that scheme is unconditionally stable.

(b) Repeat, using the energy method.

(c) Prove that, with second-order centered-in-space differencing, the trapezoidal
implicit scheme is time-reversible for advection, and the forward scheme is not.

8. Check the stability of the Matsuno scheme with centered space differencing, for the
advection equation.

9. Prove that the geometric mean cannot be larger than the arithmetic mean.

137



Chapter 10

Computational dispersion

10.1 Centered space differencing and computational dispersion

Consider the centered-difference quotient

(
∂A
∂x

)
j

∼=
A j+1−A j−1

2∆x
. (10.1)

If A j (t) has the wave form A j (t) = Â(t)eik j∆x, where k is the wave number, then

A j+1−A j−1

2∆x
= ik

(
sink∆x

k∆x

)
Â(t)eik j∆x. (10.2)

Therefore, for one particular Fourier mode the advection equation becomes

dÂ
dt

+ ikc
(

sink∆x
k∆x

)
Â = 0. (10.3)

If we define ω ≡ −kc sink∆x
k∆x , then (10.3) reduces to the oscillation equation, which was

discussed at length in Chapter 4. The function sinα/α is sometimes written as sincα .
Note that sinc(k∆x)→ 1 as k∆x→ 0. A plot is given in Fig. 10.1.

We are going study the properties of the various space- and time-differencing schemes
for the advection scheme, making direct use of some of our results from Chapter 4. For
particular space-differencing schemes, we will be able to obtain an explicit relationship
between ∆x and ∆t as a condition for stability.
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Figure 10.1: A plot of sincα, for −π ≤ α ≤ π.

As mentioned in Chapter 3, the Euler forward time scheme is unstable when combined
with the centered space scheme for advection. You should prove this fact and remember it.

In the case of leapfrog time differencing and centered second-order space differencing,
the one-dimensional advection equation is

A j
n+1−A j

n−1

2∆t
+ c
(

An
j+1−An

j−1

2∆x

)
= 0. (10.4)

If we assume that A j
n has the wave-form solution for which Eq. (10.2) holds, then (10.4)

can be written as

Ân+1− Ân−1 = 2iΩÂn, (10.5)

where

Ω≡−kcsinc(k∆x)∆t. (10.6)

At this point, we recognize Eq. (10.5) as the leapfrog scheme for the oscillation equation.
Recall from Chapter 4 that |Ω| ≤ 1 is necessary for (10.5) to be stable. Therefore, we can
simply re-use our result from Chapter 4, i.e.,
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|kcsinc(k∆x)∆t|=
∣∣∣∣csin(k∆x)

∆x
∆t
∣∣∣∣≤ 1 (10.7)

must hold for stability, for any and all k. Because |sink∆x| ≤ 1, the “worst case” is
|sink∆x| = 1. This occurs for k∆x = ±π

2 , which corresponds to the wavelength L = 4∆x.
We conclude that

|c| ∆t
∆x
≤ 1 (10.8)

is the necessary condition for stability. Here “stability” means stability for all modes. Eq.
(10.8) is the famous “CFL” stability criterion associated with the names Courant, Friedrichs
and Levy. The stability criterion (10.8) also applies to the upstream scheme, as we saw
already in Chapter 3.

Note that the 2∆x wave is not the main problem here. It is the 4∆x wave that can most
easily become unstable.

Recall that the leapfrog scheme gives a numerical solution with two modes - a physical
mode and a computational mode. We can write these two modes as in Chapter 3:

Ân
1 = λ

n
1 Â0

1, and Ân
2 = λ

n
2 Â0

2. (10.9)

For |Ω| ≤ 1, we find, as discussed in Chapter 4, that

λ1 = eiθ , and λ2 = ei(π−θ) =−e−iθ , where θ ≡ tan−1
(

Ω√
1−Ω2

)
. (10.10)

Both modes are neutral. For the physical mode,

(
An

j
)

1 = λ
n
1 Â0

1eik j∆x

= Â0
1 exp

[
ik
(

j∆x+
θ

k∆t
n∆t
)]

.
(10.11)

Similarly, for the computational mode we obtain
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(
A j

n)
2 = Â0

2(−1)n exp
[

ik
(

j∆x− θ

k∆t
n∆t
)]

. (10.12)

Note the nasty factor of (−1)n in (10.12). It comes from the leading minus sign in (10.10).
Comparing (10.11) and (10.12) with the expression A(x, t) = Â(0)eik(x−ct), which is the
true solution, we see that the speeds of the physical and computational modes are − θ

k∆t
and θ

k∆t , respectively, for even time steps. It is easy to see that as (∆x,∆t)→ 0, we obtain
θ → Ω→−kc∆t. This means that the speed of the physical mode approaches c (i.e., the
right answer), while the speed of the computational mode approaches −c. The computa-
tional mode goes backwards! In other words, the computational solution advects the signal
towards the upwind direction, which is obviously crazy.

For the physical mode, the finite-difference approximation to the phase speed depends
on k, while the true phase speed, c, is independent of k. The shorter waves move more
slowly than the longer waves. The 2∆x does not move at all! The reason is easy to see in
(10.4). The spurious dependence of phase speed on wave number with the finite-difference
scheme is an example of computational dispersion, which will be discussed in detail later.

10.2 More about computational dispersion

Consider the differential-difference equation

dA j

dt
+ c
(

A j+1−A j−1

2∆x

)
= 0. (10.13)

Using A j = Âeik j∆x, as before, we can write (10.13) as

dÂ j

dt
+ cik

sin(k∆x)
k∆x

Â j = 0. (10.14)

If we had retained the differential form of the advection equation, we would have obtained
dÂ
dt +cikÂ = 0. Comparison with Equation (10.14) shows that the phase speed is not simply
c, but c∗, given by

c∗ ≡ c
sin(k∆x)

k∆x
. (10.15)
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Because c∗ depends on the wave number k, we have computational dispersion that arises
from the space differencing. Note that the true phase speed, c, is independent of k. A plot
of c∗/c versus k∆x is given by the upper curve in Fig. 10.2. (The second, lower curve in
the figure, which illustrates the computational group velocity, will be discussed later.)

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

c*/c

cg
*/c

k!x

Figure 10.2: The ratio of the computational phase speed to the true phase speed, and also the
ratio of the computational group speed to the true group speed, both plotted as functions of wave
number.

If ks is defined by ks∆x ≡ π , then Ls ≡ 2π

ks
= 2∆x is the smallest wave length that our

grid can resolve. Therefore, we need only be concerned with 0 ≤ k∆x ≤ π . Because
ks∆x = π , c∗ = 0 for this wave, and so the shortest possible wave is stationary! This is
actually obvious from the form of the space difference. Since c∗ < c for all k > 0, all waves
move slower than they should according to the exact equation. Moreover, if we have a
number of wave components superimposed on one another, each component moves with
a different phase speed, depending on its wave number. The total “pattern” formed by the
superimposed waves will break apart, as the waves separate from each other. This is called
a computational dispersion.

Now we briefly digress to explain the concept of group velocity, in the context of the
continuous equations. Suppose that we have a superposition of two waves, with slightly
different wave numbers k1 and k2, respectively. Define

k ≡ k1 + k2

2
, c≡ c1 + c2

2
, ∆k ≡ k1− k2

2
, ∆(kc)≡ k1c1− k2c2

2
. (10.16)

See Fig. 10.3. Note that k1 = k+∆k and k2 = k−∆k. Similarly, c1 = c+∆c and c2 = c−∆c.
You should be able to show that
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k1c1 ∼= kc+∆(kc) and k2c2 ∼= kc−∆(kc) . (10.17)

Δk

k k
1

k
2

Δk

Figure 10.3: Sketch defining notation used in the discussion of the group velocity.

Here we neglect terms involving the product ∆k∆c. This is acceptable when k1 ∼= k2 and
c1 ∼= c2. Using (10.17), we can write the sum of two waves, each with unit amplitude, as

exp [ik1 (x− c1t)]+ exp [ik2 (x− c2t)]

∼= exp(i{(k+∆k)x− [kc+∆(kc)] t})+ exp(i{(k−∆k)x− [kc−∆(kc)] t})

= exp [ik (x− ct)] (exp{i [(∆k)x−∆(kc) t]}+ exp{−i [(∆k)x−∆(kc) t]})

= 2cos [(∆k)x−∆(kc) t]exp [ik (x− ct)]

= 2cos
{

∆k
[

x− ∆(kc)
∆k

t
]}

exp [ik (x− ct)] .

(10.18)

When ∆k is small, the factor cos
{

∆k
[
x− ∆(kc)

∆k t
]}

behaves like the outer, slowly varying
envelope in Fig. 10.4.

The envelope “modulates” wave k, which is represented by the inner, rapidly varying
curve in the figure. The short waves move with phase speed c, but the “wave packets”,
i.e., the envelopes of the short waves, move with speed ∆(kc)

∆k . The differential expression
d(kc)

dk ≡ cg is called the “group velocity.” Note that cg = c if c does not depend on k. For
advection, the “right answer” is cg = c, i.e., the group velocity and phase velocity should
be the same. For this reason, there is no need to discuss the group velocity for advection in
the context of the continuous equations.

With our finite-difference scheme, however, we have

c∗g =
d (kc∗)

dk
= c

d
dk

(
sink∆x

∆x

)
= ccosk∆x. (10.19)
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Figure 10.4: Sketch used to illustrate the concept of group velocity. The short waves are modulated
by longer waves.

A plot of c∗g versus k∆x is given in Fig. 10.2. Note that c∗g = 0 for the 4∆x wave, and
is negative for the 2∆x wave. This means that wave groups with wavelengths between
L = 4∆x and L = 2∆x have negative group velocities. Very close to L = 2∆x, c∗g actually
approaches −c, when in reality it should be equal to c for all wavelengths. For all waves,
c∗g < c∗ < c = cg. This problem arises from the space differencing; it has nothing to do
with time differencing.

Fig. 10.5, which is a modified version of Fig. 10.4, illustrates this phenomenon in a
different way, for the particular case L = 2∆x. Consider the upper solid curve and the thick
red dashed curve. If we denote points on the thick curve (corresponding to our solution
with L = 2∆x) by A j, and points on the upper solid curve (the envelope of the thick dashed
curve, moving with speed c∗g) by B j, we see that

B j = (−1) jA j. (10.20)

(This is true only for the particular case L = 2∆x.) Using (10.20), Eq. (10.13) can be
rewritten as

dB j

dt
+(−c)

(
B j+1−B j−1

2∆x

)
= 0. (10.21)

Eq. (10.21) shows that the upper solid curve will move with speed −c.

Recall that when we introduce time differencing, the computed phase change per time
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1 2 3 4 5 6 7 8 

Figure 10.5: Yet another sketch used to illustrate the concept of group velocity. The short wave has
wavelength L = 2∆x.

step is generally not equal to −kc∆t. This leads to changes in c∗ and c∗g, although the
formulas discussed above remain valid for ∆t→ 0.

We now present an analytical solution of (10.13), which illustrates dispersion error in
a very clear way, following an analysis by Matsuno (1966). If we write (10.13) in the form

2
dA j

d
( tc

∆x

) = A j−1−A j+1, (10.22)

and define a non-dimensional time τ ≡ tc
∆x , we obtain

2
dA j

dτ
= A j−1−A j+1. (10.23)

I don’t expect your to know this, but (10.23) happens to have the same form as a recursion
formula satisfied by the Bessel functions of the first kind of order j, which are usually
denoted by J j (τ). You can Google it. The J j (τ) have the property that J0 (0) = 1, and
J j (0) = 0 for j 6= 0. Because the J j (τ) satisfy (10.23), each J j (τ) represents the solution
at one particular grid point, j, as a function of the nondimensional time, τ .

As an example, set A j = J j (τ), which is consistent with and in fact implies the initial
conditions that A0 (0) = 1 and A j (0) = 0 for all j 6= 0. This initial condition is an isolated
“spike” at j = 0. The solution of (10.23) for the points j = 0, 1, and 2 is illustrated in Fig.
10.6.

By using the identity
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Figure 10.6: The time evolution of the solution of (10.23) at grid points j = 0, 1, and 2.

J(− j) = (−1) jJ j, (10.24)

we can obtain the solution at the points j =−1,−2,−3, etc. This analysis is useful because
it allows us to obtain the exact solution of the differential-difference equation, in which the
time derivative is continuous so that there are no issues associated with time differencing.

Fig. 10.7 shows the solution of (10.23) for τ = 5 and τ = 10 for −15 ≤ j ≤ 15, with
these “spike” initial conditions. The figure is taken from a paper by Matsuno (1966). Com-
putational dispersion, schematically illustrated earlier in Fig. 10.2 and Fig. 10.5, is seen
directly here. The figure also shows that cg is negative for the shortest wave.

A similar type of solution is shown in Fig. 10.8, which is taken from a paper by Wurtele
(1961). Here the initial conditions are slightly different, namely,

A−1 = A0 = A1 = 1, and A j = 0 for j ≤−2, j ≥ 2. (10.25)

This is a “top hat” or “box” initial condition. We can construct the initial condition by
combining

J j−1 (0) = 1 for j = 1 and zero elsewhere, (10.26)
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Figure 10.7: The solution of (10.23) for τ = 5 and τ = 10 for −15 ≤ j ≤ 15, with “spike” initial
conditions. From Matsuno (1966).

J j (0) = 1 for j = 0 and zero elsewhere, and (10.27)

J j+1 (0) = 1 for j =−1 and zero elsewhere, (10.28)

so that the full solution is given by

A j (τ) = J j−1 (τ)+ J j (τ)+ J j+1 (τ) . (10.29)
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so that the solution for the arbitrary initial 
field 

T k ( 0 )  = a k  

is 
k - k - v  

t ' l  00 

= c-=x a k - 4  7' 
4 - 0  4 

As before, it can be shown that the total 
vorticity is conserved, and that the speed of 
propagation is approximately correct, since 
e - w / q !  has a maximum for z ' 4 .  

For the single initial maximum of vorticity 
(7 b) this becomes 

22 1 . ._ k + I  k ( k + r )  
(k + I ) !  t 

As might have been expected with the use of 
a backward difference, the solution is mono- 
tonic in x, thus eliminating the "parasitic 
waves". On this basis, Obukhov finds it 
superior to the solution (8). However, it is 
equally important to note that for large z the 

asymptotic value is ___ This is < t - I I 2  

where k = z, in contrast to z-''3 of the cen- 
tered-difference solution. As a comparison we 
may compute the maximum value of the two 
solutions. For a wind speed U = 20 m/sec and 
a grid distance h = 300 hi, the value z = 6 
corresponds to 9.0 x 104 seconds, or a little 
more than one day. At the end of this time 
we have (from Poisson distribution tables) 

[(k(6)]max - 0.48  (backward difference) 

3e-rtk + I 

(k + I ) !  ' 

and (from tables of Bessel functions) 
[Ck(6)]max - 0.86 (centered difference) 

Instead of conserving and advecting the vor- 
ticity maximum strictly with the velocity U, 
the centered difference approximation has 
dispersed a small ortion of it into the spurious 

mation has diffused away $2 per cent, both u - 
waves, but the I! ackward-difference approxi- 
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Tellur XI11 (1961) 3 
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Fig. I .  Three solutions of the advection equation for 
(non-dimensional) times T = 5. 10, 1 5 .  

_ _ _ _  solution ( 8 )  of centered differential-difference 
equation 

solution ( I  I )  of backward differential-differ- 

For typical meteorological values, ten units of non- 

(exact) solution of continuous equation (4) 

ence equation 

dimensional time correspond to about 42 hours. 

three different times, t = 5 (about 21 hours), 
z = 10, and t = 1s are represented in Figure 
I .  Curves have been sketched through the 
discrete points as an aid to perspicuity. 

A glance suffices to show that neither 
finite-difference solution is a satisfactory 
ap roximation to the continuous solution. In 
0 g ukhov's example, the effect of the diffusion 
on reducing the maximum vorticity was not 
apparent, so that the choice between the 
differencing schemes seemed easier. Perhaps a 
more extended comparison is indicated, using 
more realistic wave-patterns. 

The most frequently integrated equation of 
meteorology, the barotropic vorticity equation, 
expresses a conservation law, the final output 
being not the vorticity but the height of the 
pressure surface. The height is a twice-inte- 
grated function of the vorticity field, and as 
such may be expected to be a much smoother 
field. 

This smoothing is particularly effective in 
eliminating the spurious oscillations contained 
in the solution (8). To see this it is convenient 
to take an initial vorticity pattern representing 

Figure 10.8: The solution of (10.20) with “box” initial conditions. From Wurtele (1961).

Dispersion is evident again in Fig. 10.8. The dashed curve is for centered space differenc-
ing, and the solid curve is for the upstream scheme. (The solution for the upstream case is
given in terms of the Poisson distribution rather than Bessel functions; see Wurtele’s paper
for details.) The principal disturbance moves to the right, but the short-wave components
move to the left.

Do not confuse computational dispersion with instability. Both dispersion and insta-
bility can lead to “noise,” but a noisy solution is not necessarily unstable. In the case
of dispersion, the waves are not growing in amplitude; instead, they separating from one
another (“dispersing”), each moving at its own speed.

148



Revised Monday 23rd August, 2021 at 15:57

10.3 The effects of fourth-order space differencing on the phase
speed

As discussed in Chapter 2, the fourth-order difference quotient takes the form

(
∂A
∂x

)
j
=

4
3

(
A j+1−A j−1

2∆x

)
− 1

3

(
A j+2−A j−2

4∆x

)
+O

[
(∆x)4

]
. (10.30)

Recall that in our previous discussion concerning the second-order scheme, we derived an
expression for the phase speed of the numerical solution given by

c∗ = c
(

sink∆x
k∆x

)
. (10.31)

For this fourth-order scheme, the corresponding expression for the phase speed is

c∗ = c
(

4
3

sink∆x
k∆x

− 1
3

sin2k∆x
2k∆x

)
. (10.32)

Fig. 10.9 shows a graph of c∗/c versus k∆x for each scheme. The fourth-order scheme gives
a considerable improvement in the accuracy of the phase speed, for long waves. There is
no improvement for wavelengths close to L = 2∆x, however, and the problems that we have
discussed in connection with the second-order schemes become more complicated with the
fourth-order scheme. This illustrates that increasing the order of accuracy does not help
with the errors of the shortest waves.

10.4 Space-uncentered schemes

One way in which computational dispersion can be reduced in the numerical solution of
the advection equation is to use uncentered space differencing, as, for example, in the
upstream scheme. Recall that earlier we defined and illustrated the concept of the “domain
of dependence.” By reversing the idea, we can define a “domain of influence.” For example,
the domain of influence for explicit non-iterative space-centered schemes expands in time
as is shown by the union of Regions I and II in Fig. 10.10. The right answer, for c > 0, is
that the domain of dependence is region II only. For c< 0 the correct domain of dependence
should be region I only.

The “upstream scheme,” given by
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Figure 10.9: The ratio of the computational phase speed, c∗, to the true phase speed, c, plotted as
a function of k∆x, for the second-order and fourth-order schemes.

Figure 10.10: The domain of influence for explicit non-iterative space-centered schemes expands
in time, as is shown by the union of Regions I and II.

An+1
j −An

j

∆t
+ c
(An

j −An
j−1

∆x

)
= 0 for c > 0, (10.33)

or

An+1
j −An

j

∆t
+ c
(An

j+1−An
j

∆x

)
= 0 for c < 0, (10.34)
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is the simplest example of a space-uncentered scheme. As shown earlier, we can write
(10.33) as

An+1
j = (1−µ)An

j +µAn
j−1, (10.35)

which has the form of an interpolation, and (10.34) can be written in a similar way. Ob-
viously, for the upstream scheme, Region II alone is the domain of influence when c > 0,
and Region I alone is the domain of influence when c < 0. This is good. The scheme
produces strong damping, however, as shown in Fig. 10.8. The damping results from the
linear interpolation. Although we can reduce the undesirable effects of computational dis-
persion by using the upstream scheme, usually the disadvantages of the damping outweigh
the advantages of reduced dispersion.

Takacs (1985) proposed a forward-in-time space-uncentered advection scheme of the
form

An+1
j = a1An

j+1 +a0An
j +a−1An

j−1 +a−2An
j−2. (10.36)

Here we assume that the wind is spatially uniform and blowing towards larger values of j,
so that points j−1 and j−2 are in the upstream direction. The scheme given by (10.36) has
four undetermined coefficients. Recall from Chapter 2 that with four coefficients we can,
in general, achieve third-order accuracy. Takacs (1985) took a different approach, however.
Requiring only second-order accuracy, he found that

a1 = µ (µ−1)/2−a−2, (10.37)

a0 = 1−µ
2 +3a−2, (10.38)

a−1 = µ (µ +1)/2−3a−2, (10.39)

and
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a−2 = αµ (µ−1) , (10.40)

where µ is the usual CFL parameter, and α is a free (i.e., as yet unchosen) parameter that is
discussed below. The value a−2, the “upstream” coefficient, is directly proportional to α .
For α = 0 the Takacs scheme reduces to the second-order Lax-Wendroff scheme discussed
earlier in this chapter, which uses only three grid-points and so can be described as spatially
centered. Takacs showed that with α = (µ +1)/6 the scheme has third-order accuracy. He
demonstrated that the value of α has little effect on the amplitude error of the scheme, but
strongly affects the dispersion error, which is the largest part of the total error. Takacs’s
explanation for this interesting fact is explained below. He concluded that the best choice
for α is the one that gives third-order accuracy.

Takacs (1985) made some important and general points about the differences between
space-centered and space-uncentered schemes, based on an analysis of how the amplitude
and phase errors change as we go from an even-order scheme to the next-higher odd-order
scheme, and then on to the next higher even-order scheme, and so on.

In Chapter 4, we defined the relative error, ε , by

λ = (1+ ε)λT , (10.41)

where

λT = e−iµk∆x (10.42)

is the amplification factor for the solution to the differential equation. Comparing (10.41)
with (7.14), and using (10.42), we find that the real part of the relative error is given by

εR =
∞

∑
j′=−∞

ak cos
[(

j′+µ
)

k∆x
]

eik j∆x−1. (10.43)

Similarly, the imaginary part of the relative error satisfies

εI =
∞

∑
j′=−∞

ak sin
[(

j′+µ
)

k∆x
]

eik j∆x. (10.44)
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Now comes the key step. We want to understand how εR and εI depend on k∆x. To do
this, we expand (10.43) and (10.44) as Taylor series in powers of k∆x. Because εR involves
the cosine of ( j+µ)k∆x, its expansion involves only even powers of k∆x:

εR =−(k∆x)2

2!

∞

∑
j′=−∞

(
j′+µ

)2a j′+
(k∆x)4

4!

∞

∑
j′=−∞

(
j′+µ

)4a j′+ . . . . (10.45)

Here we have used (7.8). Similarly, because εI involves the sine of ( j+µ)k∆x, its expan-
sion involves only odd powers of k∆x:

εI = (k∆x)
∞

∑
j′=−∞

(
j′+µ

)
a j′+

(k∆x)3

3!

∞

∑
j′=−∞

(
j′+µ

)3a j′+ . . . . (10.46)

What do these two results mean? Expressions of the form
∞

∑
j′=−∞

( j′+µ)la j′ appear repeat-

edly in (10.45) and (10.46). According to (7.12), for a scheme of mth-order accuracy these
sums are equal to zero for l in the range 1 to m. As the order of accuracy of the scheme
increases, the real and imaginary parts of the relative error decrease, as more and more
terms of (10.45) and (10.46) drop out. But the real and imaginary parts take turns. Only
even-order schemes will reduce εR (relative to the next-lower odd-order scheme), and only
odd-order schemes will reduce εI (relative to the next-lower even-order scheme).

As an example, suppose that we have a first-order scheme, like the upstream scheme.
Then the leading term of εR is second-order, but the leading term of εI is third-order. When
we go to a second-order scheme, the leading term of εI becomes third-order, but the leading
term of εR stays the same. If we then go to a third-order scheme, the leading term of tεR
will stay the same, but the leading term of εI will decrease.

Now recall from Chapter 4 that the amplitude error is proportional to εR, while the
phase error is proportional to εI . We conclude that the amplitude error decreases as we go
from and odd order to the next even order, while the phase error decreases as we go from
and even order to the next odd order. This is why odd-order schemes have smaller phase
errors than even-order schemes.

10.5 Sign-preserving and monotone schemes

We often wish to require that a non-negative variable, such as the water vapor mixing ratio,
remains non-negative under advection. An advection scheme that has this property is often
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called “positive-definite” or, more generally, “sign-preserving.” Sign-preserving schemes
are obviously desirable, since negative values that arise through truncation errors will have
to be eliminated somehow before any moist physics can be considered, and the methods
used to eliminate the negative values are inevitably somewhat artificial (e.g., Williamson
and Rasch (1994)). As we will see, most of the older advection schemes do not come
anywhere near satisfying this requirement. Many newer schemes do satisfy it, however.

As seen in earlier examples, computational dispersion can cause new maxima and min-
ima to develop as advection proceeds, and it can also cause the advected field to change
sign, e.g., from positive to negative.

As discussed earlier, the stability condition for the upstream scheme is |µ| ≤ 1. When
this condition is met, the “interpolation” form of (10.35) guarantees that

Min
{

An
j ,A

n
j−1
}
≤ An+1

j ≤Max
{

An
j ,A

n
j−1
}
. (10.47)

This means that An+1
j cannot be smaller than the smallest value of An

j , or larger than the
largest value of An

j . The finite-difference advection process associated with the upstream
scheme cannot produce any new maxima or minima. As discussed in the introduction to
this chapter, real advection also has this property.

In particular, real advection cannot produce negative values of A if none are present
initially, and neither can the upstream scheme, provided that 0 ≤ µ ≤ 1. This means that
the upstream scheme is a sign-preserving scheme when the stability criterion is satisfied.
This is very useful if the advected quantity is intrinsically non-negative, e.g., the mixing
ratio of some trace species.

Even better, the upstream scheme is a monotone scheme when the stability criterion
is satisfied. A monotone scheme is one that cannot produce new maxima or minima, like
those associated with the dispersive ripples seen in Fig. 10.8. The property of monotonicity
is expressed by (10.47).

All monotone schemes are sign-preserving schemes. The converse is not true.

Sign preservation makes sense for both the continuity equation and the tracer equation.
This is not true of monotonicity. Recall from (5.4) that the density of a compressible fluid
is not constrained to be constant following a particle. For this reason, monotonicity is
physically wrong for the continuity equation, although it is physically right for the tracer
equation.

As discussed by Smolarkiewicz (1991), sign-preserving schemes tend to be stable. To
see why, suppose that we have a linearly conservative scheme for a variable A, such that
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∑
j

An
j = ∑

j
A0

j , (10.48)

where the sum represents a sum over the whole spatial domain, the superscripts n > 0 and
0 represent two time levels. For simplicity we use only a single spatial dimension here,
but the following argument holds for any number of dimensions. Suppose that the scheme
that takes us from A0

j to An
j through n time steps is sign-preserving and conserves A, as in

(10.48). If A0
j is of one sign everywhere, it follows trivially from (10.48) that

∑
j

∣∣An
j
∣∣= ∑

j

∣∣A0
j
∣∣. (10.49)

We can also show that

∑
j

(
A j
)2 ≤

(
∑

j

∣∣A j
∣∣)2

, (10.50)

Then from (10.49) and (10.50) we see that

∑
j

(
An

j
)2 ≤

(
∑

j

∣∣A0
j
∣∣)2

. (10.51)

The quantity on the right-hand side of (10.51) is a property of the initial condition, so it

is independent of time. Eq. (10.51) therefore demonstrates that
(

An
j

)2
is bounded for all

time, and so it proves stability by the energy method discussed in Chapter 2. The essence of

(10.51) is that there is an upper bound on ∑
j

(
An

j

)2
. The bound is very weak, however; try

some numbers to see for yourself. So, although (10.51) does demonstrate absolute stability,
it does not ensure good behavior!

In the preceding discussion we assumed that A0
j is everywhere of one sign, but this

assumption is not really necessary. For variable-sign fields, a similar result can be obtained
by decomposing A into positive and negative parts, i.e.,

A = A++A−. (10.52)
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The idea is that A+ is positive where A is positive, and zero elsewhere; and similarly that
A− is negative where A is negative, and zero elsewhere. The total of A is then the sum of
the two parts, as stated in (10.52). Advection of A is equivalent to advection of A+ and
A− separately. If we apply a sign-preserving scheme to each part, then each of these two
advections is stable by the argument given above, and so the advection of A itself is also
stable.

Although the upstream scheme is sign-preserving, it is only first-order accurate and
strongly damps, as we have seen. Can we find more accurate schemes that are sign-
preserving or nearly so? A spurious negative value is customarily called a “hole.” Second-
order advection schemes that produce relatively few holes are given by (9.10) with either
the geometric mean given by (9.28), or the harmonic mean given by (9.29). Both of these
schemes have the property that A j+ 1

2
also goes to zero when either A j or A j+1 goes to zero.

If the time step were infinitesimal, this would be enough to prevent the property denoted by
A from changing sign. Because time-steps are finite in real models, however, such schemes
do not completely prevent hole production. Nevertheless they do tend to minimize it.

10.6 Hole filling

If a non-sign-preserving advection scheme is used, and holes are produced, then a proce-
dure is needed to fill the holes. To make the discussion concrete, we consider here a scheme
to fill “water holes,” in a model that advects water vapor mixing ratio.

Simply replacing negative mixing ratios by zero is unacceptable because it leads to
a systematic increase in the mass-weighted total water. Hole-filling schemes therefore
“borrow” mass from elsewhere on the grid. They take from the rich, and give to the poor.

There are many possible borrowing schemes. Some borrow systematically from nearby
points, but of course borrowing is only possible from neighbors with positive mixing ratios,
and it can happen that the nearest neighbors of a “holey” grid cell have insufficient water
to fill the hole. Logic can be invented to deal with such issues, but hole-fillers of this type
tend to be complicated and computationally slow.

An alternative is to borrow from all points on the mesh that have positive mixing ratios.
The “global multiplicative hole-filler” is a particularly simple and computationally fast
algorithm. The first step is to add up all of the positive water on the mesh:

P≡ ∑
whereA j≥0

m jA j ≥ 0. (10.53)
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Here A j is the mixing ratio in grid cell j, and m j is the mass of dry air in that grid cell
(in kg, say), so that the product m jA j is the mass of water in the cell. Note that m j is not
the density of dry air in the cell; instead, it is the product of the density of dry air and the
volume of the cell. The total amount of water on the mesh, including the contributions from
“holes,” is given by

T ≡ ∑
allpoints

m jA j. (10.54)

Both T and P have the dimensions of mass. Define the nondimensional ratio

Φ≡ T
P
≤ 1; (10.55)

normally Φ is just very slightly less than one, because there are only a few holes and they
are not very “deep.” We replace all negative values of A j by zero, and then set

Anew
j = ΦA j. (10.56)

In this way, we are ensured of the following:

• No negative values of A j remain on the mesh.

• The total mass of water in the adjusted state is equal to T , the total in the “holey”
state.

• Water is borrowed most heavily from grid cells with large mixing ratios, and least
from cells with small mixing ratios.

Note that the algorithm does not have to be implemented using global sums for P and T ;
sums over sufficiently large subdomains can be used instead, and the subdomains can be
corrected individually. This can be useful on parallel machines.

Hole-filling is ugly. Any hole-filling procedure is necessarily somewhat arbitrary, be-
cause in designing it we cannot mimic any natural process; nature does not fill holes, and
it has no holes to fill.

In addition, hole-filling is “quasi-diffusive,” because it removes water from wet cells
and adds it to dry cells, thus reducing (“dissipating”) the total variance of the mixing ratio.
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The best approach is to choose an advection scheme that does not make holes in the
first place. At the very least, we should insist that an advection scheme digs holes slowly,
so that the hole-filler will not have to work very hard.

10.7 Flux-corrected transport

The upstream scheme is monotone and sign-preserving, but, unfortunately, as we have
seen, it is strongly damping. Damping is in fact characteristic of all monotone and sign-
preserving schemes. Much work has been devoted to designing monotone or sign-preserving
schemes that produce as little damping as possible. The following discussion, based on the
paper of Zalesak (1979), explains how this can be done.

Monotone and sign-preserving schemes can be derived by using the approach of “flux-
corrected transport,” often abbreviated as FCT, which was invented by Boris and Book
(1973) and extended by Zalesak (1979) and many others. Suppose that we have a “high-
order” advection scheme, represented schematically by

An+1
j = An

j −
(

FH j+ 1
2
−FH j− 1

2

)
. (10.57)

Here FH represents the “high-order” fluxes associated with the scheme. Note that (10.57)
is in “conservation” form, and the time derivative is approximated using time levels n and
n + 1. Suppose that we have at our disposal a monotone or sign-preserving low-order
scheme, whose fluxes are denoted by FL j+ 1

2
. This low-order scheme could be, for example,

the upstream scheme. (From this point on we say “monotone” with the understanding that
we mean “monotone or sign-preserving.”) We can write

FH j+ 1
2
≡ FL j+ 1

2
+FC j+ 1

2
. (10.58)

Here FC j+ 1
2

is a “corrective” flux, sometimes called an “anti-diffusive” flux. Eq. (10.58)
is essentially the definition of FC j+ 1

2
. According to (10.58), the high-order flux is the low-

order flux plus a correction. We know that the low-order flux is diffusive in the sense that it
damps the solution, but on the other hand by assumption the low-order flux corresponds to
a monotone scheme. The high-order flux is presumably less diffusive, and more accurate,
but does not have the nice monotone property that we want.

Suppose that we take a time-step using the low-order scheme. Let the result be denoted
by An+1∗

j , i.e.,
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An+1∗
j = An

j −
(

FL j+ 1
2
−FL j− 1

2

)
. (10.59)

Since, by assumption, the low-order scheme is monotone, we know that

AMAX
j ≥ An+1∗

j ≥ AMIN
j for all j. (10.60)

where AMAX
j and AMIN

j are, respectively, suitably chosen upper and lower bounds on the
value of A within the grid-box in question. For instance, AMIN

j might be zero, if A is a non-
negative scalar like the mixing ratio of water vapor. Other possibilities will be discussed
below.

There are two important points in connection with the inequalities in (10.60). First,
the inequalities must actually be true for the low-order scheme that is being used. Second,
the inequalities should be strong enough to ensure that the solution obtained is in fact
monotone.

From (10.57), (10.58), and Equation (10.59) it is easy to see that

An+1
j = An+1∗

j −
(

FC j+ 1
2
−FC j− 1

2

)
. (10.61)

This simply says that we can obtain the high-order solution from the low-order solution by
adding the anti-diffusive fluxes. The anti-diffusive fluxes can be computed, given the forms
of the low-order and high-order schemes.

We now define some coefficients, denoted by C j+ 1
2
, and “scaled-back” anti-diffusive

fluxes, denoted by F̂C j+ 1
2
, such that

F̂C j+ 1
2
≡C j+ 1

2
FC j+ 1

2
. (10.62)

In place of (10.61), we use

An+1
j = An+1∗

j −
(

F̂C j+ 1
2
− F̂C j− 1

2

)
. (10.63)
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To see the idea, consider two limiting cases. If C j+ 1
2
= 1, then F̂C j+ 1

2
= FC j+ 1

2
, and so

(10.63) will reduce to (10.61) and will simply give the high-order solution. If C j+ 1
2
= 0,

then F̂C j+ 1
2
= 0, and so (10.63) will simply give the low-order solution. We enforce

0≤C j+ 1
2
≤ 1 for all j, (10.64)

and try to make C j+ 1
2

as close to one as possible, so that we get as much of the high-order
scheme as possible, and as little of the low-order scheme as possible, but we require that

AMAX
j ≥ An+1

j ≥ AMIN
j for all j (10.65)

be satisfied. Compare (10.65) with (10.60). We can always ensure that (10.65) will be
satisfied by taking C j+ 1

2
= 0; this is the “worst case.” Quite often it may happen that

(10.65) is satisfied for C j+ 1
2
= 1; that is the “best case.” The approach outlined above can

be interpreted as a nonlinear interpolation for the value of An+1
j .

It remains to assign values to the C j+ 1
2
, which are called “limiters” because they limit

the amount of the high-order scheme that will be added to the low-order scheme. Zalesak
broke the problem down into parts. One obvious issue is that the flux into one cell is the
flux out of another, so the value assigned to C j+ 1

2
has to be sufficient to enforce (10.65) for

both An+1
j and An+1

j+1 . Set that issue aside, for now.

We can conceptually divide the anti-diffusive fluxes affecting cell j into the fluxes in and
the fluxes out, simply based on sign. The anti-diffusive fluxes into cell j could cause An+1

j

to exceed AMAX
j , while the anti-diffusive fluxes out of cell j could cause An+1

j to fall below
AMIN

j . We adjust (all of) the anti-diffusive fluxes into the cell so as to avoid overshooting
AMAX

j , and we adjust (all of) the anti-diffusive fluxes out so as to avoid undershooting AMIN
j .

In this way, we obtain provisional values of Ci− 1
2

and Ci+ 1
2
, based on an analysis of cell j.

Similarly, analysis of cell j+1 gives provisional values of C j+ 1
2

and C j+ 3
2
, and analysis of

cell j−1 gives provisional values of C j− 3
2

and C j− 1
2
.

Note that we now have two provisional values for C j+ 1
2
. After looping over the whole

grid, we will have two provisional Cs for each cell wall. To ensure that all constraints are
simultaneously satisfied, we choose the smaller of the two provisional Cs for each cell wall.
Voila! All constraints are satisfied.

The procedure outlined above is not unique. Other approaches are described in the
literature.
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It remains to choose the upper and lower bounds AMAX
j and AMIN

j that appear in (10.65)
and (10.60). Zalesak (1979) proposed limiting An+1

j so that it is bounded by the largest and
smallest values of its neighbors at time level n, and also by the largest and smallest values
of the low-order solution at time level n+1. In other words, he took

AMAX
j = Max

{
An

j−1,A
n
j ,A

n
j+1,A

n+1∗
j−1 ,An+1∗

j ,An+1∗
j+1

}
, (10.66)

and

AMIN
j = Min

{
An

j−1,A
n
j ,A

n
j+1,A

n+1∗
j−1 ,An+1∗

j ,An+1∗
j+1

}
. (10.67)

This “limiter” is not unique. Many other possibilities are discussed in the literature.

Our analysis of FCT schemes has been given in terms of one spatial dimension, but all
of the discussion given above can be extended to two or three dimensions, without time
splitting. The literature on FCT schemes is very large.

10.8 A survey of some advection schemes that you might run into
out there

In closing this long chapter, we list here some advection schemes that are well known and
widely used. The purpose of the list is to help you find information when you need it.

10.9 Summary

Finite-difference schemes for the advection equation can be designed to allow “exact” or
“formal” conservation of mass, of the advected quantity itself (such as potential temper-
ature), and of one arbitrary function of the advected quantity (such as the square of the
potential temperature). Conservative schemes mimic the “form” of the exact equations. In
addition, they are often well behaved computationally. Since coding errors often lead to
failure to conserve, conservative schemes can be easier to de-bug than non-conservative
schemes.

When we solve the advection equation, space-differencing schemes can introduce diffusion-
like damping. If this damping is sufficiently scale-selective, it can be beneficial.

Computational dispersion arises from space differencing. It causes waves of different
wavelengths to move at different speeds. In some cases, the phase speed can be zero or
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Name of 
Scheme Description Properties Reference

Upstream

Lax-Wendroff

Lin-Rood

MPDATA

Piecewise 
Parabolic

Prather

ULTIMATE

�1

even negative, when it should be positive. Short waves generally move slower than longer
waves. The phase speeds of the long waves are well simulated by the commonly used
space-time differencing schemes. The group speed, which is the rate at which a wave “en-
velope” moves, can also be adversely affected by space truncation errors. Space-uncentered
schemes are well suited to advection, which is a spatially asymmetric process, and they can
minimize the effects of computational dispersion.

Higher-order schemes simulate the well resolved modes more accurately, but do not
improve the solution for the short modes (e.g., the 2∆x modes), and can actually make the
problems with the short modes worse, in some ways. Of course, higher-order schemes in-
volve more arithmetic and so are computationally more expensive than lower-order schemes.
An alternative is to use a lower-order scheme with more grid points. This may be preferable
in many cases.
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Chapter 11

Lagrangian and semi-Lagrangian advection schemes

11.1 Lagrangian schemes

Lagrangian schemes, in which particles are tracked through space without the use of an
Eulerian grid, have been used in the atmospheric and oceanic sciences, as well as other
fields including astrophysics and weapons physics (e.g., Mesinger (1971); Trease (1988);
Monaghan (1992); Norris (1996); Haertel and Randall (2002)). The Lagrangian approach
has a number of attractive features:

• The PDF of the advected quantity (and all functions of the advected quantity) can
be preserved “exactly” under advection. Here “exactly” is put in quotation marks
because of course the result is actually approximate in the sense that, in practice,
only a finite number of particles can be tracked.

• As a consequence of the first point mentioned above, Lagrangian schemes are mono-
tone and sign-preserving.

• Time steps can be very long without triggering computational instability, although of
course long time steps still lead to large truncation errors.

• Aliasing instability does not occur with Lagrangian schemes. Aliasing instability
will be discussed later.

Alas, there are always trade-offs. Lagrangian schemes suffer from a number of practi-
cal difficulties. Some of these have to do with “voids” that develop, i.e., regions with few
particles. Others arise from the need to compute spatial derivatives (e.g., the pressure gra-
dient force, which is needed to compute the acceleration of each particle from the equation
of motion) on the basis of a collection of particles that can travel literally anywhere within
the domain, in an uncontrolled way.

One class of Lagrangian schemes, called “smoothed particle hydrodynamics” (SPH),
has been widely used by the astrophysical research community, and is reviewed by Mon-
aghan (1992). The approach is to invent a way to compute a given field at all points through-
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out the domain, given the value of the field at a finite number of arbitrarily located points
that happen to be occupied by particles. The point is that once the field has been defined
everywhere, we can differentiate it.

For an arbitrary field A, let

A(r) =
∫

A
(
r′
)

W
(
r− r′,h

)
dr′, (11.1)

where the integration is over the whole domain (e.g., the whole atmosphere), and W (r− r′,h)
is an interpolating “kernel” such that

∫
W
(
r− r′,h

)
dr′ = 1 (11.2)

and

lim
h→0

W
(
r− r′,h

)
= δ

(
r− r′

)
, (11.3)

where δ (r− r′) is the Dirac delta function. In (11.1) – (11.3), h is a parameter, which is
a measure of the “width” of W . We can interpret Wδ (r− r′,h) as a “weighting function”
that is strongly peaked at (r− r′) = 0. For example, we might use the Gaussian weighting
function given by

W
(
r− r′,h

)
=

e−
[
x(r−r′)2/h2

]
h
√

π
, (11.4)

which can be shown to satisfy (11.3). With these definitions, if A(r′) is a constant field,
then A(r) is given by the same constant. For h→ 0, (11.1) gives A(r) = A(r′) when r = r′.

In a discrete model, we replace (11.1) by

A(r) = ∑
b

mb
Ab

ρb
W (r− rb,h). (11.5)
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Here the index b denotes a particular particle, mb is the mass of the particle, and ρb is the
density of the particle. To see what is going on in (11.5), consider the case A ≡ ρ . Then
(11.5) reduces to

ρ (r) = ∑
b

mbW (r− rb,h), (11.6)

which simply says that the density at a point r is a weighted sum of the masses of particles
in the vicinity of r. In case there are no particles near the point r, the density there will be
small – which makes sense.

We can now perform spatial differentiation simply by taking the appropriate derivatives
of W (r− rb,h), e.g.,

∇A(r) = ∑
b

mb
Ab

ρb
∇W (r− rb,h). (11.7)

This follows because mb, Ab and ρb are associated with particular particles and are, there-
fore, not functions of space.

Further discussion of SPH and related methods is given by Monaghan (1992) and the
other references cited above.

A very different approach has been developed by Patrick Haertel and colleagues. They
consider flexible “parcels” of fixed mass, which fill the space of the fluid, something like
conforming water balloons. Haertel and Randall (2002) named these parcels “slippery
sacks.” The moving parcels exchange momentum and energy through the pressure force, by
literally pushing on each other along their shared boundaries, like nursing kittens crawling
over a mother cat. Diffusive exchanges can also be parameterized in a straightforward
way. The first applications of the method were to lakes and then ocean basins (Haertel and
Randall, 2002; Haertel et al., 2004; Van Roekel et al., 2009; Haertel et al., 2009; Haertel
and Fedorov, 2012), taking advantage of the incompressibility of water, which implies that
parcels of fixed mass have fixed volumes.This work culminated in a global ocean model
(Haertel, 2019). A major advantage of the method for ocean modeling is that parcels can
move for hundreds of years in the deep ocean circulation, with literally no computational
diffusion. Haertel and colleagues later allowed the sacks to change their volumes, which
made it possible to construct a global atmosphere model (Haertel and Straub, 2010; Haertel
et al., 2014, 2015, 2017). The global atmosphere and ocean models have now been coupled,
and used to simulate climate change (P. Haertel, personnal communication, 2019). This
fully Lagrangian global modeling system is truly unique, and it will be interesting to see
how it evolves from here.
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11.2 Semi-Lagrangian schemes

“Semi-Lagrangian” schemes (e.g., Robert et al. (1985); Staniforth and Côté (1991); Bates
et al. (1993)) are of interest in part because they allow very long time steps, and also because
they can easily maintain such properties as monotonicity.

The basic idea is very simple. At time step n+ 1, values of the advected field, at the
various grid points, are considered to be characteristic of the particles that reside at those
points. We ask where those particles were at time step n. This question can be answered
by using the (known) velocity field, averaged over the time interval (n,n+1), to track the
particles backward in time from their locations at the various specified grid points, at time
level n+ 1, to their “departure points” at time level n. Naturally, the departure points are
usually located in between grid cells. The values of the advected field at the departure
points, at time level n, can be determined by spatial interpolation. If advection is the only
process occurring, then the values of the advected field at the departure points at time level
n will be identical to those at the grid points at time level n+1.

As a simple example, consider one-dimensional advection of a variable q by a constant
current, c. A particle that resides at x = x j at time level t = tn+1 has a departure point given
by

(
xdeparture

)n
j = x j− c∆t. (11.8)

Here the superscript n is used to indicate that the departure point is the location of the
particle at time level n. Suppose that c > 0, and that the departure point is less than one ∆x
away from x j, so that

x j−1 <
(
xdeparture

)n
j < x j. (11.9)

Then the simplest linear interpolation for A at the departure point is
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(
Adeparture

)n
j = An

j−1 +

[(
xdeparture

)n
j− x j−1

∆x

](
An

j −An
j−1
)

= An
j−1 +

(
∆x− c∆t

∆x

)(
An

j −An
j−1
)

= An
j−1 +(1−µ)

(
An

j −An
j−1
)

= µAn
j−1 +(1−µ)An

j .

(11.10)

Here we assume for simplicity that the mesh is spatially uniform, and µ ≡ c∆t/∆x, as usual.
The semi-Lagrangian scheme uses

An+1
j =

(
Adeparture

)n
j , (11.11)

so we find that

An+1
j = µAn

j−1 +(1−µ)An
j . (11.12)

This is the familiar upstream scheme. Note that (11.9), which was used in setting up the
spatial interpolation, is equivalent to

0 < µ < 1. (11.13)

As shown earlier, this is the condition for stability of the upstream scheme.

What if (11.9) is not satisfied? This will be the case if the particle is moving quickly
and/or the time step is long or, in other words, if µ > 1. Then we might have, for example,

x j−a <
(
xdeparture

)n
j < x j−a+1. (11.14)

where a is an integer greater than 1. For this case, we find in place of (11.10) that
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(
Adeparture

)n
j = µ̂An

j−a +(1− µ̂)An
j−a+1. (11.15)

where

µ̂ ≡ 1−a+µ. (11.16)

Notice that we have assumed again here, for simplicity, that both the mesh and the advect-
ing current are spatially uniform. It should be clear that

0 < µ̂ < 1. (11.17)

For a = 1, µ = µ̂ . Eq. (11.11) gives

An+1
j = µ̂An

j−a +(1− µ̂)An
j−a+1. (11.18)

This has the form of an interpolation, so we still have computational stability and mono-
tonicity (and sign-preservation); the semi-Lagrangian scheme is computationally stable
regardless of the size of the time step. This means that the only limit on the time step is that
it has to be short enough to temporally resolve what we are trying to simulate.

It is clear that the semi-Lagrangian scheme outlined above is very diffusive, because it is
more or less equivalent to a “generalized upstream scheme,” and we know that the upstream
scheme is very diffusive. By using higher-order interpolations (e.g., cubic interpolations),
the strength of this computational diffusion can be reduced, but it cannot be eliminated
completely.

Is the semi-Langrangian scheme conservative? To prove that the scheme is conserva-
tive, it would suffice to show that it can be written in a “flux form.” Note, however, that
in deriving the scheme we have used the Lagrangian form of the advection equation very
directly, by considering the parcel trajectory between the mesh point at time level n+1 and
the departure point at time level n. Because the Lagrangian form is used in their derivations,
many semi-Lagrangian schemes are not conservative.

An exception is a class of conservative semi-Lagrangian schemes based on “remap-
ping.” An example is CSLAM (Lauritzen et al., 2010; Dubey et al., 2014; Lauritzen et al.,
2017), which stands for “Conservative Semi-Lagrangian Multitracer.”
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Chapter 12

Just relax

12.1 Introduction

Systems of linear equations frequently arise in atmospheric science. The systems can in-
volve thousands or even millions of unknowns, which must be solved for simultaneously.
They can be solved by a wide variety of methods, which are discussed in standard texts on
numerical analysis. The solution of linear systems is conceptually simple, but may nev-
ertheless present challenges in practice. The main issue is how to minimize the amount of
computational work that must be done to obtain the solution, while at the same time mini-
mizing the amount of storage required. For the problems that arise in atmospheric science,
and considering the characteristics of modern computers, minimizing computational work
is often more of a concern than minimizing storage.

One source of linear systems is boundary-value problems. These involve spatial deriva-
tives and/or integrals, but no time derivatives and/or integrals. Boundary-value problems
can and do frequently arise in one, two, or three dimensions, in the atmospheric sciences.
Two-dimensional linear boundary-value problems occur quite often. Here is an example:
Consider a two-dimensional flow. Let ζ and δ be the vorticity and divergence, respectively.
We can define a stream function, ψ , and a velocity potential, χ , by

Vr = k×∇ψ, (12.1)

and

Vd = ∇χ, (12.2)
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respectively. Here k is the unit vector perpendicular to the plane of the motion, and Vr and
Vd are the rotational and divergent parts of the wind vector, respectively, so that

V = Vr +Vd. (12.3)

The vorticity and divergence then satisfy

ζ = ∇
2
ψ. (12.4)

and

δ = ∇
2
χ, (12.5)

respectively. Suppose that we are given the distributions of ζ and δ , and want to determine
the wind vector. This can be done by first solving the two boundary-value problems repre-
sented by (12.4) - (12.5), with suitable boundary conditions, then using (12.1) - (12.2) to
obtain Vr and Vd , and finally using Eq. (12.3) to obtain the total horizontal wind vector.

A second example is the solution of the anelastic pressure equation, in which the pres-
sure field takes whatever shape is needed to prevent the divergence of the mass flux vector
from becoming non-zero. This will be discussed further in a later chapter.

Further examples arise from implicit time-differencing combined with space-differencing,
e.g., for the diffusion equation (see the next Chapter) or the shallow -water equations.

12.2 Solution of one-dimensional boundary-value problems

As a simple one-dimensional example, consider

d2q(x)
dx2 = f (x) , (12.6)

on a periodic domain. Here f (x) is a given periodic function of x. Solution of (12.6)
requires two boundary conditions. One of these can be the condition of periodicity, which
we have already specified. We assume that a second boundary condition is also given. For
example, the average of q over the domain may be prescribed.
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The exact solution of (12.6) can be obtained by expanding q(x) and f (x) in an infinite
Fourier series. The individual Fourier modes will satisfy

−k2q̂k = f̂k, (12.7)

which can readily be solved for the q̂k, provided that the wave number k is not zero. The
value of q̂0, i.e., the domain average of q, must be obtained directly from the second bound-
ary condition mentioned above. The full solution for q(x) can be obtained by Fourier-
summing the q̂k.

This method to find the exact solution of (12.6) can be adapted to obtain an approximate
numerical solution, simply by truncating the expansions of q(x) and f (x) after a finite
number of modes. This is called the “spectral” method. Like everything else, the spectral
method has both strengths and weaknesses. It will be discussed in a later chapter.

Suppose, however, that the problem posed by (12.6) arises in a large numerical model,
in which the functions q(x) and f (x) appear in many complicated equations, perhaps in-
cluding time-dependent partial differential equations that are solved (approximately) through
the use of spatial and temporal finite differences. In that case, the need for consistency with
the other equations of the model may dictate that the spatial derivatives in (12.6) be ap-
proximated by a finite-difference method, such as

qi+1−2qi +qi−1

d2 = fi. (12.8)

Here d is the grid spacing. We have used centered second-order spatial differences in
(12.8). Assuming a periodic, wave-like solution for qi, and correspondingly expanding fi,
we obtain, in the usual way,

−k2q̂k

(
sin kd

2
kd
2

)2

= f̂k. (12.9)

Note the similarity between (12.9) and (12.7). Clearly (12.9) can be solved to obtain each
of the q̂k, except q̂0, and the result will be consistent with the finite-difference approxi-
mation (12.8). This example illustrates that Fourier solution methods can be used even in

combination with finite-difference approximations. For each k, the factor of−k2
(

sinkd/2
kd/2

)2
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in (12.9) can be evaluated once and stored for use later in the simulation. This is advanta-
geous if (12.9) must be solved on each of many time steps. Fourier methods may or may
not be applicable, depending on the geometry of the domain.

The Fourier method outlined above can produce solutions quickly, because of the exis-
tence of fast algorithms for computing Fourier transforms (not discussed here, but readily
available in various scientific subroutine libraries). It is easy to see that the method can
be extended to two or three dimensions. The Fourier method is not applicable when the
problem involves spatially variable coefficients, or when the grid is nonuniform, or when
the geometry of the problem is not compatible with Fourier expansion.

There are other ways to solve (12.8). It can be regarded as a system of linear equations,
in which the unknowns are the qi. The matrix of coefficients for this particular problem
turns out to be “tri-diagonal.” This means that the only non-zero elements of the matrix are
the diagonal elements and those directly above and below the diagonal, as in the simple 6
x 6 problem shown below:



d1 a2 0 0 0 b6

b1 d2 a3 0 0 0

0 b2 d3 a4 0 0

0 0 b3 d4 a5 0

0 0 0 b4 d5 a6

a1 0 0 0 b5 d6





q1

q2

q3

q4

q5

q6


=



f1

f2

f3

f4

f5

f6


. (12.10)

Here each element of the 6 x 6 matrix is labeled with a single subscript, indicating its
column number. The names “d,” “a,” and “b” denote “diagonal,” “above-diagonal,” and
“below-diagonal” elements, respectively. Note that a1 and b6 appear in the lower left and
upper right corners of the matrix, respectively.

The solution of tri-diagonal linear systems is very fast and easy. For instance, the first
of the six equations represented by (12.10) can be solved for q1 as a function of q2, and
q6, provided that d1 6= 0. This solution can be used to eliminate q1 in the five remaining
equations. The (modified version of the) second equation can then be solved for q2 as a
function of q3 and q6, and this solution can be used to eliminate q2 from the remaining four
equations. Continuing in this way, we can ultimately obtain a single equation for the single
unknown q6. Once the value of q6 has been determined, we can obtain the other unknowns
by back-substitution. In case d1 = 0 (assumed not to be true in the preceding discussion),
we can immediately solve the first equation for q2 in terms of q6, provided that a2 is not
also equal to zero.
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The issue of “scaling” deals with the change in the amount of work required as the
problem size increases. The best we can hope for is that the amount of work needed to
solve the system is simply proportional to the number of unknowns. It should be clear that
this is the case for the tri-diagonal solver described above. In other words, the tri-diagonal
solver scales very well. Highly optimized tri-diagonal solvers are available in standard
software libraries. Because tri-diagonal systems are easy to deal with, it is good news
when a problem can be expressed in terms of a tri-diagonal system. Naturally, tri-diagonal
methods are not applicable when the matrix is not tri-diagonal.

We could, of course, solve the linear system by other methods that are discussed in in-
troductory texts, such as Cramer’s Rule or matrix inversion or Gaussian elimination. These
“classical” methods work, but they are very inefficient (i.e., they scale badly) compared to
the Fourier and tri-diagonal methods discussed above. For each of the classical methods,
the amount of arithmetic needed to find the solution is proportional to the square of the
number of unknowns. If the number of unknowns is large, the methods are prohibitively
expensive.

Finally, we could solve (12.8) by a relaxation method. Relaxation methods are iterative,
i.e., they start with an initial guess for the solution, and obtain successively better approxi-
mations to the solution by repeatedly executing a sequence of steps. Each pass through the
sequence of steps is called a “sweep.” Relaxation methods were invented during the 1940s
[e.g., Southwell (1940), Southwell (1946); Allen (1954)], and are now very widely used
(e.g., Strang (2007)). Several relaxation methods are discussed below.

12.3 Jacobi relaxation

Starting from this point, most of the discussion in this chapter is a condensed version of
that found in the paper by Fulton et al. (1986).

Consider the boundary-value problem

−∇
2q = f on a two-dimensional domain, and

q = g on the boundary of the domain,
(12.11)

where f and g are known. We approximate (12.11) on a cartesian grid with uniform spacing
d, and N grid points in each direction, such that Nd = 1, i.e., the total width of the domain
in each direction is unity. Using second-order centered differences, we write:

d−2 (4q j,k−q j−1,k−q j+1,k−q j,k−1−q j,k+1
)
= f j,k for 0 < ( j,k)< N,

q j,k = g j,k, for j = 0, N and k = 0,N.
(12.12)
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In order to explore relaxation methods for the solution of (12.12), we need a notation that
allows us to distinguish approximate solutions from exact solutions. Here by “exact” so-
lution we mean an exact solution to the finite-difference problem posed in (12.12). We let
q̂ j,k denote an approximation to q j,k.

The simplest relaxation method is called Jacobi relaxation or simultaneous relaxation.
The Jacobi method defines the new value q̂new

j,k by applying (12.12) with the new value at
the point ( j,k) and the “old” values at the neighboring points, i.e.,

d−2
(

4q̂new
j,k − q̂ j−1,k− q̂ j+1,k− q̂ j,k−1− q̂ j,k+1

)
= f j,k, (12.13)

so that

q̂new
j,k =

1
4
(
d2 f j,k + q̂ j−1,k + q̂ j+1,k + q̂ j,k−1 + q̂ j,k+1

)
. (12.14)

With this approach, we compute q̂new
j,k at all interior points using (12.13), and then replace

the “old” approximate solution by the new one. This procedure is repeated until conver-
gence is deemed adequate, but of course we have to ask whether or not convergence will
actually occur, and if so how rapidly. Conditions for convergence and methods to determine
the speed of convergence are discussed below.

Jacobi relaxation is well suited to parallelization, because we do the exactly same thing
at every grid point.

Suppose that your first guess is that q j,k is uniform across the entire grid. Then, on
the first sweep, the four values of q̂ on the right-hand side of (12.14) will all be the same
number, and those four terms alone will try to make qnew

j,k the same number again. It
is true that the d2 f j,k term prevents this, but its effect is usually small in a single sweep,
because d� 1. As a result, it can take many sweeps for the iteration to converge. The finer
the grid, the smaller the value of d2 f j,k, and the more sweeps are needed. Later, we will
return to this simple but important point.

Let the error of a given approximation be denoted by 1

1Caution: In contrast to the definition used here, Fulton et al. (1986) defines the error as the exact solution
minus the approximate solution; see the text above his equation (2.9). In other words, our error is minus his
error.
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ε j,k ≡ q̂ j,k−q j,k. (12.15)

Here again q j,k is the exact solution of the finite-difference system.Using (12.15) to elimi-
nate all values of q̂ in (12.14), we find that

ε
new
j,k +q j,k =

1
4
[
d2 f j,k +

(
ε j−1,k + ε j+1,k + ε j,k−1 + ε j,k+1

)
+
(
q j−1,k +q j+1,k +q j,k−1 +q j,k+1

)]
.

(12.16)

Since the exact solution satisfies (12.12), we can simplify (12.16) to

ε
new
j,k =

1
4
(
ε j−1,k + ε j+1,k + ε j,k−1 + ε j,k+1

)
. (12.17)

Eq. (12.17) shows that the new error (after the sweep) is the average of the current errors
(before the sweep) at the four surrounding points.

One problem can be identified immediately. Suppose that the error field consists of a
checkerboard pattern of 1’s and -1’s. Suppose further that point ( j,k) has a “current” error
of +1, i.e., ε j,k = 1. For our assumed checkerboard error pattern, it follows that the errors
at the neighboring points referenced on the right-hand side of (12.17) are all equal to -1.
At the end of the sweep we will have ε j,k =−1. Then, on the next iteration, the error will
flip back to ε j,k = 1. In other words, the checkerboard error pattern “flips sign” from one
iteration to the next. This means that the checkerboard error can never be reduced to zero
by Jacobi iteration. That’s bad.

Here is a more general way to analyze the method. First, rewrite (12.17) as

ε
new
j,k = ε j,k +

1
4
(
ε j−1,k + ε j+1,k + ε j,k−1 + ε j,k+1−4ε j,k

)
. (12.18)

The quantity in parentheses in (12.18) is an “increment” which, when added to the “old”
error, ε j,k, gives the new error, εnew

j,k . Eq. (12.18) looks like time differencing, which we
have already discussed in some detail. We can use von Neumann’s method to analyze the
decrease in the error from one sweep to the next. First, write

ε j,k = ε0ei( jld+kmd), (12.19)
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where l and m are the wave numbers in the x and y directions, respectively. We also define
an “amplification factor” by

ε j,k
new ≡ λε j,k. (12.20)

Substituting (12.19) and (12.20) into (12.18), we find that

λ = 1+
1
4

(
ei( j−1)ld + ei( j+1)ld + ei(k−1)md + ei(k+1)md−4

)
=

1
2
[cos(ld)+ cos(md)] .

(12.21)

If λ is negative, the sign of the error will oscillate from one sweep to the next. To have
rapid, monotonic convergence, we want λ to be positive and considerably less than one.
Eq. (12.21) shows that for “long” modes, with ld� 1 and md� 1, λ is just slightly less
than one. This means that the error in the long modes goes away slowly; it will take lots of
iterations for the long modes to converge. At the other extreme, for the checkerboard, which
has ld = md = π , we get λ = −1. This corresponds to the oscillation already discussed
above. The error goes to zero after a single sweep for ld = md = π/2, corresponding to a
wavelength (in both directions) of 4d. In short, the 2d error never goes away, but the 4d
error is eliminated after a single sweep. In general, small-scale errors are killed faster than
large-scale errors, but the checkerboard is an exception.

A strategy to overcome the checkerboard problem is to “under-relax.” To understand
this approach, we first re-write (12.14) as

q̂new
j,k = q̂ j,k +

[
1
4
(
d2 f j,k + q̂ j−1,k + q̂ j+1,k + q̂ j,k−1 + q̂ j,k+1

)
− q̂ j,k

]
. (12.22)

This simply says that q̂new
j,k is equal to q̂ j,k plus an “increment.” For the checkerboard error,

the increment given by Jacobi relaxation tries to reduce the error, but the increment is “too
large,” and so “overshoots;” this is why the sign of q̂new

j,k flips from one iteration to the
next. This simple obsevation suggests that it would be useful to reduce the increment by
multiplying it by a factor less than one, which we will call ω , i.e., we replace (12.18) by
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q̂new
j,k = q̂ j,k +ω

[
1
4
(
d2 f j,k + q̂ j−1,k + q̂ j+1,k + q̂ j,k−1 + q̂ j,k+1

)
− q̂ j,k

]
. (12.23)

where 0 < ω < 1. For ω = 0, a sweep does nothing. For ω = 1, (12.23) reverts to (12.22).
We can rearrange (12.18) to

q̂new
j,k = q̂ j,k (1−ω)+

ω

4
(
d2 f j,k + q̂ j−1,k + q̂ j+1,k + q̂ j,k−1 + q̂ j,k+1

)
. (12.24)

Substitution of (12.15) into (12.24), and use of (12.12), gives

ε
new
j,k = ε j,k (1−ω)+

ω

4
(
ε j−1,k + ε j+1,k + ε j,k−1 + ε j,k+1

)
. (12.25)

From (12.25), you should be able to see that, if we choose ω = 0.5, the checkerboard
error will be destroyed in a single pass. This demonstrates that under-relaxation can be
useful with the Jacobi algorithm. On the other hand, using ω = 0.5 makes the long modes
converge even more slowly than with ω = 1. This suggests that the optimal value of ω is
in the range 0.5 < ω < 1.

Suppose that, on a particular sweep, the error is spatially uniform over the grid. Then,
according to (12.17), the error will never change under Jacobi relaxation, and this is true
even with under-relaxation, as can be seen from (12.25). When the error varies spatially,
we can decompose it into its spatial average plus the departure from the average. The argu-
ment just given implies that the spatially uniform part of the error will never decrease. This
sounds terrible, but it’s not really a problem because, as discussed earlier, when solving a
problem of this type the average over the grid has to be determined by a “boundary condi-
tion.” If the appropriate boundary condition can be applied in the process of formulating
the first guess, then the domain-mean error will be zero even before the relaxation begins.

Note, however, that if the error field is spatially smooth (but not uniform), it will change
only a little on each sweep. This shows again that the “large-scale” part of the error is
reduced only slowly, while the smaller-scale part of the error is reduced more rapidly. Once
the small-scale or “noisy” part of the error has been removed, the remaining error will be
smooth.

The slow convergence of the long modes determines how many iterations are needed to
reduce the overall error to an acceptable level. The reason that the long modes converge
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slowly is that, as you can see from the algorithm, each sweep shares information only
among grid cells that are immediate neighbors. Information travels across N grid cells only
after N sweeps. Many sweeps are needed for information to travel across a large grid.

For a given domain size, convergence is slower (i.e., more sweeps are needed) when
the grid spacing is finer. Qualitatively, this seems fair, since a finer grid can hold more
information.

The long modes are the ones most accurately resolved on the grid, so it is ironic that
they “cause trouble” by limiting the speed of convergence.

For errors of intermediate spatial scale, Jacobi relaxation works reasonably well.

12.4 Gauss-Seidel relaxation

Gauss-Seidel relaxation is similar to Jacobi relaxation, except that each value is updated
immediately after it is calculated. For example, suppose that we start at the lower left-hand
corner of the grid, and work our way across the bottom row, then move to the left end of
the second row from the bottom, and so on. In Gauss-Seidel relaxation, as we come to each
grid point we use the “new” values of all qs that have already been updated, so that (12.14)
is replaced by

q̂new
j,k =

1
4

(
d2 f j,k + q̂new

j−1,k + q̂ j+1,k + q̂new
j,k−1 + q̂ j,k+1

)
. (12.26)

This immediately reduces the storage requirements, because it is not necessary to save all
of the old values and all of the new values simultaneously. More importantly, it also speeds
up the convergence of the iteration, compared to Jacobi relaxation.

Obviously (12.26) does not apply to the very first point encountered on the very first
sweep, because at that stage no “new” values are available. For the first point, we will just
perform a Jacobi-style update using (12.14). It is only for the second and later rows of
points that (12.26) actually applies. Because values are updated as they are encountered
during the sweep, the results obtained with Gauss-Seidel relaxation depend on where the
sweep starts. To the extent that the final result satisfies (12.12) exactly, it will be indepen-
dent of where the sweep starts.

For Gauss-Seidel relaxation, the error-reduction formula corresponding to (12.17) is

ε
new
j,k =

1
4

(
ε

new
j−1,k + ε j+1,k + ε

new
j,k−1 + ε j,k+1

)
, (12.27)
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and the amplification factor defined by (12.20) turns out to be a complex number, which
means that the error will oscillate as we move through a sweep.

Consider the following simple example on a 6 x 6 mesh. Suppose that f is identically
zero, so that the solution (with periodic boundary conditions) is that q is spatially constant.
Exercising our second “boundary condition," we choose the constant to be zero. We make
the rather ill-considered first guess that the solution is a checkerboard:

q̂0
j,k =



1 −1 1 −1 1 −1

−1 1 −1 1 −1 1

1 −1 1 −1 1 −1

−1 1 −1 1 −1 1

1 −1 1 −1 1 −1

−1 1 −1 1 −1 1


. (12.28)

Here the superscript zero denotes the first guess. After partially completing one sweep,
doing the bottom row and the left-most three elements of the second row from the bottom,
we have:

q̂1,partial
j,k =



1 −1 1 −1 1 −1

−1 1 −1 1 −1 1

1 −1 1 −1 1 −1

−1 1 −1 1 −1 1

−0.5 0.25 −0.281 −1 1 −1

1 −0.5 0.625 −0.593 0.602 −0.60


. (12.29)

Although the solution is flipping sign as a result of the sweep, the amplitude of the checker-
board is decreasing noticeably. You can finish the exercise for yourself.

Inspection of (12.29) shows that the errors have been reduced after one (partial) sweep.
Convergence can be speeded up by multiplying the increment by a factor greater than one,
i.e., by “over-relaxation.” By analogy with (12.24), we replace (12.26) by

q̂new
j,k = q̂ j,k (1−ω)+

ω

4

(
d2 f j,k + q̂new

j−1,k + q̂ j+1,k + q̂new
j,k−1 + q̂ j,k+1

)
, (12.30)
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where this time we choose ω > 1. Choosing ω too large will cause the iteration to diverge.
It can be shown that the convergence of (12.30) is optimized (i.e., made as rapid as possible)
if we choose

ω =
2

1+ sin
(

πd
L

) , (12.31)

where L is the total width of the domain. According to (12.31), ω approaches 2 on very
fine grids. In practice, some experimentation may be needed to find the best value of ω .

The algorithm represented by (12.30) and (12.31) is called “successive over-relaxation,”
or SOR.

12.5 The alternating-direction implicit method

Yet another relaxation scheme is the “alternating-direction implicit” method, often called
“ADI” for short. With ADI, the spatial coordinates are treated separately and successively
within each iteration sweep. We rewrite (12.12) as

(
−q j−1,k +2q j,k−q j+1,k

)
+
(
−q j,k−1 +2q j,k−q j,k+1

)
= d2 f j,k. (12.32)

The first quantity in parentheses on the left-hand side of (12.32) involves variations in the
x-direction only, and the second involves variations in the y-direction only. We proceed in
two steps on each sweep. The first step treats the x-dependence to produce an intermediate
approximation by solving

[
−q̂int

j−1,k +(2+ r) q̂int
j,k− q̂int

j+1,k

]
= d2 f j,k−

[
−q̂ j,k−1 +(2− r) q̂ j,k− q̂ j,k+1

]
(12.33)

for the values with superscript “int.” Here r is a parameter used to control convergence,
as discussed below. Eq. (12.33) is a tri-diagonal system, which can easily be solved. The
sweep is completed by solving

[
−q̂new

j,k−1 +(2− r) q̂new
j,k − q̂new

j,k+1

]
= d2 f j,k−

[
−q̂int

j−1,k +(2+ r) q̂int
j,k− q̂int

j+1,k

]
(12.34)
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as a second tridiagonal system. It can be shown that the ADI method converges if r is
positive and constant for all sweeps. The optimal value of r is

r = 2sin
(

πd
L

)
. (12.35)

12.6 Multigrid methods

Fulton et al. (1986) summarize the multi-grid approach to solving boundary-value prob-
lems, which was developed by Achi Brandt (Brandt (1973), Brandt (1977); see additional
references in Fulton’s paper). The basic idea is very simple and elegant, although imple-
mentation can be complicated.

As we have already discussed, with Gauss-Seidel relaxation the small-scale errors are
eliminated quickly, while the large-scale errors disappear more slowly. As the iteration
proceeds, the distribution of the error over the domain becomes smoother, because it is
approaching zero everywhere. A key observation is that, essentially by the definition of
“large-scale,” the large-scale part of the error can be represented on a relatively coarse
grid. On such a coarse grid, the large-scale errors are represented using fewer grid points,
and so can be removed quickly. In addition, of course, less work is needed to do a sweep
on a coarser grid.

Putting these ideas together, we arrive at a strategy whereby we use a coarse grid to relax
away the large-scale errors, and a fine grid to relax away the small-scale errors. In practice,
we introduce as many “nested” grids as possible; the “multi” in the multi-grid method is
quite important. Each coarse grid is composed of a subset of the points used in the finer
grids. We move back and forth between the grids, from coarse to fine by interpolation, and
from fine to coarse by simply copying the fine-grid values onto the corresponding points
of the coarse grid. A relaxation (e.g., Jacobi or Gauss-Seidel) is done on each grid in turn.
The sweeps on the coarser grids remove the large-scale part of the error, while the sweeps
on the finer grids remove the small-scale part of the error.

Although the transfers between grids involve some computational work, the net effect
is to speed up the solution (for a given degree of error) considerably beyond what can be
achieved through relaxation exclusively on the finest grid. In addition, the scaling improves.

Here is a brief summary of how a multigrid method can be implemented in practice.
Suppose that our unknown, q, satisfies
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−LMqM = f M, and

q = g on the boundary of the domain,
(12.36)

where L is a linear operator (which could be the Laplacian). Eq. (12.36) is a generaliza-
tion of (12.11). The superscripts M in (12.36) denote the fine grid on which we want to
obtain the solution of (12.36). We need this grid-naming notation because the multigrid
method involves multiple grids. The approximate solution on grid M is given by q̂M, and
the corresponding error is denoted by

ε̂
M ≡ q̂M−qM. (12.37)

This is all the same as in our earlier discussion, except for the new superscripts M.

Now we add some new ideas. Using (12.37) to eliminate qM in (12.36), we find that

−LM (q̂M− ε̂
M)= f M. (12.38)

Since L is linear (by assumption), we know that

LM (q̂M− ε̂
M)= LMq̂M−LM

ε̂
M. (12.39)

With the use of (12.39), we can rewrite (12.38) as

LM
ε̂

M = rM, (12.40)

where

rM ≡ f M +LMq̂M (12.41)

is called the “residual,” and Eq. (12.40) is called the “residual equation.” The residual is
the what comes out when the operator LM is applied to the error. Eq. (12.40) shows that
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when the error is zero everywhere, the residual is also zero. We can say that the residual is
a measure of the error.

As can be seen from (12.41), the quantities needed to compute rM are known. They
are the forcing function, f M, and the approximate (partially converged) solution, q̂M. If we
have a current guess for q̂M, then we can calculate the corresponding rM. If q̂M changes on
the next sweep, then rM will also change.

In contrast, the error itself is not known. If the error were known, we could just use
(12.37) to compute the exact solution, i.e.,

qM = q̂M− ε̂
M (12.42)

and we would be done!

Since the residual is known, the unknown in (12.40) is the error, ε̂M. Instead of solving
(12.36) for qM, we can solve the residual equation (12.40) for ε̂M.

But, you may be wondering, how does this help? Either way, we still have to solve
a linear system. The reason that it is advantageous to solve for ε̂M instead of qM is that,
during the iteration, the high-wave-number part of the error is quickly eliminated, so that
part-way through the solution procedure ε̂M is smooth, even if the final solution for qM is
not smooth. This is where the multigrid method comes in. Because ε̂M is smooth, we can
represent it on a coarser grid, which will be denoted by superscript l. This is the motivation
for solving for the smooth ε̂M rather than for (the possibly noisy) qM.

On a given grid, the procedure is as follows. We have a current guess, q̂M. This allows
us to calculate the residual, rM, from (12.41). Then we do a sweep with (12.40) to obtain
an updated error field, εM.

Typically each coarser grid is chosen to have half as many points (in each direction)
as the next finer grid, so, with a two-dimensional domain, grid l would have 1/4 as many
points as grid M. We replace (12.40) by

Ll
ε̂

l = rl, (12.43)

where superscript l denotes the coarser grid. The process by which quantities are trans-
ferred from the finer grid to the coarser grid is called “restriction.” In many cases, the
points that comprise grid l are a subset of the points on grid M, in which case we can just
copy the appropriate values; no interpolation is necessary. This special case of restriction
is called “injection.”
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You can probably see where this is going. After doing a sweep (or possibly more than
one) on grid l, the error has been further smoothed, and a new residual equation can be
solved on an even coarser grid. This process can be repeated until reaching the coarsest
possible grid – say a 2 x 2 grid (Fig. 12.1). On the coarsest grids, direct solves (e.g., matrix
inversion) may be preferable to iterative methods.

Figure 12.1: Schematic illustrating three grids used by a multigrid solver, with the finest grid on top.
Source: http://ccma.math.psu.edu/ccma-wp/?page_id=237.

Having worked our way down to the coarsest possible grid, we then start back the other
way, towards the finer grids. The error on a coarse grid is interpolated to construct the
error on the next finer grid. This is called “prolongation.” The error on the finer grid is then
subtracted from the previous estimate of q̂ on that grid, essentially following (12.42). This
gives a revised (i.e., improved) estimate of q̂ on that grid, which can be used to compute a
new residual using (12.41). A sweep is performed to obtain a new estimate of the error on
the finer grid, and the result is interpolated to the next finer grid, and so on, until we arrive
back at the finest grid.

A sequence of sweeps on successively coarser grids, followed by a sequence of sweeps
on the successively finer grids, is called a V-cycle.

For further discussion of multi-grid methods, see the paper by Fulton et al. (1986).

12.7 Summary

Boundary-value problems occur quite frequently in atmospheric science. The main issue is
the amount of work needed to find the solution. Fast solutions to one-dimensional problems
are very easy to obtain, but two- and three-dimensional problems are more challenging,
particularly when complex geometry is involved. Among the most useful methods avail-
able today for multi-dimensional problems are the multi-grid methods and the conjugate-
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gradient methods (e.g., Shewchuk (1994)). Spectral methods are also excellent, and will be
discussed in a later chapter.

Table 12.1 summarizes the operations counts and storage requirements of some well
known methods for solving boundary-value problems. The best possible scalings for the
operation count and storage requirement are O

(
N2). Only the multi-grid method achieves

this ideal.

Table 12.1: Well known methods for solving boundary value problems, and the operation count and
storage. Here the total number of points is N2.Table 1 summarizes the operations counts and storage requirements of some well known 

methods for solving boundary-value problems. The best possible scalings for the operation count 
and storage requirement are O N2( ) . Only the multi-grid method achieves this ideal.

Method Operation Count Storage Requirement

Gaussian Elimination 		N4 		N2

Jacobi 		N4 		N2

Gauss-Seidel 		N4 		N2

Successive Over-Relaxation 		N3 		N2

Alternating Direction Implicit 		N2 lnN 		N2

Multigrid 		N2 		N2

Table 1. Well known methods for solving boundary value problems, and the operation count and storage. 
Here the total number of points is N2 .

! Revised October 10, 2017 1:47 PM! 15
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12.8 Problems

1. Prove that with periodic boundary conditions the domain-average of q is not changed
by a sweep using

(a) Jacobi relaxation;

(b) Gauss-Seidel relaxation.

2. Use von Neumann’s method to analyze the convergence of

q̂new
j,k = q̂ j,k +ω

[
1
4
(
d2 f j,k + q̂ j−1,k + q̂ j+1,k + q̂ j,k−1 + q̂ j,k+1

)
− q̂ j,k

]
. (12.44)

3. Consider a square domain, of width L, with periodic boundary conditions in both x
and y directions. We wish to solve

∇
2q = f (x,y) =

(
sin

4πx
L

)(
cos

4πy
L

)
(12.45)

for the unknown function q, where

0≤x ≤ L,
0≤y ≤ L.

(12.46)

Assume that the domain-average value of q is zero, and impose this condition on your
numerical solution. For simplicity, use L = 1. Use centered second-order differences
to approximate ∇2q. Use N = 100 points in both directions. The periodic boundary
conditions mean that j = 1 is the same as j = 101, and k = 1 is the same as k = 101.

(a) Find and plot the exact solution.

(b) Also find and plot the solution using each of the relaxation methods listed be-
low.

• Jacobi relaxation;

• Jacobi under-relaxation, with a suitable choice of the parameter ω;

• Gauss-Seidel relaxation;

• Gauss-Seidel over-relaxation, with a suitable choice of the parameter ω .
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For each of the relaxation methods, try the following two initial guesses:

1) q j,k = (−1) j+k,

2) q j,k = 0 everywhere .
(12.47)

(c) Let n be an “iteration counter,” i.e., n = 0 for the initial guess, n = 1 after one
sweep, etc. Define the error after n sweeps by

ε
n
j,k ≡

(
q̂n

j,k

)
− f j,k. (12.48)

Here ∇2
(

q̂n
j,k

)
is the finite-difference Laplacian of the the approximate solu-

tion, and f j,k is “forcing function” given in (12.20), as evaluated on the grid.
Let the convergence criterion be

Max∀( j,k)
{∣∣∣εn

j,k

∣∣∣}< 10−2Max∀( j,k)
{∣∣ f j,k

∣∣} . (12.49)

How many iterations are needed to obtain convergence with Jacobi, Gauss-
Seidel, and SOR?

(d) Plot the RMS error Rn ≡
√

1
N2

N
∑
j=1

N
∑

k=1

(
εn

j,k

)2
as a function of n (or, if you

prefer, as a function of lnn) for all three methods.

4. Construct a subroutine that solves for the stream function, given the vorticity, in a
periodic domain with a hexagonal grid. Start from the code that you created for the
hexagonal-grid homework problem in Chapter 2. Use the Jacobi method with under-
relaxation. Test your subroutine by feeding it distributions of the vorticity for which
you can compute the exact solution analytically.

Note that in all cases the domain-average of the specified vorticity “forcing” must
be zero. Explain why that is true. Require that the domain-average of the stream
function is equal to zero in your solution. Explain how you do that.

5. Construct a one-dimensional multi-grid solver. Test it by solving (12.6) on a domain
with 128 equally spaced grid points and periodic boundary conditions. For use in the
test, invent a forcing f (x) that is sufficiently complicated to be interesting. On each
grid, use an under-relaxed Jacobi solver, except that on the coarsest grids, you may
choose to use a non-iterative method. Provide a step-by-step written explanation of
how your multi-grid solver works.
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Chapter 13

It’s only dissipation (but I like it)

13.1 Introduction

Diffusion is a macroscopic statistical description of microscopic advection. Here “micro-
scopic” refers to scales below the resolution of a model. In general diffusion can occur
in three dimensions, but often in atmospheric science only vertical diffusion, i.e., one-
dimensional diffusion, is the main issue. The process of one-dimensional diffusion can be
represented in simplified form by

∂q
∂ t

=−
∂Fq

∂x
. (13.1)

Here q is the “diffused” quantity, x is the spatial coordinate, and Fq is a flux of q due to dif-
fusion. Although very complex parameterizations for Fq are required in many applications,
a simple parameterization that is often encountered in practice is

Fq =−K
∂q
∂x

, (13.2)

where K is a “diffusion coefficient,” which must be determined somehow. Physically mean-
ingful applications of are possible when

K ≥ 0. (13.3)

Substitution of (13.2) into (13.1) gives
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∂q
∂ t

=
∂

∂x

(
K

∂q
∂x

)
. (13.4)

Because (13.4) involves second derivatives in space, it requires two boundary conditions,
one of which might determine the value of Fq at a wall. Here, we assume for simplicity that
q is periodic. It then follows immediately from (13.1) that the spatially averaged value of q
does not change with time:

d
dt

 ∫
spatial domain

qdx

= 0. (13.5)

When (13.3) is satisfied, (13.4) describes “downgradient” transport, in which the flux
of q is from larger values of q towards smaller values of q. Such a process tends to reduce
large values of q, and to increase small values, so that the spatial variability of q decreases
with time. In particular, we can show that

d
dt

 ∫
spatial domain

q2dx

≤ 0. (13.6)

To prove this, multiply both sides of (13.4) by q:

∂

∂ t

(
q2

2

)
= q

∂

∂x

(
K

∂q
∂x

)

=
∂

∂x

(
qK

∂q
∂x

)
−K

(
∂q
∂x

)2

.

(13.7)

When we integrate the second line of (13.7) over a periodic domain, the first term vanishes
and the second is negative (or possibly zero). The result (13.6) follows immediately.

With the assumed periodic boundary conditions, we can expand q in a Fourier series:

q(x, t) = ∑
k

Re
[
q̂k (t)eikx

]
. (13.8)
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Substituting into (13.4), and (temporarily) assuming spatially constant K, we find that the
amplitude of a particular Fourier mode satisfies

dq̂k

dt
=−k2Kq̂k, (13.9)

which is the decay equation. This shows that there is a close connection between the
diffusion equation and the decay equation, which is good to know because we have already
discussed time differencing for the decay equation. The solution of (13.9) is

q̂k (t) = q̂k (0)e−k2Kt . (13.10)

Note that higher wave numbers decay more rapidly, for a given value of K. Since

q̂k (t +∆t) = q̂k (0)e−k2K(t+∆t) = q̂k (t)e−k2K∆t , (13.11)

we see that, for the exact solution, the amplification factor is given by

λ = e−k2K∆t < 1. (13.12)

13.2 A simple explicit scheme

A finite-difference analog of (13.1) is

qn+1
j −qn

j = κ j+ 1
2

(
qn

j+1−qn
j
)
−κ j− 1

2

(
qn

j −qn
j−1
)
, (13.13)

where for convenience we define the nondimensional combination

κ j+ 1
2
≡

K j+ 1
2
∆t

(∆x)2 . (13.14)
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Here we have assumed for simplicity that ∆x is a constant. It should be obvious that, with
periodic boundary conditions, (13.13) guarantees conservation of q in the sense that

∑
j

qn+1
j ∆x = ∑

j
qn

j∆x. (13.15)

The scheme given by (13.13) combines forward time differencing with centered space dif-
ferencing. Recall that this combination is unconditionally unstable for the advection prob-
lem, but it turns out to be conditionally stable for diffusion. To analyze the stability of
(13.13) using von Neumann’s method, we have to assume that κ is a constant. Then (13.13)
yields

(λ −1) = κ

[(
eik∆x−1

)
−
(

1− e−ik∆x
)]

, (13.16)

which is equivalent to

λ = 1−4κsin2
(

k∆x
2

)
≤ 1. (13.17)

Note that λ is real and less than one. Instability occurs for λ <−1, which is equivalent to

κsin2
(

k∆x
2

)
>

1
2
. (13.18)

The worst case is sin2 (k∆x
2

)
= 1, which occurs for

(k∆x
2

)
= π

2 , or k∆x = π . This is the 2∆x
wave. We conclude that with (13.13)

κ ≤ 1
2

is required for stability. (13.19)

When the scheme is unstable, it blows up in an oscillatory fashion.

When the stability criterion derived above is satisfied, we can be sure that

∑
j

(
qn+1

j

)2
< ∑

j

(
qn

j
)2; (13.20)
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this is the condition for stability according to the energy method discussed in Chapter 2.
Eq. (13.20) is analogous to (13.6).

13.3 An implicit scheme

We can obtain unconditional stability through the use of an implicit scheme, but at the cost
of some additional complexity. Replace (13.13) by

qn+1
j −qn

j = κ j+ 1
2

(
qn+1

j+1−qn+1
j

)
−κ j− 1

2

(
qn+1

j −qn+1
j−1

)
. (13.21)

We use the energy method to analyze the stability of (13.21), for the case of spatially
variable but non-negative K. Multiplying (13.21) by qn+1

j , we obtain:

(
qn+1

j

)2
−qn+1

j qn
j = κ j+ 1

2
qn+1

j+1qn+1
j −κ j+ 1

2

(
qn+1

j

)2
−κ j− 1

2

(
qn+1

j

)2
+κ j− 1

2
qn+1

j−1qn+1
j

(13.22)

Summing over the domain gives

∑
j

(
qn+1

j

)2
−∑

j
qn+1

j qn
j = ∑

j
κ j+ 1

2
qn+1

j+1qn+1
j −∑

j
κ j+ 1

2

(
qn+1

j

)2

−∑
j

κ j− 1
2

(
qn+1

j

)2
+∑

j
κ j− 1

2
qn+1

j−1qn+1
j

= ∑
j

κ j+ 1
2
qn+1

j+1qn+1
j −∑

j
κ j+ 1

2

(
qn+1

j

)2

−∑
j

κ j+ 1
2

(
qn+1

j+1

)2
+∑

j
κ j+ 1

2
qn+1

j qn+1
j+1

=−∑
j

κ j+ 1
2

(
qn+1

j+1−qn+1
j

)2
,

(13.23)

which can be rearranged to

∑
j

qn+1
j qn

j = ∑
j

[(
qn+1

j

)2
+κ j+ 1

2

(
qn+1

j+1−qn+1
j

)2
]
. (13.24)
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Next, note that

∑
j

(
qn+1

j −qn
j

)2
= ∑

j

[(
qn+1

j

)2
+
(
qn

j
)2−2qn+1

j qn
j

]
≥ 0. (13.25)

Substitute (13.24) into (13.25), to obtain

∑
j

{(
qn+1

j

)2
+
(
qn

j
)2−2

[(
qn+1

j

)2
+κ j+ 1

2

(
qn+1

j+1−qn+1
j

)2
]}
≥ 0, (13.26)

which can be simplified and rearranged to

∑
j

[(
qn+1

j

)2
−
(
qn

j
)2
]
≤−2∑

j

[
κ j+ 1

2

(
qn+1

j+1−qn+1
j

)2
]
≤ 0. (13.27)

Eq. (13.27) demonstrates that ∑
j

[(
qn+1

j

)2
−
(

qn
j

)2
]

is less than or equal to a not-positive

number. In short,

∑
j

[(
qn+1

j

)2
−
(
qn

j
)2
]
≤ 0. (13.28)

This is the desired result.

The trapezoidal implicit scheme is also unconditionally stable for the diffusion equa-
tion, and it is more accurate than the backward-implicit scheme discussed above.

Eq. (13.21) contains three unknowns, namely qn+1
j , qn+1

j+1 , and qn+1
j−1 . We must therefore

solve a system of such equations, for the whole domain at once. Assuming that K is inde-
pendent of q (often not true in practice), the system of equations is linear and tridiagonal,
so it is not hard to solve. In realistic models, however, K can depend strongly on multiple
dependent variables which are themselves subject to diffusion, so that multiple coupled
systems of nonlinear equations must be solved simultaneously in order to obtain a fully
implicit solution to the diffusion problem. For this reason, implicit methods are not always
practical.

193



Revised Monday 23rd August, 2021 at 15:57

13.4 The DuFort-Frankel scheme

The DuFort-Frankel scheme is partially implicit and unconditionally stable, but does not
lead to a set of equations that must be solved simultaneously. The scheme is given by

qn+1
j −qn−1

j

2∆t
=

1

(∆x)2

[
K j+ 1

2

(
qn

j+1−qn+1
j

)
−K j− 1

2

(
qn−1

j −qn
j−1

)]
. (13.29)

Notice that three time levels appear, which means that we will have a computational mode
in time, in addition to a physical mode. Time level n+ 1 appears only in connection with
grid point j, so the solution of (13.29) can be obtained without solving a system of simul-
taneous equations:

qn+1
j =

qn−1
j +2

[
κ j+ 1

2
qn

j+1−κ j− 1
2

(
qn−1

j −qn
j−1

)]
1+2κ j+ 1

2

. (13.30)

To apply von Neumann’s method, we assume spatially constant κ , and for convenience
define

α ≡ 2κ ≥ 0. (13.31)

The amplification factor satisfies

λ
2−1 = α

(
λeik∆x−λ

2−1+λe−ik∆x
)
, (13.32)

which is equivalent to

λ
2 (1+α)−λ2α cos(k∆x)− (1−α) = 0. (13.33)

The solutions are
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λ =
α cos(k∆x)±

√
α2cos2 (k∆x)+(1−α2)

1+α

=
α cos(k∆x)±

√
1−α2sin2 (k∆x)

1+α
.

(13.34)

The plus sign corresponds to the physical mode, for which λ → 1 as α→ 0, and the minus
sign corresponds to the computational mode. This can be seen by taking the limit k∆x→ 0.

Consider two cases. First, if α2sin2 (k∆x) ≤ 1, then λ is real, and by considering the
two solutions separately it is easy to show that

|λ | ≤ 1+ |α cos(k∆x)|
1+α

≤ 1. (13.35)

Second, if α2sin2 (k∆x)> 1, which implies that α > 1, then λ is complex, and we find that

|λ |=

√
α2cos2 (k∆x)+α2sin2 (k∆x)−1

1+α
=

√
α2−1
1+α

=

√
α−1
α +1

< 1. (13.36)

We conclude that the scheme is unconditionally stable.

It does not follow, however, that the scheme gives a good solution for large ∆t. For
α → ∞ (strong diffusion and/or a long time step), (13.36) gives

|λ | → 1. (13.37)

We conclude that the Dufot-Frankel scheme does not damp when the diffusion coefficient
is large or the time step is large. This is very bad behavior.

13.5 Summary

Diffusion is a relatively simple process that preferentially wipes out small-scale features.
The most robust schemes for the diffusion equation are fully implicit, but these give rise to
systems of simultaneous equations. The DuFort-Frankel scheme is unconditionally stable
and easy to implement, but behaves badly as the time step becomes large for fixed ∆x.
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13.6 Problems

1. Prove that the trapezoidal implicit scheme with centered second-order space differ-
encing is unconditionally stable for the one-dimensional diffusion equation. Do not
assume that K is spatially constant.

2. Program both the explicit and implicit versions of the diffusion equation, for a pe-
riodic domain consisting of 100 grid points, with constant K = 1 and ∆x = 1. Also
program the DuFort-Frankel scheme. Let the initial condition be

q j = 100, j ∈ [1, 50] , and q j = 110 for j ∈ [51,100] . (13.38)

Compare the three solutions for different choices of the time step.

3. Use the energy method to evaluate the stability of

qn+1
j −qn

j = κ j+ 1
2

(
qn

j+1−qn
j
)
−κ j− 1

2

(
qn

j −qn
j−1
)
. (13.39)

Do not assume that κ is spatially constant.
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Chapter 14

Making Waves

14.1 The shallow-water equations

In most of this chapter we will discuss the shallow-water equations, which can be written
as

∂v
∂ t

+(ζ + f )k×v =−∇ [g(h+hS)+K] , (14.1)

∂h
∂ t

+∇ · (vh) = 0. (14.2)

Here v is the horizontal velocity vector, ζ ≡ k · (∇×v) is the vertical component of the
vorticity, f is the Coriolis parameter, h is the depth of the fluid, hS is the height of the
“bottom topography,” g is the acceleration of gravity, and K ≡ 1

2v · v is the kinetic energy
per unit mass. In (14.1), all frictional effects have been neglected, for simplicity. Although
the shallow water equations are highly idealized, they are extremely useful for testing the
horizontal (and temporal) discretizations of numerical models that are used to simulate
atmospheric dynamics.

For the special case of a one-dimensional, non-rotating small-amplitude gravity wave
on a resting basic state, without topography, Eqs. (14.1) and (14.2) become

∂u
∂ t

+g
∂h
∂x

= 0, (14.3)
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and

∂h
∂ t

+H
∂u
∂x

= 0, (14.4)

respectively. The equations have been linearized, and H is the mean depth of the fluid. We
refer to (14.3) - (14.4) as “the gravity wave equations.” Let

c2 ≡ gH. (14.5)

Note that the phase speed c is independent of wave number for pure gravity waves. As
discussed later, including the Coriolis terms will cause the phase speed to depend on wave
number. By combining (14.3) - (14.4) we can derive

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 , (14.6)

and

∂ 2h
∂ t2 = c2 ∂ 2h

∂x2 , (14.7)

which are both examples of “the wave equation.”

Assuming solutions of the form, ei(kx±σt), and substituting into either (14.6) or (14.7),
we obtain the dispersion equation

σ
2 = c2k2. (14.8)

There are two waves, one propagating in the positive x-direction, and the other in the neg-
ative x-direction. Remember that c is a constant, given by (14.5). Therefore (14.8) tells us
that the frequency σ is a constant times the wave number k. The physical meaning should
be clear.
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14.2 The normal forms

We demonstrate in this section that the solutions of (14.6) are constant along space-time
lines (or surfaces) called “characteristics.” A solution is fully determined if u and ∂u

∂ t are
specified somewhere on each characteristic. The characteristics can, and generally do,
intersect boundaries. As with the advection equation, f (x− ct) is a solution of the wave
equation (14.6), but g(x+ ct) is a second solution. Here we can assume c > 0 without loss
of generality. Note that in this discussion we are not assuming a single Fourier mode; the
functions f and g can include many Fourier components in the x direction. The general
solution of (14.6) is given by a super-position of the eastward- and westward propagating
solutions. In particular, for u(x, t) we can write

u(x, t) = f (x− ct)+g(x+ ct) . (14.9)

The forms of f (x− ct) and g(x+ ct) are completely determined by the initial conditions,
which can be written as

ut=0 = F (x) ,(
∂u
∂ t

)
t=0

= G(x) .
(14.10)

Note that
(

∂u
∂ t

)
t=0

= G(x) contains information about h(x,0), so together these two initial
conditions contain information about both the mass field and the wind field at t = 0.

Substituting (14.9) into (14.10), we find that at t = 0

f (x)+g(x) = F (x) ,

−c f ′ (x)+ cg′ (x) = G(x) .
(14.11)

Here a prime denotes differentiation. Differentiating the first of (14.11), and then using the
second, we can solve for f ′ (x) and g′ (x):

f ′ (x) =
1
2

[
F ′ (x)− G(x)

c

]
,

g′ (x) =
1
2

[
F ′ (x)+

G(x)
c

]
.

(14.12)
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These can be integrated to obtain f (x) and g(x):

f (x) =
1
2

F (x)− 1
c

x∫
0

G(ξ )dξ

+C1,

g(x) =
1
2

F (x)+
1
c

x∫
0

G(ξ )dξ

+C2.

(14.13)

Here C1 and C2 are constants of integration. Finally, we obtain u(x, t) by replacing x by
x− ct and x+ ct, respectively, in the expressions for f (x) and g(x) in (14.13), and then
substituting back into (14.9). This gives

u(x, t) =
1
2

F (x− ct)+F (x+ ct)+
1
c

x+ct∫
x−ct

G(ξ )dξ

 . (14.14)

Here ξ is a dummy variable of integration, and we have set C1 +C2 = 0 in order to satisfy
u(x,0) = F (x). As mentioned above, G(x) contains information about h(x,0). Obviously,
that information is needed to predict u(x, t), and it is in fact used on the right-hand side of
(14.14).

Once u(x, t) is known from (14.14), we can obtain ∂h
∂x from (14.3). The constant “back-

ground” value of h cannot be determined without additional information.

In order to make connections between the wave equation and the advection equation
that we have already analyzed, we reduce (14.6) to a pair of first-order equations by defining

p≡ ∂u
∂ t

and q≡−c
∂u
∂x

. (14.15)

Substitution of (14.15) into the wave equation (14.6) gives

∂ p
∂ t

+ c
∂q
∂x

= 0, (14.16)
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and differentiation of the second of (14.15) with respect to t, with the use of the first of
(14.15), gives

∂q
∂ t

+ c
∂ p
∂x

= 0. (14.17)

If we alternately add (14.16) and (14.17), and subtract (14.17) from (14.16), we obtain

∂P
∂ t

+ c
∂P
∂x

= 0, where P≡ p+q, and (14.18)

∂Q
∂ t
− c

∂Q
∂x

= 0, where Q≡ p−q, (14.19)

respectively. Now we have a system of two first-order equations, each of which “looks like”
the advection equation. Note, however, that the “advections” are in opposite directions!
Assuming that c > 0, P is “advected” towards increasing x, while Q is “advected” towards
decreasing x. From (14.18) and (14.19), it is clear that P is constant along the line x− ct =
constant, and Q is constant along the line x+ ct = constant. Eqs. (14.18) and (14.19) are
called the normal forms of (14.16) and (14.17).

These concepts are applicable, with minor adjustments, to any hyperbolic system of
equations. The curves x− ct = constant and x+ ct = constant are called “characteristics.”
The wave equation is characterized, so to speak, by two such families of curves, while
the advection equation has only one family. Because the phase speeds of the pure gravity
waves analyzed here are constant, the characteristics that we have found for the waves are
straight, parallel lines, but in general they can have any shape so long as the curves within
a family do not intersect each other.

14.3 Staggered grids for the shallow water equations

Now we discuss the differential-difference equations

du j

dt
+g
(

h j+1−h j−1

2d

)
= 0, (14.20)
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dh j

dt
+H

(
u j+1−u j−1

2d

)
= 0, (14.21)

where d is the grid spacing. which are, of course, differential-difference analogs of the
one-dimensional shallow water equations, (14.3) - (14.4). We keep the time derivatives
continuous because the issues that we will discuss next have to do with space differenc-
ing only. Consider a distribution of the dependent variables on the grid as shown in Fig.
14.1. Notice that from (14.20) and (14.21) the set of red quantities will act completely in-
dependently of the set of black quantities, if there are no boundaries. With cyclic boundary
conditions, this is still true if the number of grid points in the cyclic domain is even. What
this means is that we have two families of waves on the grid: “red” waves that propagate
both left and right, and “black” waves that propagate both left and right. Physically there
should only be one family of waves.

A good way to think about this situation is that we have two non-interacting models
living on the same grid: a red model and a black model. That’s a problem. The red model
may think it’s winter, while the black model thinks it’s summer. In such a case we will have
tremendous noise at the grid scale.

The two models are noninteracting so long as they are linear. If we include nonlinear
terms, then interactions can occur, but that doesn’t mean that the nonlinear terms solve the
problem.

x

uu

hh

u

h

u

h

u

h

u

h
Figure 14.1: A-grid for solution of the one-dimensional shallow water equations.

Here is a mathematical way to draw the same conclusion. The wave solutions of (14.20)
and (14.21) are

(
u j,h j

)
∼ ei(k jd−σt), (14.22)

giving
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σu j−gh j
sin(kd)

d
= 0,

σh j−Hu j
sin(kd)

d
= 0.

(14.23)

Provided that u j and h j are not both identically zero, we obtain the dispersion relation

σ
2 = k2gH

(
sinkd

kd

)2

. (14.24)

The phase speed satisfies c2 = gH
( sinkd

kd

)2
. In the exact solution, the phase speed c =

±
√

gH is independent of wave number, but finite-difference phase speed depends on wave
number, is generally less than the true phase speed, and is zero for the shortest wave that
fits on the grid. This is computational dispersion again.

Suppose that σ is given. We assume that σ ≥ 0, so that the direction of propagation is
determined by the sign of the wave number, k, and we allow −π ≤ kd ≤ π .

For convenience, define p≡ kd. If p = p0 satisfies (14.24), then p =−p0, p = π− p0
and p = −(π− p0) also satisfy it. This shows that there are four possible modes for the
given frequency, although physically there should only be two. The “extra” pair of modes
comes from the redundancy of the grid. The extra modes are computational modes in space.
In chapter 5, we encountered computational modes in space in the context of advection with
a boundary condition. The two solutions p = p0 and p = −p0 are approximations to the
true solution, and so could be considered as physical, while the other two, p = π− p0 and
p =−(π− p0), could be considered as computational. This distinction is less meaningful
than in the case of the advection equation, however. In the case of advection, the envelope
of a computational mode moves toward the downstream direction. In the case of the wave
equation, there is no “downstream” direction.

For a given σ , the general solution for u j is a linear combination of the four modes, and
can be written as

u j =
[
Aeip0 j +Be−ip0 j +Cei(π−p0) j +De−i(π−p0) j

]
e−iσt . (14.25)

By substituting (14.25) into the second of (14.23), we find that h j satisfies

h j =
H sin p0

ω∆x

[
Aeip0 j−Be−ip0 j +Cei(π−p0) j−De−i(π−p0) j

]
e−iσt . (14.26)

203



Revised Monday 23rd August, 2021 at 15:57

Remember that we are assuming σ ≥ 0, so that sin(p0) =
ωd√
gH [see (14.24)]. Then (14.26)

reduces to

h j =

√
H
g

[
Aeip0 j−Be−ip0 j +Cei(π−p0) j−De−i(π−p0) j

]
e−iσt . (14.27)

We now repeat the analysis for the case in which the red variables are omitted in Fig.
14.1. The governing equations can be written as

du j+1/2

dt
+g
(

h j+1−h j

d

)
= 0, (14.28)

dh j

dt
+H

(
u j+1/2−u j−1/2

d

)
= 0. (14.29)

Here we use half-integer subscripts for the wind points, and integer subscripts for the mass
points. The solutions of (14.28) and (14.29) are assumed to have the form

u j+1/2 = u0ei[k( j+1/2)d−σt],

h j = h0ei(k jd−σt).
(14.30)

Substitution into (14.28) and (14.29) gives

−σdu0 +2gh0 sin
(

kd
2

)
= 0,

−σdh0 +2Hu0 sin
(

kd
2

)
= 0.

(14.31)

The resulting dispersion equation is

σ
2 = k2gH

[
sin(kd/2)

kd/2

]2

. (14.32)
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For a given σ , there are only two solutions of (14.32), because kd/2 ranges only between
−π/2 and π/2. This demonstrates that omitting the red variables eliminates the spurious
computational modes.

For a given σ , the solution for u j+ 1
2

is a linear combination of the two modes, and can
be written as

u j+ 1
2
=
[
Aeip0( j+ 1

2) +Be−ip0( j+ 1
2)
]

e−iσt . (14.33)

By substituting (14.33) into (14.29), we find that h j satisfies

h j =−
H
σd

(
Aeip0 j−Be−ip0 j)2sin

( p0

2

)
e−iσt . (14.34)

Since we are assuming σ ≥ 0, so that 2sin
( p0

2

)
= σd√

gH , (14.34) reduces to

h j =−

√
H
g

(
Aeip0 j−Be−ip0 j)e−iσt . (14.35)

14.4 Dispersion properties as a guide to grid design

Winninghoff (1968) and Arakawa and Lamb (1977) (hereafter AL) discussed the extent
to which finite-difference approximations to the shallow water equations can simulate the
process of geostrophic adjustment, in which the dispersion of inertia-gravity waves leads
to the establishment of a geostrophic balance, as the energy density of the inertia gravity
waves decreases with time due to their dispersive phase speeds and non-zero group velocity.
These authors considered the momentum and mass conservation equations, and defined five
different staggered grids for the velocity components and mass.

AL considered the shallow water equations linearized about a resting basic state, in the
following form:

∂u
∂ t
− f v+g

∂h
∂x

= 0, (14.36)
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∂v
∂ t

+ f u+g
∂h
∂y

= 0, (14.37)

∂h
∂ t

+Hδ = 0. (14.38)

Here H is the constant depth of the “water” in the basic state, δ ≡ ∂u
∂x +

∂v
∂y is the divergence,

and all other symbols have their conventional meanings. From (14.36) - (14.38), we can
derive an equivalent set in terms of vorticity, ζ = ∂v

∂x −
∂u
∂y , and divergence:

∂δ

∂ t
− f ζ +g

(
∂ 2

∂x2 +
∂ 2

∂y2

)
h = 0, (14.39)

∂ζ

∂ t
+ f δ = 0, (14.40)

∂h
∂ t

+Hδ = 0. (14.41)

Of course, (14.41) is identical to (14.38). It is convenient to eliminate the vorticity and mass
in (14.39) by using (14.40) and (14.41), respectively. Then by assuming wave solutions,
we obtain the dispersion relation:

(
σ

f

)2

= 1+λ
2 (k2 + l2) . (14.42)

Here σ is the frequency, λ ≡
√

gH
f is the radius of deformation, and k and l are the wave

numbers in the x and y directions, respectively. The frequency and group speed increase
monotonically with wave number and are non-zero for all wave numbers. As discussed by
AL, these characteristics of (14.42) are important for the geostrophic adjustment process.

In their discussion of various numerical representations of (14.29) - (14.31), AL defined
five-grids denoted by “A” through “E,” as shown in Fig. 14.2. The figure also shows the
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Figure 14.2: Grids A-E and Z, on a square mesh. The A-grid is equivalent to four shifted C-grids.
The E-grid is equivalent to two shifted C-grids, which live in the overlapping blue and orange boxes.
The E-grid can also be interpreted as a B-grid that has been rotated by 45◦, but note that the
directions of the wind components are not rotated. In the sketch of the E-grid, the mass variables
can be considered to live in the rotated grey boxes.

Z-grid, which will be discussed later. AL also gave the simplest centered finite-difference
approximations to of (14.29) - (14.31), for each of the five grids; these equations are fairly
obvious and will not be repeated here. The two-dimensional dispersion equations for the
various schemes were derived but not published by AL; they are included in Fig. 14.3,
which also gives a plot of the nondimensional frequency, σ/ f , as a function of kd and ld,
for the special case λ/d = 2, where d is the grid spacing, assumed to be the same in the
x and y directions. The particular choice λ/d = 2 means that the radius of deformation is
larger than the grid spacing, although only a little bit larger. The significance of this choice
is discussed later. The plots in Fig. 14.3 show how the nondimensional frequency varies
out to kd = π and ld = π; these wave numbers correspond to the shortest waves that can
be represented on the grid.

The A-grid may appear to be the simplest, since it is unstaggered. For example, the
Coriolis terms of the momentum equations are easily evaluated, since u and v are defined
at the same points. There is a serious problem, however. In the sketch of the A-grid
in Fig. 14.2, some of the variables are colored red, some blue, some orange, and some
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black black. The red winds are used to predict the red masses, and vice versa. Similarly,
the blue winds interact with the blue masses, the orange winds interact with the orange
masses, and the black winds interact with the black masses. There are four independent
models, one for each color. This means the the A-grid can support four solutions at once,
and those solutions can differ considerably. In such a case, the pattern of the variables
on the A-grid is characterized by strong noise at the smallest scales, i.e., a checkerboard
pattern. As a result, the high-wavenumber behavior of a model based on the A-grid is
poor. A plot of the dispersion equation for the A-grid, shown in Fig. 14.3, indicates a
maximum of the frequency (group speed equal to zero) for some combinations of k and l.
As a result, solutions on the A-grid are extremely noisy in practice and must be smoothed,
e.g., through artificial diffusion or filtering Kalnay-Rivas et al. (1977). Because of this well
known problem, the A-grid is rarely used today. The problem of the A-grid is obviously
closely analogous to that of the unstaggered one-dimensional grid discussed above, but
worse.

Next, consider the B-grid. Fig. 14.2 shows that the velocity vectors are defined at the
corners of the mass cells. The velocity components, i.e., u and v, point along the directions
of the walls that intersect at the corners. As on the A-grid, the coriolis terms are easily
evaluated, without averaging, since u and v are defined at the same points. On the other
hand, the pressure-gradient terms must be averaged, again as on the A-grid. There is an
important difference, however. On the A-grid, the averaging used to approximate the x-
component of the pressure-gradient force, ∂h/∂x, is averaging in the x-direction. On the
B-grid, the corresponding averages are in the y-direction. On the B-grid, an oscillation
in the x-direction, on the smallest represented scale, is not averaged out in the computa-
tion of ∂h/∂x; it can, therefore, participate in the model’s dynamics, and so is subject to
geostrophic adjustment. A similar conclusion holds for the convergence / divergence terms
of the continuity equation. For example, the averaging in the y-direction does no harm for
solutions that are uniform in the y-direction. Nevertheless, it does do some harm, as is ap-
parent in the plot of the B-grid dispersion equation, as shown in Fig. 14.3. The frequency
does not increase monotonically with total wave number; for certain combinations of k and
l, the group speed is zero. AL concluded that the B-grid gives a fairly good simulation of
geostrophic adjustment, but with some tendency to small-scale noise.

Now consider the C-grid. The pressure gradient terms are easily evaluated, without
averaging, because h is defined east and west of u points, and north and south of v points.
Similarly, the mass convergence / divergence terms of the continuity equation can be eval-
uated without averaging the winds. On the other hand, averaging is needed to obtain the
coriolis terms, since u and v are defined at different points. For very small-scale inertia-
gravity waves, the coriolis terms are negligible; we essentially have pure gravity waves.
This suggests that the C-grid will perform well if the horizontal resolution of the model is
high enough so that the smallest waves that can be represented on the grid are insensitive
to the Coriolis force. More precisely, AL argued that the C-grid does well when the grid
size is small compared to λ , the radius of deformation. A plot of the dispersion equation,
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given in Fig. 14.3, shows that the frequency increases monotonically with wave number,
as in the exact solution, although not as rapidly. Recall, however, that this plot is for the
special case λ/d = 2. We return to this point later.

From Fig. 14.1, you can see that the one-dimensional A-grid is equivalent to the super-
position of two one-dimensional C-grids, shifted with respect to each other. Fig. 14.2
shows that the two-dimensional A-grid is equivalent to a super-position of four (shifted)
two-dimensional C-grids (blue, red, orange, and black).

Next, we turn to the D grid. Inspection of the stencil shown in Fig. 14.2 reveals that the
D grid allows a simple evaluation of the geostrophic wind. In view of the importance of
geostrophic balance for large-scale motions, this may appear to be an attractive property.
It is also apparent, however, that considerable averaging is needed in the pressure-gradient
force, mass convergence / divergence, and even in the Coriolis terms. As a result, the
dispersion equation for the D grid, shown in Fig. 14.3, is very badly behaved, giving zero
phase speed for the shortest represented waves, and also giving a zero group speed for some
modes.

Finally, consider the the E-grid. As shown in Fig. 14.2, the E-grid can be viewed as a
modified B-grid, rotated by 45◦. Note, however, that the wind components u and v are not
rotated. Because the grid has been rotated, the grid spacing for the E-grid is d∗ ≡

√
2d, for

the same “density” of h points as in the other four grids. The mass can be considered to
live inside the rotated grey cells. The rotation of the grid does not change the meaning of
the u and v components of the wind, however, which point in the same directions as before,
diagonally across the corners of the grey cells surrounding the mass points; this is different
from the B-grid, on which, as mentioned above, the velocity components point along the
directions of the walls that intersect at the corners of the mass cells.

The E-grid at first seems perfect; no averaging is needed for the Coriolis terms, the
pressure-gradient terms, or the mass convergence / divergence terms. Note, however, that
the E-grid can be considered to live within the overlapping but unrotated orange and blue
boxes. From this point of view, the E-grid is the superposition of two C-grids, shifted with
respect to each other, so that the v points on one of the C-grids coincide with the u points on
the other, and vice versa. One of the two C-grid models is represented by the red variables
in the figure, and the other by the black variables.

In 14.3, the nondimensional frequency for the E-grid is plotted as a function of kd∗ and
ld∗, out to a value of 2π; this corresponds to the shortest “one-dimensional” mode. The
group speed is zero for some combinations of k and l.

Fig. 14.2 also shows that the A-grid can be viewed as a super-position of two E-grids,
in which one of the E-grids is shifted by one-half of the grid spacing. Since each E-grid
is equivalent to two super-imposed but shifted C-grids, this is consistent with our earlier
statement that the two-dimensional A-grid is equivalent to four shifted two-dimensional
C-grids.
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Now recall the conclusion of AL, mentioned earlier, that the C-grid gives a good sim-
ulation of geostrophic adjustment provided that λ/d > 1. Large-scale modelers are never
happy to choose d and λ so that λ/d can be less than one. Nevertheless, in practice modes
for which λ/d << 1 can be unavoidable, at least for some situations. For example, Hansen
et al. (1983) described a low-resolution atmospheric GCM, which they called Model II,
designed for very long climate simulations in which low resolution was a necessity. Model
II used A-grid size of 10 degrees of longitude by 8 degrees of latitude; this means that the
grid size was larger than the radius of deformation for many of the physically important
modes that could be represented on the grid. As shown by AL, such modes cannot be well
simulated using the C-grid. Having experienced these problems with the C-grid, Hansen
et al. (1983) chose the B-grid for Model II.

Ocean models must contend with small radii of deformation, so that very fine-grids are
needed to ensure that λ/d > 1, even for external modes. For this reason, ocean models
tend to use the B-grid (e.g., Semtner and Chervin (1992)).

In addition, three-dimensional models of the atmosphere and ocean generate internal
modes. With vertical structures typical of current general circulation models, the highest
internal modes can have radii of deformation on the order of 50 km or less. The same model
may have a horizontal grid spacing on the order of 500 km, so that λ/d can be on the order
of 0.1. Fig. 14.4 demonstrates that the C-grid behaves very badly for λ/d = 0.1. The
phase speed actually decreases monotonically as the wave number increases, and becomes
very small for the shortest waves that can be represented on the grid. Janjić and Mesinger
(1989) have emphasized that, as a result, models that use the C-grid have difficulty in
representing the geostrophic adjustment of high internal modes. In contrast, the dispersion
relation for the B-grid is qualitatively insensitive to the value of λ/d. The B-grid has
moderate problems for λ/d = 2, but these problems do not become significantly worse for
λ/d = 0.1.

In summary, the C-grid does well with deep, external modes, but has serious prob-
lems with high internal modes, whereas the B-grid has moderate problems with all modes.
The C-grid’s problem with high internal modes can be avoided by using a sufficiently fine
horizontal grid spacing for a given vertical grid spacing.

Now consider an unstaggered grid for the integration of (14.32) - (14.34), which was
called the Z-grid by Randall (1994). This grid is also illustrated in Fig. 14.2. Inspection
shows that with the Z-grid the components of the divergent part of the wind “want” to be
staggered as in the C-grid, while the components of the rotational part of the wind “want”
to be staggered as in the D grid. This means that the Z-grid does not correspond to any of
the grids A through E.

No averaging is required with the Z-grid. The only spatial differential operator appear-
ing in (14.32) - (14.34) is the Laplacian, ∇2 ( ), which is applied to h in the divergence
equation. With the usual centered finite-difference stencils, the finite-difference approxi-
mation to ∇2h is defined at the same point as h itself. An unstaggered grid is thus a natural
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choice for the numerical integration of (14.32) - (14.34).

Fig. 14.4 shows that the dispersion relation for the Z-grid is very close to that of the
C-grid, for λ/d = 2, but is drastically different for λ/d = 0.1. Whereas the C-grid behaves
very badly for λ/d = 0.1, the dispersion relation obtained with the Z-grid is qualitatively
insensitive to the value of λ/d; it resembles the dispersion relation for the continuous
equations, in that the phase speed increases monotonically with wave number and the group
speed is non-zero for all wave numbers. Since the Z-grid is unstaggered, collapsing it to
one dimension has no effect.

The discussion presented above suggests that geostrophic adjustment in shallow water
is well simulated on an unstaggered grid when the vorticity and divergence equations are
used. The vorticity and divergence equations are routinely used in global spectral models,
but are rarely used in global finite-difference models. The reason seems to be that it is
necessary to solve elliptic equations to obtain the winds from the vorticity and divergence,
e.g., to evaluate the advection terms of the nonlinear primitive equations. Experience shows
that this is not a major practical problem.

14.5 Other meshes

In order to define the grids A-E for a square mesh, we have had to specify both the locations
and the orientations of the velocity components that are used to represent the horizontal
wind. We now generalize the discussion to include the triangular and hexagonal meshes,
applying the definitions consistently in all cases.

The A-grid has the both velocity components co-located with the mass.

The A-Grid and Z-grid do not involve any staggering, so they can be unambiguously
defined on triangular or hexagonal meshes, or for that matter meshes of any other shape. In
the case of the A-grid, we define and predict two mutually orthogonal components of the
horizontal wind vector. In the case of the Z-grid, only scalars are involved.

The B-grid can be generalized by defining it to have the horizontal velocity vectors at
the corners of mass cells. The vector is represented using components that point along the
walls that intersect at the corners. On a triangular mesh, there are 6 intersecting walls at
each corner, on a quadrilateral mesh there are two, and on a hexagonal mesh there are three.
You would not wish to use six (highly redundant) velocity components at the corners of a
triangular mesh, or three (still redundant) velocity components at the corners of a hexagonal
mesh. From this point of view, the B-grid is really only compatible with quadrilateral
meshes.

The C-grid can be generalized by defining it to have the normal component of the
velocity on the edges of all mass-cells.

The generalized D-grid has the tangential velocity component on the edges of mass-
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cells.

As with the B-grid, the generalized E-grid has wind vectors on the corners of the mass-
cells. In contrast to the B-grid, however, the E-grid’s wind components point diagonally
across the cells, as shown for the grey cells in the illustration of the E-grid in Fig. 14.2.
There would be six such components on a triangular mesh, two on a quadrilateral mesh,
and three on a hexagonal mesh. With this definition, the E-grid cannot be defined for the
triangular mesh or hexagonal meshes.

Alternatively, we could try to define the E-grid as the superposition of multiple hexag-
onal C-grids, such that two-dimensional velocity vectors, represented by the tangential and
normal components, are defined on each cell wall, as with the orange-grid cells shown for
the E-grid in Fig. 14.2. It is not possible to create triangular or hexagonal E-grids in this
way, so again we find that the E-grid cannot be defined for triangular or hexagonal meshes.

From this point of view, the E-grid is really only compatible with quadrilateral meshes.
It is possible, however, to create an E-grid by combining a hexagonal C-grid with a trian-
gular C-grid. Naturally, the resulting grid suffers from computational modes.

Table 14.1: The numbers of corners and edges per face, on the triangular, square, and hexagonal
meshes.

Triangles Squares Hexagons

Corners per face 1/2 1 2

Edges per face 3/2 2 3

�1

Table 14.1 lists the numbers of corners and edges per face, on the triangular, square,
and hexagonal meshes. Table 14.2 lists the number of prognostic degrees of freedom in the
wind field per mass point, for the generalized A-E and Z-grids, on triangular, square, and
hexagonal meshes. From a physical point of view, there should be two prognostic degrees
of freedom in the wind field per mass point. The A-grid and Z-grid achieve this ideal on
all three meshes. None of the other grids has two degrees of freedom per mass point in the
horizontal wind for all three mesh shapes.

Table 14.2 suggests that, if C-staggering is desired, then a square (or quadrilateral)
mesh should be used. If squares are not used, then Z-staggering is best, but Z-staggering
works fine for squares (and triangles), too.
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Table 14.2: The number of prognostic degrees of freedom in the horizontal wind field, per mass
point, on grids A-E and Z, and for triangular, square, and hexagonal meshes. For the Z-grid, the
vorticity and divergence carry the information about the wind field.

Grid Triangles Squares Hexagons

A 2 2 2

B 1 2 4

C 3/2 2 3

D 3/2 2 3

E Does not exist 2 Does not exist

Z 2 2 2

�1

14.6 Time-differencing schemes for the shallow-water equations

In this section we will consider both space and time differencing for the linearized shallow
water equations.

We begin our discussion with the one-dimensional shallow-water equations. The spatial
coordinate is x, and the single velocity component is u. We consider the non-rotating case
with v≡ 0. We have divergence (i.e., ∂u/∂x), but no vorticity. Linearizing about a state of
rest, the continuous equations are (14.3) and (14.4).

We use a staggered one-dimensional (1D) grid, which for this simple problem can be
interpreted as the 1D C-grid, or the 1D B-grid, or the 1D Z-grid.

We can anticipate from our earlier analysis of the oscillation equation that forward time-
differencing for both the momentum equation and the continuity equation is unstable, and
that is actually true. We can also anticipate that a scheme that is centered in both space and
time will be conditionally stable and neutral when stable. Such a scheme is given by:

un+1
j+ 1

2
−un−1

j+ 1
2

2∆t
+g
(hn

j+1−hn
j

d

)
= 0, (14.43)
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hn+1
j −hn−1

j

2∆t
+H

(un
j+ 1

2
−un

j− 1
2

d

)
= 0. (14.44)

Compare with (14.20) - (14.21). With assumed solutions of the form un
j = ûn exp(ik jd),

hn
j = ĥn exp(ik jd) and the usual definition of the amplification factor, we find that

(
λ

2−1
)

ûn +λ
g∆t
d

4isin
(

kd
2

)
ĥn = 0, (14.45)

λ
H∆t

d
4isin

(
kd
2

)
ûn +

(
λ

2−1
)

ĥn = 0. (14.46)

Non-trivial solutions occur for

(
λ

2−1
)2

+λ
2
(

4cGW ∆t
d

)2

sin2
(

kd
2

)
= 0, (14.47)

where cGW ≡
√

gH. As should be expected with the leapfrog scheme, there are four modes
altogether. Two of these are physical and two are computational.

We can solve (14.47) as a quadratic equation for λ 2. As a first step, rewrite it as

(
λ

2)2
+λ

2 (−2+b)+1 = 0, (14.48)

where, for convenience, we define

b≡
(

4cGW ∆t
d

)2

sin2
(

kd
2

)
≥ 0. (14.49)

Obviously, for ∆t→ 0 with fixed d we get b→ 0. The solution of (14.41) is

214



Revised Monday 23rd August, 2021 at 15:57

λ
2 =
−(b−2)±

√
(b−2)2−4

2

=
−(b−2)±

√
b(b−4)

2
.

(14.50)

Inspection of (14.43) shows that for b→ 0, we get |λ | → 1, as expected. For λ = |λ |eiθ

we see that

|λ |2 [cos(2θ)+ isin(2θ)] =
−(b−2)±

√
b(b−4)

2
. (14.51)

First consider the case b≤ 4. It follows from (14.51) that

|λ |2 cos(2θ) =−
(

b−2
2

)
, and |λ |2 sin(2θ) =

±
√

b(4−b)
2

, for b≤ 4, (14.52)

from which we obtain

tan(2θ) =

√
b(4−b)
2−b

for b≤ 4, (14.53)

and

|λ |4 =
(

b−2
2

)2

+
b(4−b)

4
= 1 for b≤ 4. (14.54)

The scheme is thus neutral for b ≤ 4, as was anticipated from our earlier analysis of the
oscillation equation.

Next, consider the case b > 4. Returning to (14.44), we find that

sin(2θ) = 0, cos(2θ) =±1 and |λ |2 =
−(b−2)±

√
b(b−4)

2
for b > 4. (14.55)
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You should be able to see that for b > 4 there are always unstable modes.

We conclude that the scheme is stable and neutral for b≤ 4. This condition can also be
written as

(
cGW ∆t

d

)∣∣∣∣sin
(

kd
2

)∣∣∣∣≤ 1
2

(14.56)

The worst case occurs for
∣∣sin

(kd
2

)∣∣ = 1, which corresponds to kd = π , i.e., the shortest
wave that can be represented on the grid. It follows that

cGW ∆t
d

<
1
2

is required for stability, (14.57)

and that the shortest wave will be the first to become unstable.

In atmospheric models, the fastest gravity waves, i.e., the external-gravity or “Lamb”
waves, have speeds on the order of 300 m s -1, which is the speed of sound in the Earth’s
atmosphere. The stability criterion for the leapfrog scheme as applied to the wave problem,
i.e., (14.49), can therefore be painful. In models that do not permit vertically propagating
sound waves (i.e., quasi-static models, or anelastic models, or shallow-water models), the
external gravity wave is almost always the primary factor limiting the size of the time step.
This is unfortunate, because the external gravity modes are believed to play only a minor
role in weather and climate dynamics.

With this in mind, the gravity-wave terms of the governing equations are often approx-
imated using implicit differencing. For the simple case of first-order backward-implicit
differencing, we replace (14.36) - (14.37) by

un+1
j+ 1

2
−un

j+ 1
2

∆t
+g

(
hn+1

j+1−hn+1
j

d

)
= 0, (14.58)
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j −hn
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∆t
+H
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2
−un+1

j− 1
2

d

= 0. (14.59)

216



Revised Monday 23rd August, 2021 at 15:57

This leads to

(λ −1) ûn +λ
g∆t
d

2isin
(

kd
2

)
ĥn = 0, (14.60)

λ
H∆t

d
2isin

(
kd
2

)
ûn +(λ −1) ĥn = 0. (14.61)

The condition for non-trivial solutions is

(λ −1)2 +λ
24
(

cGW ∆t
d

)2

sin2
(

kd
2

)
= 0, (14.62)

which, using the definition (14.49), is equivalent to

λ
2
(

1+
b
4

)
−2λ +1 = 0. (14.63)

This time there are no computational modes; the two physical modes satisfy

λ
2 =

2±
√

4−4
(
1+ b

4

)
2
(
1+ b

4

) =
1± i

√
b
4

1+ b
4

. (14.64)

The solutions are always oscillatory, and

|λ |2 =
1+ b

4(
1+ b

4

)2 =
4

4+b
≤ 1, (14.65)

i.e., the scheme is unconditionally stable, and in fact it damps all modes.

The trapezoidal implicit scheme gives superior results; it is more accurate, and uncon-
ditionally neutral. We replace (14.50) - (14.51) by
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This leads to

(λ −1) ûn +
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d
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For non-trivial solutions, we need

(λ −1)2 +(1+λ )2
(

cGW ∆t
d

)2

sin2
(

kd
2

)
= 0. (14.70)

Using (14.49) we can show that this is equivalent to

λ
2−2λ

(
16−b
16+b

)
+1 = 0. (14.71)

The solutions are

λ =

(
16−b
16+b

)
± i

√
1−
(

16−b
16+b

)2

. (14.72)

It follows that |λ |2 = 1 for all modes, i.e., the trapezoidal scheme is unconditionally neutral.
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The disadvantage of such implicit schemes is that they give rise to matrix problems,
i.e., the various unknowns must be solved for simultaneously at all grid points. A simpler
alternative, which is conditionally stable but allows a longer time step, is the “forward-
backward” scheme, given by

un+1
j+ 1

2
−un

j+ 1
2

∆t
+g

(
hn+1

j+1−hn+1
j

d

)
= 0, (14.73)
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2
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2

d

)
= 0. (14.74)

This scheme can be called “partially implicit,” because the end-of-time-step mass field
predicted using (14.74) is used to compute the pressure-gradient force in (14.73). The
continuity equation uses a forward time step. There is no need to solve a matrix problem.

We know that the forward scheme for both equations is unconditionally unstable, and
that the backward scheme for both equations is unconditionally stable and damping. When
we “combine” the two approaches, in the forward-backward scheme, the result turns out to
be conditionally stable with a fairly long allowed time step, and neutral when stable. From
(14.66) and (14.67), we get

(λ −1) ûn +λ
g∆t
d

2isin
(

kd
2

)
ĥn = 0, (14.75)

H∆t
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This leads to
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(
cGW ∆t

d

)2

sin2
(

kd
2

)
= 0, (14.77)

which is equivalent to
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λ
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The discriminant is non-negative for

b≤ 16, (14.80)

which corresponds to

(
cGW ∆t

d

)2

sin2
(

kd
2

)
≤ 1. (14.81)

It follows that

cGW ∆t
d
≤ 1 is required for stability. (14.82)

The time step can thus be twice as large as with the leapfrog scheme. When (14.73) is
satisfied, we have |λ |2 = 1 for all modes, i.e., the scheme is neutral when stable (like the
leapfrog scheme). The forward-backward scheme is thus very attractive: It allows a long
time step, it is neutral when stable, it is non-iterative, and it has no computational modes.

Going to two dimensions and adding rotation does not change much. The Coriolis terms
can easily be made implicit if desired, since they are linear in the dependent variables and
do not involve spatial derivatives.
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14.7 The effects of a mean flow

We now generalize our system of equations to include advection by a mean flow U , in the
following manner:

(
∂

∂ t
+U

∂

∂x

)
u+g

∂h
∂x

= 0, (14.83)

(
∂

∂ t
+U

∂

∂x

)
v = 0, (14.84)

(
∂

∂ t
+U

∂

∂x

)
h+H

∂u
∂x

= 0. (14.85)

We have also added a velocity component, v, in the y-direction. The dependent perturbation
quantities u, v, and h are assumed to be constant in y. In this sense the problem is one-
dimensional, even though v 6= 0 is allowed.

Since (15.88) through (14.83) are hyperbolic, we can write them in the normal form
discussed earlier in this chapter:

[
∂

∂ t
+(U + c)

∂

∂x

](
u+
√

g
H

h
)
= 0, (14.86)

(
∂

∂ t
+U

∂

∂x

)
v = 0, (14.87)

[
∂

∂ t
+(U− c)

∂

∂x

](
u−
√

g
H

h
)
= 0. (14.88)

Here c ≡
√

gH. We assume that c > |U |, which is often true in the atmosphere. For
(14.86) and (14.88), the lines x− (U + c) t = constant and x− (U− c) t = constant are the
characteristics, and are shown as the solid lines in Fig. 14.5. Everything is similar to the
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case without advection, except that now the slopes of the two characteristics which involve
c differ not only in sign but also in magnitude.

We also have an additional equation, namely (14.87). This, of course, is an advec-
tion equation, and so v is a constant along the lines x−Ut = constant, which are shown
schematically by the broken lines in Fig. 14.5. We should then specify v only on the inflow
boundary. The divergence is given by ∂u

∂x , and the vorticity by ∂v
∂x . We conclude that for this

one-dimensional case the normal or divergent component of the wind (u) can be specified
at both boundaries, but the tangential or rotational component (v) can be specified only at
the inflow boundary.

14.8 Summary and conclusions

Horizontally staggered grids are important because they make it possible to avoid or min-
imize computational modes in space, and to realistically simulate geostrophic adjustment.
The Z-grid gives the best overall simulation of geostrophic adjustment, for a range of grid
sizes relative to the radius of deformation. In order to use the Z-grid, it is necessary to solve
a pair of Poisson equations on each time step.

The rapid phase speeds of external gravity waves limit the time step that can be used
with explicit schemes. Implicit schemes can be unconditionally stable, but in order to use
them it is necessary to solve the equations simultaneously for all grid points.

14.9 Problems

1. Derive the dispersion equation for the C-grid, as given in Fig. 14.2.

2. Consider the linearized (about a resting basic state) shallow-water equations with-
out rotation on the one-dimensional versions of the A-grid and the C-grid. Let the
distance between neighboring mass points be d on both grids. Use leapfrog time dif-
ferencing and centered space differencing. Derive the stability criteria for both cases,
and compare the two results.

3. Write down differential-difference equations for the linearized (about a resting basic
state) one-dimensional shallow water equations without rotation on an unstaggered
grid (the A-grid), using fourth-order accuracy for the spatial derivatives. (Just use the
fourth-order scheme discussed in Chapter 2; you are not required to prove the order
of accuracy in this problem.) Perform an analysis to determine whether or not the
scheme has computational modes. Compare with the corresponding second-order
scheme.

4. Program the two-dimensional linearized shallow water equations for the square A-
grid and the square C-grid, using a mesh of 101 x 101 mass points, with periodic
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boundary conditions in both directions. Use leapfrog time differencing. Set f =
10−4 s−1, g = 0.1 m s−1, H = 103 m, and d = 105 m. In the square region

45≤ i≤ 55,

45≤ j ≤ 55,
(14.89)

apply a forcing in the continuity equation, of the form

(
∂h
∂ t

)
noise

= (−1)i+ jN sin(ωNt) , (14.90)

and set
(

∂h
∂ t

)
noise

= 0 at all other grid points. Adopt the values ωN = 2π×10−3 s−1;

and N = 10−4 m s−1. In addition, apply a forcing to the entire domain of the form

(
∂h
∂ t

)
smooth

= S sin
(

2πx
L

)
sin
(

2πy
L

)
sin(ωSt) (14.91)

with ωS =
2π
√

gH
L s−1 and S= 10−4 m s−1. Here L is 101×d the width of the domain.

Finally, include friction in the momentum equations, of the form

(
∂u
∂ t

)
fric

=−Ku,

(
∂v
∂ t

)
fric

=−Kv,

(14.92)

where K = 2×10−5 s−1. Use forward time differencing (instead of leapfrog time dif-
ferencing) for these friction terms. Because the model has both forcing and damping,
it is possible to obtain a statistically steady solution.

(a) Using the results of problem 2 above, choose a suitable time step for each
model.

(b) As initial conditions, put u = 0, v = 0, and h = 0. Run both versions of the
model for at least 105 simulated seconds, and analyze the results. Your analysis
should compare various aspects of the solutions, in light of the discussion given
in this chapter.
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(c) Repeat your runs using f = 3×10−3 s−1. Discuss the changes in your results.

5. Show that there is no pressure-gradient term in the vorticity equation for the shallow-
water system on the C-grid.

6. Derive the form of the pressure-gradient term in the divergence equation for the
shallow-water system on the C-grid, and compare with the continuous case.
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Figure 14.3: Grids, dispersion equations, and plots of dispersion equations for grids A - E and Z.
The continuous dispersion equation and its plot are also shown for comparison. For plotting, it has
been assumed that λ/d = 2.
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Figure 14.4: Dispersion relations for the continuous shallow water equations, and for finite-
difference approximations based on the B, C, and Z-grids. The horizontal coordinates in the plots
are kd and ld, respectively, except for the E-grid, for which kd∗ and ld∗ are used. The vertical co-
ordinate is the normalized frequency, σ/ f . For the E-grid, the results are meaningful only in the
triangular region for which kd∗+ ld∗ ≤ 2π. The left column shows results for λ/d = 2, and the right
column for λ/d = 0.1.
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Figure 14.5: Characteristics for the case of shallow water wave propagation with an advecting
current U .
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Chapter 15

The Wall

15.1 Introduction

Boundary conditions can be real or fictitious, because boundaries can be real or fictitious.

In the simple case of a real wall, the normal component of the velocity vanishes, which
implies that no mass crosses the wall. The Earth’s surface is a “real wall” at the lower
boundary of the atmosphere. With some vertical coordinate systems (such as height), to-
pography imposes a lateral boundary condition in an atmospheric model. Ocean models
describe flows in basins, and so (depending again on the vertical coordinate system used)
have “real” lateral boundary conditions.

Most numerical models have “fictitious walls” or “lids” at their tops. Limited area
models have artificial lateral boundaries.

Models in which the grid spacing changes rapidly (e.g., nested-grid models) effectively
apply boundary conditions where the dissimilar grids meet.

15.2 Inflow boundaries

Suppose that the initial condition is given only in a certain limited domain. To illustrate, in
Fig. 15.1, lines of constant x− ct are shown, for c > 0. If the initial condition is specified
at t = 0, between the points (x = x0, t = 0), and (x = x1, t = 0), then A(x, t) is determined
in the triangular domain ABC. To determine A(x, t) above the line x− ct = x0, we need
an “inflow boundary condition” at t > 0 at x = x0. When this boundary condition and
the initial condition at t = 0 between the points A and B are specified, we can obtain the
solution within the entire domain (x0 ≤ x≤ x1). If the subsidiary conditions are given so
that the solution exists and is determined uniquely, we have a well-posed problem. Note
that a boundary condition at x = x1 is of no use.

At an inflow boundary, say at x = 0, we have to prescribe A(0, t) for all time. As an
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Figure 15.1: An initial condition that is specified between x = x0 and x = x1 determines the solution
only along the characteristics shown.

example, suppose that A(0, t) is a simple harmonic function, with frequency ω . The value
of ω is determined by the upstream boundary condition. We can choose ω any way we
please.

Referring again to the advection equation, i.e.,

∂A
∂ t

+ c
∂A
∂x

= 0, (15.1)

we assume c > 0 and write

A(x, t) = Re
[
Â(x)e−iωt

]
for ω 6= 0 (15.2)

where Â(0) is a real constant. Then

A(0, t) = Â(0)Re
(
e−iωt)= Â(0)cosωt. (15.3)
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Since c > 0, we have effectively prescribed an “inflow” or “upstream” boundary condition.
Use of (15.2) in (15.1) gives

−iωÂ+ c
dÂ
dx

= 0, (15.4)

which has the solution

Â(x) = Â(0)eikx. (15.5)

The dispersion equation is obtained by substituting (15.5) into (15.4):

ω = ck. (15.6)

The full solution is thus

A(x, t) = Â0Re{exp [i(kx−ωt)]}
= Â0Re{exp [ik (x− ct)]} .

(15.7)

Now consider the same problem again, this time as represented through the differential-
difference equation

dA j

dt
+ c
(

A j+1−A j−1

2∆x

)
= 0. (15.8)

We assume a solution of the form

A j = Re
[
Â je−iωt

]
, (15.9)

we obtain the now-familiar dispersion relation
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ω = c
[

sin(k∆x)
∆x

]
. (15.10)

Compare (15.10) with (15.6). Fig. 15.2 gives a schematic plot, with ω∆x/c and k∆x as
coordinates, for the true dispersion equation (15.6) and the approximate dispersion equation
(15.10). For a given ω we have one k in the exact solution. In the numerical solution,
however, we have two ks, which we are going to call k1 and k2. As discussed below, for
ω > 0, k1 corresponds to the exact solution. The figure makes it clear that

k2∆x = π− k1∆x. (15.11)

The group velocity is positive, as it should be, for k∆x < π/2 and negative for k∆x > π/2.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

k  ∆x

ω∆x
c

= k∆x

k∆x

= sink∆x

1 k  ∆x2 

ω∆x
c

ω∆x
c

Figure 15.2: A schematic plot, with ω∆x/c and k∆x as coordinates, for the true solution (5.2) and
the approximate solution (8.5). The dashed line illustrates that, for a given ω, the approximate
solution is consistent with two different wave numbers.

When we studied the leapfrog time-differencing scheme in Chapter 4, we found two
solutions with different frequencies for a given wavelength. Here we have two solutions
with different wavelengths for a given frequency. The solution corresponding to k1 is a
“physical mode” in space, and the solution corresponding to k2 is a “computational mode”
in space. The wavelength that corresponds to k2, i.e., the wavelength of the computational
mode, will always be between 2∆x (which corresponds to k∆x = π) and 4∆x (which cor-
responds to k∆x = π

2 ). For k∆x > π

2 , there really is no physical mode. In other words, the
physical mode exists only for L≥ 4∆x.

231



Revised Monday 23rd August, 2021 at 15:57

In view of (15.10), the condition k1∆x < π

2 , which is required for a physical mode to
exist, corresponds to sin−1 (ω∆x

c

)
< π

2 . This condition can be satisfied by choosing ∆x small
enough, for given values of ω and c. In other words, for a given frequency and wind speed
the grid spacing must be small enough to represent the implied physical wavelength. Put
this way, the conclusion seems like common sense.

Referring back to (15.7), we see that the two modes can be written as

Physical mode : A j = Â0Re
{

exp
[

ik1

(
j∆x− ω

k1
t
)]}

. (15.12)

Computational mode : A j = Â0Re
{

exp
[

ik2

(
j∆x− ω

k2
t
)]}

= Â0Re{exp [i( jπ− k1 j∆x−ωt)]}

= (−1) jÂ0Re
{

exp
[
−ik1

(
j∆x+

ω

k1
t
)]}

.

(15.13)

Here we have used (15.11) and ei jπ =(−1) j. The phase velocity of the computational mode
is equal and opposite to that of the physical mode, and the computational mode oscillates
in space with wave length 2∆x, due to the factor of (−1) j. That’s just terrible.

In general, the solution is a superposition of the physical and computational modes.
For the case c > 0, and if the point j = 0 is the “source of influence,” like a smoke stack,
only a physical mode appears for j > 0 and only a computational mode appears for j < 0.
Fig. 15.3 shows this schematically for some arbitrary time. The dashed line for j < 0
represents (15.13), without the factor (−1) j; the solid line represents the entire expression.
The influence of the computational mode propagates to the left. If the wave length of the
physical mode is very large (compared to ∆x), the computational mode will appear as an
oscillation from point to point, i.e., a wave of length 2∆x.

According to (15.10), the apparent phase change per grid interval, denoted by Ω , is
related to the wave number by

Ω ≡ ω∆x
c

= sin(k∆x) . (15.14)

With the exact equations, Ω = k∆x. Since we control ω , ∆x, and c, we effectively control
Ω .
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Figure 15.3: Schematic illustration of the solution of the advection equation in the neighborhood of
a “smokestack,” which acts as a time-dependent source of the advected quantity. In the numerical
solution, a computational mode appears in the domain j < 0, and a physical mode appears in the
domain j > 0.

Suppose that we give Ω > 1 by choosing a large value of ∆x. In that case, k has to be
complex:

k = kr + iki. (15.15)

To see what this means, we use the mathematical identity

sin(k∆x) = sin(kr∆x)cosh(ki∆x)+ icos(kr∆x)sinh(ki∆x) , (15.16)

which can be derived from Euler’s formula. Substituting from (15.16) into the right-hand
side of (15.14), and equating real and imaginary parts, we find that

Ω = sin(kr∆x)cosh(ki∆x) ,

0 = cos(kr∆x)sinh(ki∆x) .
(15.17)

We cannot accept a solution with sinh(ki∆x) = 0, because this would imply ki∆x = 0, and
we already know that ki 6= 0. Therefore we must take
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cos(kr∆x) = 0, which implies that kr∆x =
π

2
. (15.18)

This is the 4∆x wave, for which

sin(kr∆x) = 1, (15.19)

and so from (15.17) we find that

ki∆x = cosh−1 (Ω)> 0. (15.20)

The inequality follows because we have assumed that Ω > 1. We can now write (15.9) as

A j = Â0Re
[
e−iωteikr j∆xe−ki j∆x

]
. (15.21)

Since ki > 0, the signal dies out downstream, which is obviously unrealistic but will not
make the model crash.

Suppose that we use an uncentered scheme instead of the centered scheme (15.8), e.g.,

dA j

dt
+

c
∆x

(
A j−A j−1

)
= 0, (15.22)

with c > 0. This eliminates the computational mode in space. We will show that the
uncentered scheme damps regardless of the values of ω , ∆x, and c. Let

A j = Âe−iωteik j∆x, (15.23)

A j−1 = Âe−iωteik( j−1)∆x. (15.24)
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Then we obtain the dispersion equation

−iω +
c

∆x

(
1− e−ik∆x

)
= 0. (15.25)

First, suppose that k is real. Setting the real and imaginary parts of (15.25) to zero gives

cos(k∆x) = 1, and −ω + ck
[

sin(k∆x)
k∆x

]
= 0. (15.26)

Since cos(k∆x) = 1 implies that k∆x = 0, this solution is not acceptable. We conclude that
k must be complex.

We therefore use (15.15) to obtain

−iω +
c

∆x

(
1− e−ikr∆xeki∆x

)
= 0. (15.27)

Setting the real part to zero gives

1− eki∆x cos(kr∆x) = 0, (15.28)

and setting the imaginary part to zero gives

Ω + eki∆x sin(kr∆x) = 0. (15.29)

These two equations can be solved for the two unknowns kr and ki. Let

X ≡ eki∆x,

Y ≡ kr∆x.
(15.30)

We will use X and Y as proxies for kr and ki, respectively. Eqs. (15.28) and (15.29) become
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1−X cos(Y ) = 0,

−Ω = X sin(Y ) .
(15.31)

We conclude that

X = secY,

− tanY = Ω ,
(15.32)

from which it follows that

X ≡ eki∆x = sec
[
tan−1 (Ω)

]
> 1. (15.33)

From (15.33), we see that ki > 0. Substituting back, we obtain

A j = ÂRe
[
e−iωteikr j∆xe−ki j∆x

]
. (15.34)

This shows that, as j→ ∞, the signal weakens.

15.3 Outflow boundaries

Suppose that we are carrying out our numerical solution of the one-dimensional advection
equation over the region between j = 0 and j = J, as shown in Fig. 15.4, using centered
space-differencing with a continuous time derivative, i.e.,

dA j

dt
+ c
(

A j+1−A j−1

2∆x

)
= 0, (15.35)

and that we are given A at j = 0 as a function of time. At j = 1 we can write, using centered
space differencing,
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dA1

dt
+ c
(

A2−A0

2∆x

)
= 0. (15.36)

At j = J−1 we have

dAJ−1

dt
+ c
(

AJ−AJ−2

2∆x

)
= 0, (15.37)

and at j = J we have

dAJ

dt
+ c
(

AJ+1−AJ−1

2∆x

)
= 0. (15.38)

Eq. (15.38) shows that in order to predict AJ , we need to know AJ+1, which is not available
because it lies outside our domain. We need to give a condition that can be used to deter-
mine AJ as a function of time, or in other words, a “computational boundary condition” at
the fictitious outflow boundary. Ideally, this artificial boundary condition should not affect
the solution in the interior in any way, since its only purpose is to limit (for computational
purposes) the size of the domain.

Figure 15.4: An outflow boundary condition must be specified at j = J in this finite and non-periodic
domain.

For the continuous advection equation, we need to give and can give boundary condi-
tions only at the inflow point, but for the finite-difference equation we also need a compu-
tational boundary condition at the outflow point. With the leapfrog scheme, we needed two
initial conditions. The current situation is somewhat analogous. Essentially, both problems
arise because of the three-level differences (one in time, the other in space) used in the
respective schemes. If the computational boundary condition is not given properly, there is
a possibility of exciting a strong computational mode.
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Table 15.1: A summary of the computational boundary conditions studied by Nitta.

AJ =  constant in time

AJ
n = AJ−1

n

dA
dt

⎛
⎝⎜

⎞
⎠⎟ J
=

dA
dt

⎛
⎝⎜

⎞
⎠⎟ J−1

AJ
n = AJ−2

n

AJ
n = 2AJ−1

n − AJ−2
n

dA
dt

⎛
⎝⎜

⎞
⎠⎟ J
= 2 dA

dt
⎛
⎝⎜

⎞
⎠⎟ J−1

−
dA
dt

⎛
⎝⎜

⎞
⎠⎟ J−2

dA
dt

⎛
⎝⎜

⎞
⎠⎟ J
= −c AJ

n − AJ−1
n

∆x
⎛
⎝⎜

⎞
⎠⎟

dA
dt

⎛
⎝⎜

⎞
⎠⎟ J
= −

c
2∆x

3AJ
n − 4AJ−1

n + AJ−2
n( )

Identifier Form of Scheme

Method 1

Method 2

Method 3

Method 4

Method 5

Method 6

Method 7

Method 8

�1

Nitta (1964) presented some results of integrating the advection equation with leapfrog
time differencing, using various methods of specifying the computational boundary condi-
tion. Nitta’s paper deals mainly with space differencing, but as discussed later his conclu-
sions are influenced by his choice of leapfrog time differencing. Table 15.1 summarizes
the boundary conditions or “Methods” that Nitta considered. The results that he obtained
are shown in Fig. 15.5.

With Method 1, AJ is constant in time. This is obviously a bad assumption, and it leads
to bad results.

With Method 2, An
J = An

J−1, i.e., the first derivative of A vanishes at the wall. Method 3
is similar, but in terms of the time derivatives.

With Method 4, An
J = An

J−2, so it looks similar to Method 2. Method 4 is just asking for
trouble, though, because An

J = An
J−2 is characteristic of the 2∆x mode.

Method 5, on the other hand, sets An
J = 2An

J−1−An
J−2, a linear extrapolation of the two
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Figure 15.5: A summary of Nitta’s numerical results, with various computational boundary condi-
tions. Here leapfrog time differencing was used.

interior points to An
J . This is equivalent to setting the second derivative to zero at the wall. It

can also be interpreted as a linear extrapolation to the wall. Method 6 is similar to Method
5, but uses a linear extrapolation of the time derivative.

Method 7 predicts A j by means of
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dAJ

dt
+ c
(

An
J−An

J−1

∆x

)
= 0, (15.39)

which uses uncentered differencing in space. This is equivalent to using AJ+1 = 2AJ−1,
which is very similar to Method 5. For this reason, Methods 5 and 7 give very similar
results.

Method 8 is similar to Method 7, but has higher-order accuracy.

We now perform an analysis to try to understand Nitta’s results. We assume that the do-
main extends far upstream towards decreasing j. We can use the results of our earlier anal-
ysis. In general, the solution can be expressed as a linear combination of the physical and
computational modes. Recall that the physical mode is given by A j ∼ exp

[
ik1

(
j∆x− ω

k1
t
)]

and the computational mode is given by A j ∼ (−1) j exp
[
−ik1

(
j∆x+ ω

k1
t
)]

. Since the
computational mode propagates “upstream,” the outflow boundary for the physical mode
is effectively the inflow boundary for the computational mode. We examine the solution
at the outflow boundary in order to determine the “initial” amplitude of the computational
mode that is potentially excited there. Obviously we want that amplitude to be as small as
possible.

Referring to (15.12) and (15.13), we can write

A j = ÂRe
{

exp
[
ik
(

j∆x− ω

k
t
)]

+ r(−1) j exp
[
−ik

(
j∆x+

ω

k
t
)]}

, (15.40)

where k (now without a subscript) is the wave number of the physical mode and r is the
“virtual reflection rate” at the boundary for the computational mode, so that |r| is the ratio
of the amplitude of the computational mode to that of the physical mode. We want to make
r = 0.

In Method 1, AJ is kept constant. Assume AJ = 0, for simplicity, and let J be even
(“without loss of generality”), so that (−1)J = 1. We then can write, from (15.40),

AJ = ÂRe
{

exp
[
ik
(

J∆x− ω

k
t
)]

+ r exp
[
−ik

(
J∆x+

ω

k
t
)]}

= Â [exp(ikJ∆x)+ r exp(−ikJ∆x)]exp(−iωt)

= 0.

(15.41)
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Since e−iωt 6= 0, we conclude that

r =
−exp(ikJ∆x)
exp(−ikJ∆x)

=−exp(2ikJ∆x) , (15.42)

which implies that |r| = 1. This means that the incident wave is totally reflected. The
computational mode’s amplitude is equal to that of the physical mode - a very unsatisfactory
situation, as can be seen from Fig. 15.5.

With Method 2, and still assuming that J is even, we put uJ = uJ−1. Then we obtain

exp(ikJ∆x)+ r exp(−ikJ∆x) = exp [ik (J−1)∆x]− r exp [−ik (J−1)∆x] , (15.43)

which leads to |r|= tan k∆x
2 . For L = 4∆x, we get |r|= 1. Recall that L < 4∆x need not be

considered. For large L, we get |r| → 0, i.e., very long waves are not falsely reflected. In
Fig. 15.5, the incident mode is relatively long.

With Method 5, it turns out that |r|= tan2 (k∆x
2

)
. Fig. 15.6 is a graph of |r| versus k∆x

for Methods 2 and 5. Because k is the wave number of the physical mode, the plot only
shows the region 0 ≤ k∆x ≤ π/2. Higher-order extrapolations give even better results for
the lower wave numbers, but there is little motivation for doing this.

In actual computations there will also be an inflow boundary, and this will then act as
an outflow boundary for the computational mode, which has propagated back upstream.
A secondary mode will then be reflected from the inflow boundary and will propagate
downstream, and so on. There exists the possibility of multiple reflections back and forth
between the boundaries. Can this process amplify in time, as in a laser? It can if there is a
source of energy for the computational mode.

With Method 1, the computational mode is “neutral,” in the sense that |r|= 1. With all
of the seven other methods, the computational mode is damped. Recall from Chapter 4 that
any damping process is unstable with the leapfrog scheme, i.e., when the leapfrog scheme
is used there will in fact be an “energy source” for the computational model. This explains
why Platzman (1954) concluded in an analysis based on the leapfrog scheme that Method
1 is necessary for stability. But we don’t have to use the leapfrog scheme.

If we do use Method 1 with the leapfrog scheme, the domain is quickly filled with
small scale “noise,” but the “noise” remains stable. If we use Methods 5 or 7 with the
leapfrog scheme, the domain will be littered with “noise” after a considerable length of
time (depending on the width of the domain and the velocity c), but once the noise becomes
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Figure 15.6: A graph of |r| versus k∆x for Methods 2 (labeled l = 0) and 5 (labeled l = 1). The
curve labeled l = 2 shows the results obtained when the finite-difference approximation to the third
derivative is set to 0. From Matsuno (1966).

noticeable, it will amplify and the model will blow up. Why? There is an energy loss in
the solution domain through the boundaries when using Method 5 or 7. With Method 1,
all of the energy is held, whereas with Methods 5 and 7 some of the energy is lost due to
incomplete reflection at the outflow boundary. This energy loss paradoxically causes the
leapfrog scheme to blow up. The situation is analogous to using the leapfrog scheme with
a friction term, which was discussed in Chapter 4. The bottom line? Don’t use the leapfrog
scheme.

A more complete model with a larger domain would in fact permit energy to pass out
through the artificial boundaries of the smaller domain considered here. Schemes that
permit such loss, such as Methods 5 and 7, are therefore more realistic, if used with a
suitable time-differencing scheme.

Nitta’s schemes can also be analyzed in terms of the energy flux in the neighborhood
of the outflow boundary. Multiplying the one-dimensional advection equation by 2A, we
obtain

∂A2

∂ t
+

∂

∂x

(
cA2)= 0. (15.44)

This shows that A2 is advected. Defining A2 as the “energy,” we see that cA2 is the energy
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flux and ∂

∂x

(
cA2) is the energy flux divergence. Now suppose that the advection equation

is approximated by the differential difference equation:

dA j

dt
+ c
(

A j+1−A j−1

2∆x

)
= 0. (15.45)

Multiplying (15.45) by 2A j, we obtain

d
dt

A2
j +

(
cA jA j+1− cA j−1A j

∆x

)
= 0. (15.46)

Comparing (15.46) with (15.44), we see that cA jA j+1 and cA j−1A j are the energy fluxes
from grid point j to grid point j+1, and from grid point j−1 to grid point j, respectively,
as shown in Fig. 15.7. Applying (15.46) to the grid point j+1 gives

d
dt

A2
j+1 +

(
cA j+1A j+2− cA jA j+1

∆x

)
= 0. (15.47)

Inspection shows that the energy flux between j and j+1 is given by cA jA j+1. In the dif-
ferential case, the sign of the energy flux is the same as the sign of c. This is not necessarily
true for the differential-difference equation, however, because A jA j+1 is not necessarily
positive. When A jA j+1 is negative, as when A oscillates from one grid point to the next,
the direction of energy flow is opposite to the direction of c. This implies negative cg

∗ for
π

2 < k∆x < π , meaning that for short waves, for which A jA j−1 < 0, energy flows in the −x
direction, i.e., “backward.” This is consistent with our earlier analysis of the group velocity.

Figure 15.7: Sketch illustrating the energy fluxes that appear in (13.76).

When we put an artificial boundary at j = J, and if we let A j = 0 as in Nitta’s Method
1, the energy flux from the point J−1 to the point J is zero. This is possible only when a
computational mode, which transfers energy in the upstream direction, is superposed. This
is a tip-off that Nitta’s Method 1 is bad, but that is obvious anyway.

For Nitta’s Method 2, AJ = AJ−1. This gives
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cAJAJ−1 = cA2
J > 0. (15.48)

Since energy can leave the domain, there is less reflection. Of course, using the present
approach, the actual energy flux cannot be determined, because we do not know the value
of AJ .

For Nitta’s Method 4, AJ = AJ−2. Then for short waves

cAJ−1AJ = cAJ−1AJ−2 < 0. (15.49)

Short-wave energy moves back upstream, and the computational mode is strongly excited.

For Nitta’s Method 5,

AJ = 2AJ−1−AJ−2, (15.50)

so

cAJAJ−1 = cAJ−1 (2AJ−1−AJ−2)

= c
(
2A2

J−1−AJ−1AJ−2
)
.

(15.51)

For very short waves,

AJ−1AJ−2 < 0, (15.52)

so that the flux given by (15.51) is positive, as it should be. For very long waves,

AJ−1AJ−2 ∼= AJ−1AJ−1, (15.53)

so the flux is approximately
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cAJAJ−1 ∼= cA2
J−1 > 0. (15.54)

For Nitta’s Method 7,

dAJ

dt
+ c
(

AJ−AJ−1

∆x

)
= 0. (15.55)

so we find that

dA2
J

dt
+2c

(
A2

J−AJAJ−1

∆x

)
= 0. (15.56)

The energy flux “into J” is AJAJ−1, while that “out of J” is A2
J > 0. Applying (15.49) to

J−1,

d
dt

(
A2

J−1
)
+ c
(

AJ−1AJ−AJ−2AJ−1

∆x

)
= 0. (15.57)

This shows that the energy flux out of J−1 is the same as the flux into J, which is good.

15.4 Nested grids

If we use an inhomogeneous grid (one in which the grid size varies), we will encounter
a problem similar to the one met at the boundaries; a reflection occurs because the fine
portion of the grid permits short waves that cannot be represented on the coarse portion of
the grid. This is a serious difficulty with all models that have variable spatial resolution.
The problem can be minimized by various techniques, but it cannot be eliminated.

Figure 15.8: Schematic showing a change in the grid size at j = 0.
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Consider the one-dimensional advection equation with a positive advecting curren c.
We wish to solve this equation on a grid in which the grid size changes suddenly at j = 0,
from d1 to d2, in Fig. 15.8. The figure shows d2 > d1, but we will also consider the opposite
case. We use the following differential-difference equations:

dA j

dt
+ c
(

A j+1−A j−1

2d1

)
= 0, for j < 0 ,

dA0

dt
+ c
[

α

(
A0−A−1

d1

)
+β

(
A1−A0

d2

)]
= 0,α+β= 1, for j = 0 ,

dA j

dt
+ c
(

A j+1−A j−1

2d2

)
= 0, for j > 0.

(15.58)

The method used here for the point j = 0 is not completely general, but it allows us to
consider various choices for the weights α and β . If we choose d1 = d2 and α = β = 1

2 ,
then scheme used at j = 0 is the same as the scheme used at all of the other points on the
grid.

As a shorthand notation, define

p1 = k1d1, and p2 = k2d2, (15.59)

where k1 is wave number of the incoming signal, moving in from the left, and k2 is the
wave number for j ≥ 0. From (15.40), the solution for j ≤ 0 is given by: fred

A j = ei( jp1−ωt)+ r(−1) je−i( jp1+ωt), (15.60)

where

ω = c
sin p1

d1
. (15.61)

We have assumed for simplicity that the incident wave has unit amplitude. The solution for
j ≥ 0 is
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A j = Rei( jp2−ωt), (15.62)

where

ω = c
sin p2

d2
, (15.63)

and R is the amplitude of the transmitted wave. The frequency, ω , must be the same
throughout the domain. Eliminating ω between (15.61) and (15.63), gives

sin p2 =
d2

d1
sin p1. (15.64)

This relates p2 to p1, or k2 to k1.

Since the incident wave must have cg
∗ > 0 (this is what is meant by “incident”), we

know that

0 < p1 <
π

2
, (15.65)

i.e., the wavelength of the incident wave is longer than 4d1.

Now consider several cases:

1. d2/d1 > 1.

Suppose that advecting current blows from a finer grid onto a coarser grid, which can
be expected to cause problems. Define

sin p2 =
d2

d1
sin p1 ≡ a. (15.66)

This implies that

eip2 = ia±
√

1−a2. (15.67)

247



Revised Monday 23rd August, 2021 at 15:57

Since we can choose d1, d2, and k0 any way we want, it is possible to make sin p2 > 1
or ≤ 1. We consider these two possibilities separately.

(a) a≡ sin p2 =
d2
d1

sin p1 > 1.

In this case p2 has to be complex. From (15.67), we find that

eip2 = i
(

a±
√

a2−1
)

= ei π

2

(
a±
√

a2−1
)
.

(15.68)

The solution for j ≥ 0 is then

A j = R
(

a±
√

a2−1
) j

ei( π

2 j−ωt) for j ≥ 0. (15.69)

Note the exponent, j, on the expression in parentheses. Since a > 1 by assump-
tion, it is clear that a+

√
a2−1 > 1 and a−

√
a2−1 < 1. To ensure that A j

remains bounded as j→ ∞, we must choose the minus sign. Then

A j = R
(

a−
√

a2−1
) j

ei( π

2 j−ωt) for j ≥ 0. (15.70)

This is a damped oscillation. The wavelength is 4d2, and the amplitude decays
as j increases, as shown in Fig. 15.9.

(b) a≡ sin p2 =
d2
d1

sin p1 ≤ 1.

In this case p2 is real, and

|p2|<
π

2
. (15.71)

This implies that L = 2π

k > 4d2, i.e., the transmitted wave has a wavelength
longer than four times the grid spacing. The solution is

A j = Rei( jsin−1a−ωt). (15.72)
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Figure 15.9: Sketch of the solution given by (15.70).

From (15.64), since we are presently considering d2/d1 > 1, we have p2 > p1.
We also have from (15.64) that

k2

k1
=

(
sin p1

p1

)
(

sin p2
p2

) . (15.73)

Recall that sinx/x is a decreasing function of x for 0 < x < π/2. We conclude,
then, that k2/k1 > 1. This means that the wavelength of the transmitted wave
is less than that of the incident wave, even though it is being advected on a
coarser grid.

2. d2/d1 < 1.

Next, suppose that the advecting current blows from a coarser grid to a finer grid,
which is a relatively benign situation. In this case, p2 is always real. The analysis
is similar to (1b) above. It turns out that the wavelength of the transmitted wave is
longer than that of the incident wave. Using the fact that p2 ≤ sin−1 (d2/d1), it can
be shown that the minimum wavelength of the transmitted wave, which occurs for
p1 =

π

2 , is

Lmin =
2πd2

sin−1 (d2/d1)
. (15.74)

As an example, when d2/d1 = 1/2, the minimum wavelength is 12d2.
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Next, we find R and r. At j = 0, the solutions given by (15.60) and (15.62) must agree.
It follows that

1+ r = R. (15.75)

We can substitute (15.60) and (15.62) into the middle equation of (15.58), giving

−iωR+ c
{

α

d1

[
1− e−ip1 + r

(
1+ eip1

)]
+

β

d2
R
(
eip2−1

)}
= 0. (15.76)

Use (15.75) to eliminate r in (7.24), and solve for R:

R =
c α

d1
2cos p1

−iω + c
[

α

d1
(1+ eip1)+ β

d2
(eip2−1)

] . (15.77)

Now use (15.61) to eliminate ω . Also use α +β = 1 and (15.64). The result is

R =
2cos p1

1+ cos p1− γ (1− cos p2)
, (15.78)

where we have defined

γ ≡
(

β

α

)(
d1

d2

)
. (15.79)

Substituting (15.78) back into (15.75) gives the reflection coefficient as

r =−
[

1− cos p1− γ (1− cos p2)

1+ cos p1− γ (1− cos p2)

]
. (15.80)

Eq.s (15.78) and (15.80) are basic results. Ideally, we want to have R = 1 and r = 0.

As a check, suppose that d1 = d2 and α = β = 1
2 . Then j = 0 is “just another point,”

and so there should not be any computational reflection, and the transmitted wave should be
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identical to the incident wave. From (15.64), we see that for this case k2 = k1 and p1 = p2.
Then (15.78) and (15.80) give R = 1, r = 0, i.e., complete transmission and no reflection,
as expected. So it works.

For α → 0 with finite d1/d2, we get γ → ∞, R→ 0, and |r| → 1, unless cos p2 = 1,
which is the case of an infinitely long wave, i.e., p2 = 0. This is like Nitta’s Method 1.

For β → 0 with finite d1/d2, γ → ∞, so that

R→ 2cos p1

1+ cos p1
= 1− tan2

( p1

2

)
,

r→−
(

1− cos p1

1+ cos p1

)
=−tan2

( p1

2

)
.

(15.81)

This is like Nitta’s Method 5.

As p1 and p2 both→ 0, we get R→ 1 and r→ 0, regardless of the value of γ . When p1
and p2 are small but not zero,

cos p1 ∼= 1− p1
2

2
, cos p2 ∼= 1− p2

2

2
, and p2 ∼=

(
d2

d1

)
p1. (15.82)

Then we find that

R∼=
2
(

1− p1
2

2

)
2− p12

4 + γ
p22

4

∼=
(

1− p1
2

2

)(
1+

p1
2

4
+ γ

p2
2

4

)

∼= 1− p1
2

4
+ γ

p2
2

4

∼= 1− p1
2

4

[
1− γ

(
d2

d1

)2
]
.

(15.83)

Choosing

γ = (d1/d2)
2 (15.84)
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gives R = 1+O
(

p4
2
)
. Referring back to (15.64), we see that this choice of γ corresponds

to

β

α
=

d1

d2
, or −αd1 +βd2 = 0. (15.85)

This gives R close to one and |r| close to zero. It can be shown that (15.85) is the re-
quirement for second-order accuracy at the “joint” that connects the two grids. Since the
given equations have second-order accuracy elsewhere, (15.85) essentially expresses the
requirement that the order of accuracy be spatially homogeneous.

15.5 Physical and computational reflection of gravity waves at a wall

At a real, physical wall, the normal component of the velocity has to be zero. If we use
the C-grid, for example, we should position and orient the walls so that they are located
at wind points, and perpendicular to one of the locally defined velocity components. This
means that the walls correspond to the edges of mass boxes on the C-grid. See Fig. 15.10
for a one-dimensional example.

x

u

h h

u

h

J + 1
2

u = 0

Figure 15.10: A one-dimensional staggered grid for solution of the shallow water equations, near a
wall where j = J+ 1

2 .

Consider an incident wave traveling toward the right with a certain wave number k0,
such that 0 < p0 (≡ k0d) < π . Since we are assuming σ ≥ 0, eip0 je−iσt represents such
a wave. An additional wave, with p = −p0, can be produced by reflection at a boundary.
We assume that the amplitude of the incident wave with p = p0 is 1, and let R denote the
amplitude of the reflected wave. In other words, we take A = 1 and B = R. Then (14.33)
and (14.35) can be written as

u j+ 1
2
=
[
eip0( j+ 1

2) +Re−ip0( j+ 1
2)
]

e−iσt , (15.86)
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h j =−

√
H
g

(
eip0 j−Re−ip0 j)e−iσt . (15.87)

Suppose that at j = J + 1
2 we have a rigid wall (a real, physical wall), as shown in Fig.

15.10. Since there is no flow through the wall, we know that uJ+ 1
2
= 0, for all time. This is

a physical boundary condition. Then (15.86) reduces to

0 = eip0(J+ 1
2) +Re−ip0(J+ 1

2), (15.88)

which implies that

|R|= 1. (15.89)

Because |R| = 1, the reflected wave has the same amplitude as the incident wave. The
reflection is “complete.”

The case of a fictitious or “open” boundary is more difficult. We want incident wave
to propagate out of the domain, with no reflection. In Chapter 5, we discussed a similar
problem for the case of advection towards an open boundary. Obviously, fixing uJ+ 1

2
at

zero or some other constant value is not going to allow the wave to radiate out of the
computational domain. An almost equally simple alternative is to set uJ+ 1

2
= uJ− 1

2
. The

continuity equation shows that hJ would never change in that case.

*** ADD MORE HERE.

15.6 Problems

1. Program the discontinuous-grid model given discussed in the text, i.e.,

dA j

dt
+ c
(

A j+1−A j−1

2d1

)
= 0, for j < 0 ,

dA0

dt
+ c
[

α

(
A0−A−1

d1

)
+β

(
A1−A0

d2

)]
= 0,α+β= 1, for j = 0 ,

dA j

dt
+ c
(

A j+1−A j−1

2d2

)
= 0, for j > 0,

(15.90)
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where

−αd1 +βd2 = 0 and α +β = 1. (15.91)

Replace the time derivatives by leapfrog time differencing. Consider the case d1 =
2d2. Let µ = 1/2 on the finer of the two grids. Use a periodic domain whose width
is 100 times the larger of the two grid spacings. The periodicity means that there
will be two discontinuities. Use a “square bump” initial condition that is ten points
wide on the finer grid. Run the model long enough for the signal to circle the domain
twice. Discuss the evolution of the results.
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Chapter 16

Conservative Schemes for the One-Dimensional Non-
linear Shallow-Water Equations

16.1 Properties of the continuous equations

In this chapter, we consider a highly idealized version of the momentum equation: Shallow
water, one dimension, no rotation. In a later chapter, we will go to two dimensions with
rotation, and bring in the effects of vorticity, which are extremely important.

Consider the one-dimensional shallow-water equations, with bottom topography, with-
out rotation and with v = 0. The prognostic variables are the water depth or mass, h, and
the speed, u. The exact equations are

∂h
∂ t

+
∂

∂x
(hu) = 0, (16.1)

and

∂u
∂ t

+
∂

∂x
[K +g(h+hS)] = 0. (16.2)

Here

K ≡ 1
2

u2 (16.3)
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is the kinetic energy per unit mass, g is the acceleration of gravity, and hS is the height of
the bottom topography. In Eq. (16.2), the vorticity has been assumed to vanish, which is
reasonable in the absence of rotation and in one dimension. The effects of vorticity are of
course absolutely critical in geophysical fluid dynamics; they will be discussed in a later
chapter.

The design of the scheme is determined by a sequence of choices. We should welcome
the opportunity to make the best possible choices. The first thing that we have to choose
is the particular form of the continuous equations that the space-differencing scheme is
designed to mimic. Eq. (16.2) is one possible choice for the continuous form of the mo-
mentum equation. An alternative choice is

∂

∂ t
(hu)+

∂

∂x
(huu)+gh

∂

∂x
(h+hS) = 0, (16.4)

i.e., the flux form of the momentum equation, which can be derived by combining (16.1)
and (16.2).

The continuous shallow-water equations have important “integral properties,” which
we will use as a guide in the design of our space-differencing scheme. For example, if we
integrate (16.1) with respect to x, over a closed or periodic domain, we obtain

d
dt

 ∫
domain

hdx

= 0, (16.5)

which means that mass is conserved.

Using

h
∂h
∂x

=
∂

∂x

(
h2

2

)
, (16.6)

we can rewrite (16.4) as

∂

∂ t
(hu)+

∂

∂x

(
huu+g

h2

2

)
=−gh

∂hS

∂x
. (16.7)
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The momentum per unit area is hu. If we integrate with respect to x, over a periodic domain,
we obtain

d
dt

 ∫
domain

hudx

=−
∫

domain

gh
∂hS

∂x
dx. (16.8)

This shows that in the absence of topography, i.e., if ∂hS
∂x = 0 everywhere, the domain

average of hu is invariant, i.e., momentum is conserved. When hS is spatially variable, the
atmosphere and the “solid earth” can exchange momentum through the pressure force.

The flux form of the kinetic energy equation can be derived by multiplying (16.1) by K
and (16.2) by hu, and adding the results, to obtain

∂

∂ t
(hK)+

∂

∂x
(huK)+hu

∂

∂x
[g(h+hS)] = 0. (16.9)

The last term of (16.9) represents conversion between potential and kinetic energy.

The potential energy equation can be derived by multiplying (16.1) by g(h+hS) to
obtain

∂

∂ t

[
hg
(

hS +
1
2

h
)]

+g(h+hS)
∂

∂x
(hu) = 0, (16.10)

or

∂

∂ t

[
hg
(

hS +
1
2

h
)]

+
∂

∂x
[hug(h+hS)]−hu

∂

∂x
[g(h+hS)] = 0. (16.11)

Here g
(
hS +

1
2h
)

can be interpreted as the potential energy per unit mass of a particle
that is “half-way up” in the water column. The middle term represents both advection of
potential energy and the horizontal redistribution of energy by pressure-work. The last
term represents conversion between kinetic and potential energy; compare with (16.9). In
deriving (16.10), we have assumed that hS is independent of time. This assumption can
easily be relaxed, at the cost of an additional term in (16.11).

When we add (16.9) and (16.11), the energy conversion terms cancel, and we obtain a
statement of the conservation of total energy, i.e.,
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∂

∂ t

{
h
[

K +g
(

hS +
1
2

h
)]}

+
∂

∂x
{hu [K +g(h+hS)]}= 0. (16.12)

The integral of (16.12) over a closed or periodic domain gives

d
dt

∫
domain

h
[

K +g
(

hS +
1
2

h
)]

dx = 0, (16.13)

which shows that the domain-integrated total energy is conserved.

16.2 The spatially discrete case

Now consider finite-difference approximations to (16.1) and (16.2). We keep the time
derivatives continuous, and explore the effects of space differencing only. We use a stag-
gered grid, with h defined at integer points (hereafter called mass points) and u at half-
integer points (hereafter called wind points). This can be viewed as a one-dimensional
version of the C grid. The grid spacing, ∆x, is assumed to be uniform. Our selection of this
particular grid is a second choice made in the design of the space-differencing scheme.

The finite difference version of the continuity equation is

dhi

dt
+

[
(hu)i+ 1

2
− (hu)i− 1

2

∆x

]
= 0. (16.14)

It should be understood that

hi+ 1
2
ui+ 1

2
≡ (hu)i+ 1

2
. (16.15)

The “wind-point masses,” e.g., hi+ 1
2
, are undefined at this stage, but of course we will

have to settle on a way to define them before we can actually use the scheme. The finite-
difference approximation used in (16.14) is consistent with second-order accuracy in space,
although we cannot really determine the order of accuracy until the finite-difference form
of the mass flux has been specified. We have already discussed how the “flux form” used
in (16.14) makes it possible for the model to conserve mass, i.e.,
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d
dt

(
∑

domain
hi

)
= 0, (16.16)

and this is true regardless of how hi+ 1
2

is defined. Eq. (16.16) is analogous to (16.5).

A finite-difference momentum equation that is modeled after (16.2) is

dui+ 1
2

dt
+

(
Ki+1−Ki

∆x

)
+g
[
(h+hS)i+1− (h+hS)i

∆x

]
= 0. (16.17)

The kinetic energy per unit mass, Ki, is undefined at this stage, but resides at mass points.
The finite-difference approximations used in (16.17) are consistent with second-order ac-
curacy in space, although we cannot really determine the order of accuracy until the finite-
difference forms of the mass flux and kinetic energy are specified. Although Eq. (16.17)
does not have a “flux form,” we might (or might not) be able to use the continuity equation
to show that it is consistent with (i.e., can be derived from) a flux form. This is discussed
further below.

Multiply (16.17) by hi+ 1
2

to obtain

hi+ 1
2

dui+ 1
2

dt
+hi+ 1

2

(
Ki+1−Ki

∆x

)
+ghi+ 1

2

[
(h+hS)i+1− (h+hS)i

∆x

]
= 0. (16.18)

In order to mimic the differential relationship (16.6), we must require that

hi+ 1
2

(
hi+1−hi

∆x

)
=

(
h2

i+1−hi
2

2∆x

)
, (16.19)

which can by satisfied by choosing

hi+ 1
2
=

hi+1 +hi

2
. (16.20)

This choice is required for ensure that the pressure-gradient force does not produce any net
source or sink of momentum in the absence of topography. In view of (16.20), we can write
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(hu)i+ 1
2
=

(
hi+1 +hi

2

)
ui+ 1

2
. (16.21)

Combining (16.20) with the continuity equation (16.14), we see that we can write a
continuity equation for the wind points, as follows:

dhi+ 1
2

dt
+

1
2∆x

[
(hu)i+ 3

2
− (hu)i− 1

2

]
= 0. (16.22)

It should be clear from the form of (16.22) that the “wind-point mass” is actually conserved
by the model. Of course, we do not actually use (16.22) when we integrate the model;
instead we use (16.14). Nevertheless, (16.22) will be satisfied, because it can be derived
from (16.14) and (16.20). An alternative form of (16.22) is

dhi+ 1
2

dt
+

1
∆x

[
(hu)i+1− (hu)i

]
= 0, (16.23)

where

(hu)i+1 ≡
1
2

[
(hu)i+ 3

2
+(hu)i+ 1

2

]
and (hu)i ≡

1
2

[
(hu)i+ 1

2
+(hu)i− 1

2

]
. (16.24)

Now add (16.18) and ui+ 1
2

times (16.23), and use (16.20), to obtain what “should be”
the flux form of the momentum equation, analogous to (16.4):

d
dt

(
hi+ 1

2
ui+ 1

2

)
+hi+ 1

2

(
Ki+1−Ki

∆x

)
+

ui+ 1
2

[
(hu)i+1− (hu)i

]
∆x

+g

(
h2

i+1−h2
i

2∆x

)

=−ghi+ 1
2

[
(hS)i+1− (hS)i

∆x

]
.

(16.25)

Is this really a flux form, or not? The answer is: It depends on how we define Ki. Suppose
that Ki is defined by
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Ki ≡
1
2

ui+ 1
2
ui− 1

2
. (16.26)

Other possible definitions of Ki will be discussed later. Using (16.26) and (16.24), we can
write

hi+ 1
2

(
Ki+1−Ki

∆x

)
+ui+ 1

2

1
∆x

[
(hu)i+1− (hu)i

]
=

1
2∆x

{
hi+ 1

2

(
ui+ 3

2
ui+ 1

2
−ui+ 1

2
ui− 1

2

)
+ui+ 1

2

[
(hu)i+ 3

2
− (hu)i− 1

2

]}
=

1
∆x

[(
hi+ 1

2
+hi+ 3

2

2

)
ui+ 3

2
ui+ 1

2
−

(
hi+ 1

2
+hi− 1

2

2

)
ui− 1

2
ui+ 1

2

]
.

(16.27)

This is a flux form. The momentum flux at the point i is
(

h
i+ 1

2
+h

i− 1
2

2

)
ui− 1

2
ui+ 1

2
, and the

momentum flux at the point i+1 is
(

h
i+ 1

2
+h

i+ 3
2

2

)
ui+ 3

2
ui+ 1

2
. Because (16.27) is a flux form,

momentum will be conserved by the scheme if we define the kinetic energy by (16.26).

Note, however, that there are two problems with (16.26). When u is dominated by
the 2∆x-mode, (16.26) will give a negative value of Ki, which is unphysical. In addition,
when u is dominated by the 2∆x-mode, the momentum flux will always be negative for the
2∆x-mode, i.e., momentum will always be transferred in the −x direction, assuming that
the interpolated masses that appear in the momentum fluxes are positive. These problems
are severe enough that the definition of kinetic energy given by (16.26) can be considered
non-viable.

OK, that’s not good, but let’s see what happens with the kinetic energy equation. For
this purpose, we return to general form of Ki; Eq. (16.26) will not be used. Recall that
the kinetic energy is defined at mass points. To begin the derivation, multiply (16.17) by
(hu)i+ 1

2
to obtain

(hu)i+ 1
2

dui+ 1
2

dt
+(hu)i+ 1

2

(
Ki+1−Ki

∆x

)
+g(hu)i+ 1

2

[
(h+hS)i+1− (h+hS)i

∆x

]
= 0. (16.28)

Rewrite (16.28) for grid point i− 1
2 , simply by subtracting one from each subscript:
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(hu)i− 1
2

dui− 1
2

dt
+(hu)i− 1

2

(
Ki−Ki−1

∆x

)
+g(hu)i− 1

2

[
(h+hS)i− (h+hS)i−1

∆x

]
= 0. (16.29)

Now add (16.28) and (16.29), and multiply the result by 1
2 to obtain the arithmetic mean:

1
2

[
(hu)i+ 1

2

dui+ 1
2

dt
+(hu)i− 1

2

dui− 1
2

dt

]

+
1
2

[
(hu)i+ 1

2

(
Ki+1−Ki

∆x

)
+(hu)i− 1

2

(
Ki−Ki−1

∆x

)]

+
g
2

{
(hu)i+ 1

2

[
(h+hS)i+1− (h+hS)i

∆x

]
+(hu)i− 1

2

[
(h+hS)i− (h+hS)i−1

∆x

]}
= 0.

(16.30)

You should be able to see that this is an advective form of the kinetic energy equation.

Next we try to derive, from (16.30) and (16.14), a flux form of the kinetic energy equa-
tion. If we can do that, then kinetic energy will be conserved. Begin by multiplying (16.14)
by Ki:

Ki

{
dhi

dt
+

[
(hu)i+ 1

2
− (hu)i− 1

2

∆x

]}
= 0. (16.31)

Keep in mind that we still do not know what Ki is; we have just multiplied the continuity
equation by a mystery variable. Add (16.31) and (16.30) to obtain

Ki
dhi

dt
+

1
2

[
(hu)i+ 1

2

dui+ 1
2

dt
+(hu)i− 1

2

dui− 1
2

dt

]

+

{
(hu)i+ 1

2

∆x

[
Ki +

1
2
(Ki+1−Ki)

]
−

(hu)i− 1
2

∆x

[
Ki−

1
2
(Ki−Ki−1)

]}

+
g
2

{
(hu)i+ 1

2

[
(h+hS)i+1− (h+hS)i

]
∆x

+(hu)i− 1
2

[
(h+hS)i− (h+hS)i−1

]
∆x

}
= 0.

(16.32)
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Eq. (16.32) “should be” a flux form of the kinetic energy equation. Is it really? To answer
this question, we analyze the various terms of (16.32) one by one.

The advection terms on the second line of (16.32) are very easy to deal with. They can
be rearranged to

1
∆x

[
(hu)i+ 1

2

1
2
(Ki+1 +Ki)− (hu)i− 1

2

1
2
(Ki +Ki−1)

]
. (16.33)

This has the form of a “finite-difference flux divergence.” The conclusion is that these
terms are consistent with kinetic energy conservation under advection, simply by virtue of
their form, regardless of the method chosen to determine Ki.

Next, consider the energy conversion terms on the third line of (16.32), i.e.,

g
2

{
(hu)i+ 1

2

[
(h+hS)i+1− (h+hS)i

∆x

]
+(hu)i− 1

2

[
(h+hS)i− (h+hS)i−1

∆x

]}
. (16.34)

We want to compare these terms with the corresponding terms of the finite-difference form
of the potential energy equation, which can be derived by multiplying (16.14) by g(h+hS)i:

d
dt

[
hig
(

hS +
1
2

h
)

i

]
+g(h+hS)i

[
(hu)i+ 1

2
− (hu)i− 1

2

∆x

]
= 0. (16.35)

Eq. (16.35) is analogous to (16.10). We want to recast (16.35) so that we see advection of
potential energy, as well as the energy conversion term corresponding to (16.34); compare
with (16.11). To accomplish this, we “put in” the energy conversion term by hand, and
write the advection term symbolically, like this:

d
dt

[
hig
(

hS +
1
2

h
)

i

]
+ADVi

− g
2

{
(hu)i+ 1

2

[
(h+hS)i+1− (h+hS)i

∆x

]
+(hu)i− 1

2

[
(h+hS)i− (h+hS)i−1

∆x

]}
= 0.

(16.36)
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Here “ADVi” represents the advection of potential energy, in flux form. At this point, we
do not have an expression for ADVi, but we will let the equations tell us how to compute it.
The second line of (16.36) is a copy of the energy conversion terms of (16.32), but with the
sign reversed. We require that (16.36) be equivalent to (16.35), and ask what form of ADVi
is implied by this requirement. The answer is:

ADVi =
g

2∆x

{
(hu)i+ 1

2

[
(h+hS)i+1 +(h+hS)i

]
− (hu)i− 1

2

[
(h+hS)i +(h+hS)i−1

]}
.

(16.37)

This does indeed have the form of a finite-difference flux divergence, as desired.

What we have shown up to this point is that the conservation of potential energy and
the cancellation of the energy conversion terms have both turned out to be pretty easy. The
form of Ki is still up to us.

We are not quite finished, however, because we have not yet examined the time-rate-of-
change terms of (16.32). Obviously, the first line of (16.32) must be analogous to ∂

∂ t (hK).
For convenience, we define

(KE tendency)i ≡ Ki
dhi

dt
+

1
2

[
(hu)i+ 1

2

d
dt

ui+ 1
2
+(hu)i− 1

2

d
dt

ui− 1
2

]
. (16.38)

Substituting for the mass fluxes from (16.21), we can write (16.38) as

(KE tendency)i ≡ Ki
dhi

dt
+

1
8

[
(hi+1 +hi)

d
dt

(
u2

i+ 1
2

)
+(hi +hi−1)

d
dt

(
u2

i− 1
2

)]
. (16.39)

The requirement for kinetic energy conservation is

∑
domain

(KE tendency)i = ∑
domain

d
dt

(hiKi). (16.40)

Note that only the sums over i must agree; it is not necessary that
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Ki
dhi

dt
+

1
8

[
(hi+1 +hi)

d
dt

(
u2

i+ 1
2

)
+(hi +hi−1)

d
dt

(
u2

i− 1
2

)]
be equal to

d
dt

(hiKi) for each i.

(16.41)

To complete our check of kinetic energy conservation, we substitute for Ki on the right-hand
side of (16.40), and check to see whether the resulting equation is actually satisfied.

The bad news is that, if we use (16.26), Eq. (16.40) is not satisfied. This means that,
when we start from the continuous form of (16.2), we cannot have both momentum conser-
vation under advection and kinetic energy conservation. On the other hand, we didn’t like
(16.26) anyway, because for the 2∆x wave it gives negative kinetic energy and a momentum
flux that is always in the negative x direction.

The good news is that there are ways to satisfy (16.40). Two alternative definitions of
the kinetic energy are

Ki ≡
1
4

(
u2

i+ 1
2
+u2

i− 1
2

)
, (16.42)

hiKi ≡
1
4

(
hi+ 1

2
u2

i+ 1
2
+hi− 1

2
u2

i− 1
2

)
. (16.43)

With either of these definitions, Ki cannot be negative. We can show that the sum over
the domain of hiKi given by (16.42) is equal to the sum over the domain of hiKi given
by (16.43). Either choice allows (16.40) to be satisfied, so both are consistent with ki-
netic energy conservation under advection. On the other hand, neither is consistent with
momentum conservation under advection.

To sum up: When we start from the continuous form of (16.2), we can have either
momentum conservation under advection or kinetic energy conservation under advection,
but not both. Which is better depends on the application.

An alternative approach is to start from a finite-difference form of the momentum equa-
tion that mimics (16.4). In that case, we can conserve both momentum under advection and
kinetic energy under advection. You are asked to demonstrate this in Problem 2 at the end
of this chapter.

When we generalize to the two-dimensional shallow-water equations with rotation,
there are very important additional considerations having to do with vorticity, and the issues
discussed here have to be revisited. This is discussed in a later chapter.
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16.3 Summary

We have explored the conservation properties of spatial finite-difference approximations
of the momentum and continuity equations for one-dimensional non-rotating flow, using
a staggered grid. We were able to find a scheme that guarantees conservation of mass,
conservation of momentum in the absence of bottom topography, conservation of kinetic
energy under advection, conservation of potential energy under advection, and conservation
of total energy in the presence of energy conversion terms.

This chapter has introduced several new things. This is the first time that we have
considered the advection terms of the momentum equation. This is the first time that we
have discussed energy conversions and total energy conservation. In addition, the chapter
illustrates a way of thinking about the trade-offs that must be weighed in the design of a
scheme, as various alternative choices each have advantages and disadvantages.

16.4 Problems

1. Show that if we use (16.26) it is not possible to conserve kinetic energy under advec-
tion.

2. Starting from a finite-difference form that mimics (16.4), show that it is possible
to conserve both momentum and total energy. Use the C grid, and keep the time
derivatives continuous.
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Chapter 17

Stairways to Heaven

17.1 Introduction to vertical coordinate systems

Up to now we have ignored the vertical structure of the atmosphere. Simulating the vertical
structure is very different from simulating the horizontal structure, for three reasons.

• Gravitational effects strongly control vertical motions, and gravitational potential en-
ergy is an important source of atmospheric kinetic energy.

• The Earth’s atmosphere is very shallow compared to its horizontal extent, so that, on
large horizontal scales, vertical gradients are much stronger than horizontal gradi-
ents, and horizontal motions are much faster than vertical motions. In models, the
strong vertical gradients require a small vertical grid spacing. The small vertical grid
spacing can require small time steps to maintain computational stability.

• The atmosphere has a complex lower boundary that can strongly influence the circu-
lation through both mechanical blocking and thermal forcing.

The most obvious choice of vertical coordinate system, and one of the least useful, is
height. As you probably already know, the equations of motion are frequently expressed
using vertical coordinates other than height. The most basic requirement for a variable
to be used as a vertical coordinate is that it vary monotonically with height. Even this
requirement can be relaxed; e.g., a vertical coordinate can be independent of height over
some layer of the atmosphere, provided that the layer is not too deep.

Factors to be weighed in choosing a vertical coordinate system for a particular applica-
tion include the following:

• the form of the lower boundary condition (simpler is better);

• the form of the continuity equation (simpler is better);

• the form of the horizontal pressure gradient force (simpler is better, and a pure gra-
dient is particularly good);
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• the form of the hydrostatic equation (simpler is better);

• the intensity of the “vertical motion” as seen in the coordinate system (weaker verti-
cal motion is simpler and better);

• the method used to compute the vertical motion (simpler is better).

Each of these factors will be discussed below, for specific vertical coordinates. We begin,
however, by presenting the basic governing equations, for quasi-static motions, using a
general vertical coordinate.

To construct a vertically discrete model, we have to make a lot of choices, including these:

• The governing equations: Quasi-static or not? Shallow atmosphere or not? Anelastic
or not?

• The vertical coordinate system;

• The vertical staggering of the model’s dependent variables;

• The properties of the exact equations that we want the discrete equations to mimic.

As usual, these choices will involve trade-offs. Each possible choice will have strengths
and weaknesses. We must also be aware of possible interactions between the vertical dif-
ferencing and the horizontal and temporal differencing.

This chapter deals with the first two choices above, which can be discussed in the
context of the continuous system. The next chapter deals with the remaining two choices.

17.2 Choice of equation set

The speed of sound in the Earth’s atmosphere is about 300 m s-1. If we permit vertically
propagating sound waves, then, with explicit time differencing, the largest time step that is
compatible with linear computational stability can be quite small. For example, if a model
has a vertical grid spacing on the order of 300 m, the allowed time step will be on the order
of one second. This may be acceptable if the horizontal grid spacing is comparably small.
On the other hand, with a horizontal grid spacing of 30 km and a vertical grid spacing of
300 m, vertically propagating sound waves will limit the time step to about one percent of
the value that would be compatible with the horizontal grid spacing. That’s hard to take.

There are four possible ways around this problem. One approach is to use a set of
equations that filters sound waves, i.e., “anelastic” equations. There are several varieties of
anelastic systems, developed over a period of forty years or so (Ogura and Phillips (1962);
Lipps and Hemler (1982); Durran (1989); Bannon (1996); Arakawa and Konor (2009)).
Some systems filter both vertically and horizontally propagating sound waves, while other
“partially” anelastic systems filter only the vertically propagating sound waves without
affecting the horizontally propagating sound waves. The most recent formulations are quite
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accurate. Anelastic models of various types have been very widely used, especially for
high-resolution modeling.

A second approach is to adopt the quasi-static system of equations, in which the equa-
tion of vertical motion is replaced by the hydrostatic equation. The quasi-static system
filters vertically propagating sound waves, while permitting Lamb waves, which are sound
waves that propagate only in the horizontal. The quasi-static approximation is widely used
in global models for both weather prediction and climate, but its errors become unaccept-
ably large for some small-scale weather systems, so its use is limited to models with hor-
izontal grid spacings on the order of about 10 km or larger, depending on the particular
application.

The third approach is to use implicit or partially implicit time differencing, which can
permit a long time step even when vertically propagating sound waves occur. The main
disadvantage is complexity.

The fourth approach is to “sub-cycle.” Small time steps can be used to integrate the
terms of the equations that govern sound waves, while longer time steps are used for the
remaining terms.

*** Add lecture on “sound-proof” systems.

17.3 The basic equations in height coordinates

The basic equations in height coordinates, without rotation and friction, are

DVh

Dt
+2Ω×Vh =−

1
ρ

∇z p−Fh, (17.1)

Dw
Dt

=− 1
ρ

∂ p
∂ z
−g−Fv, (17.2)

(
∂ρ

∂ t

)
z
+∇z · (ρVh +

∂

∂ z
(ρw) = 0, (17.3)

θ̇ ≡ Dθ

Dt
=

Q
Π
. (17.4)
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Here
DVh

Dt
is the Lagrangian time derivative, Vh is the horizontal velocity, ρ is density, p

is pressure, z is height, w is the vertical velocity, and Fh is the horizontal friction vector. In
(17.2), g is the acceleration of gravity. In (17.4), θ is the potential temperature, Q is the
heating rate per unit mass, and Π is the Exner function, which satisfies

cpT = Πθ , (17.5)

where cp is the heat capacity of air at constant pressure, T is temperature, and

Π = cp

(
p
p0

)κ

, (17.6)

where

κ ≡ R
cp

, (17.7)

and R is the specific gas constant. We will also need the ideal gas law, which can be written
as

p = ρRT. (17.8)

Finally, we include a prognostic equation for an arbitrary intensive scalar A:

[
∂

∂ t
(ρA)

]
z
+∇z · (ρVhA)+

∂

∂ z
(ρwA) = ρSA. (17.9)

Here SA is a source of A, per unit mass.

17.4 Transformation to generalized vertical coordinates

Kasahara (1974) published a detailed discussion of general vertical coordinates for quasi-
static models. A more modern discussion of the same subject is given by Konor and
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Arakawa (1997). In this section, we derive the nonhydrostatic system of equations us-
ing a general vertical coordinate. The quasi-static limit is easily recovered as a special
case.

Consider an arbitrary vertical coordinate denoted by ẑ. We assume that ẑ is a monotonic
function of z, and in the analysis below we also assume that ẑ can be differentiated with
respect to time and spatial coordinates. The dimensions of ẑ can be different from those of
z. For example, ẑ could be pressure or potential temperature.

As shown in Appendix B, the horizontal pressure gradient force can be transformed to
the generalized coordinate as follows:

1
ρ

∇z p =
1
ρ

∇ẑ p− 1
ρ

∂ p
∂ z

∇ẑz

=
1
ρ

∇ẑ p− 1
ρ

∂ ẑ
∂ z

∂ p
∂ ẑ

∇ẑz

=
1
ρ

∇ẑ p− 1
ρ̂

∂ p
∂ ẑ

∇ẑz,

(17.10)

where

ρ̂ ≡ ρ
∂ z
∂ ẑ

(17.11)

is the “pseudodensity” in ẑ coordinates, i.e., the amount of mass (per unit horizontal area)
between two ẑ-surfaces. Note that

1
ρ

∂ p
∂ z

=
1
ρ̂

∂ p
∂ ẑ

. (17.12)

Eq. 17.10 can be rearranged to

1
ρ

∇z p =
1
ρ

∇ẑ p− 1
ρ̂

∂ p
∂ ẑ

∇ẑz+g∇ẑz−g∇ẑz

=

(
1
ρ

∇ẑ p+g∇ẑz
)
−
(

1
ρ̂

∂ p
∂ ẑ

+g
)

∇ẑz
(17.13)
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In the hydrostatic limit, the second term on the bottom line of (17.13) vanishes.

We now write

1
ρ

∇ẑ p =RT
∇ẑ p

p

=
RT
κ

∇ẑΠ

Π

=
cpT
Π

∇ẑΠ

=θ∇ẑΠ .

(17.14)

The bottom line of (17.14) is a particularly useful form. Continuing from (17.14), we can
obtain a second useful form as follows:

1
ρ

∇ẑ p =∇ẑ (Πθ)−Π∇ẑθ

=∇ẑ (cpT )−Π∇ẑθ .

(17.15)

Substituting (17.14) back into (17.13), we find that

1
ρ

∇z p =[∇ẑ (cpT )−Π∇ẑθ +g∇ẑz]−
(

1
ρ̂

∂ p
∂ ẑ

+g
)

∇ẑz

=∇ẑs−Π∇ẑθ −
(

1
ρ̂

∂ p
∂ ẑ

+g
)

∇ẑz,
(17.16)

where s is the dry static energy, defined by

s≡ cpT +gz. (17.17)

In the hydrostatic limit, (17.16) reduces to

1
ρ

∇z p = ∇ẑs−Π∇ẑθ . (17.18)
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For the special case ẑ≡ θ , (17.18) further simplifies to

1
ρ

∇z p = ∇θ s. (17.19)

The vertical pressure-gradient force can also be written in various ways. Two of the
possibilities are shown in (17.12). Here are some more examples:

1
ρ

∂ p
∂ z

=
RT
p

∂ p
∂ z

=
RT
κΠ

∂Π

∂ z

=
cpT
Π

∂Π

∂ z

=θ
∂Π

∂ z
.

(17.20)

The form shown on the bottom line of (17.20) is analogous to (17.14). A second useful
form can be obtained by further manipulation starting from (17.20), as follows:

1
ρ

∂ p
∂ z

=
∂

∂ z
(Πθ)−Π

∂θ

∂ z

=
∂

∂ z
(cpT )−Π

∂θ

∂ z

=
∂ s
∂ z
−g−Π

∂θ

∂ z

=
∂θ

∂ z

(
∂ s
∂θ
−Π

)
−g.

(17.21)

In the hydrostatic limit, (17.21) reduces to

1
ρ

∂ p
∂ z

=−g. (17.22)
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With the use of (17.16) and (17.12), we can now rewrite (17.1) and (17.2) as

DVh

Dt
=−(∇ẑs−Π∇ẑθ)−

(
1
ρ̂

∂ p
∂ ẑ

+g
)

∇ẑz, (17.23)

and

Dw
Dt

=− 1
ρ̂

∂ p
∂ ẑ
−g, (17.24)

respectively.

Using methods discussed in Appendix B, the continuity equation, (17.3), can be written
as

(
∂ρ

∂ t

)
ẑ
− ∂ ẑ

∂ z
∂ρ

∂ ẑ

(
∂ z
∂ t

)
ẑ
+∇ẑ · (ρVh)−

∂ ẑ
∂ z

[
∂

∂ ẑ
(ρVh)

]
·∇ẑz+

∂ ẑ
∂ z

∂

∂ ẑ
(ρw) = 0, (17.25)

or

∂ z
∂ ẑ

(
∂ρ

∂ t

)
ẑ
− ∂ρ

∂ ẑ

(
∂ z
∂ t

)
ẑ
+

∂ z
∂ ẑ

∇ẑ · (ρVh)−
[

∂

∂ ẑ
(ρVh)

]
·∇ẑz+

∂

∂ ẑ
(ρw) = 0. (17.26)

This result can be simplified using

(
∂ ρ̂

∂ t

)
ẑ
=

[
∂

∂ t

(
ρ

∂ z
∂ ẑ

)]
ẑ

=

(
∂ρ

∂ t

)
ẑ

∂ z
∂ ẑ

+ρ

[
∂

∂ t

(
∂ z
∂ ẑ

)]
ẑ

=

(
∂ρ

∂ t

)
ẑ

∂ z
∂ ẑ

+ρ
∂

∂ ẑ

(
∂ z
∂ t

)
ẑ

=

(
∂ρ

∂ t

)
ẑ

∂ z
∂ ẑ

+
∂

∂ ẑ

(
ρ

∂ z
∂ t

)
ẑ
− ∂ρ

∂ ẑ

(
∂ z
∂ t

)
ẑ

(17.27)
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and

∇ẑ · (ρ̂Vh) =∇ẑ ·
(

ρ
∂ z
∂ ẑ

Vh

)
=

∂ z
∂ ẑ

∇ẑ · (ρVh)+ρVh ·∇ẑ

(
∂ z
∂ ẑ

)
=

∂ z
∂ ẑ

∇ẑ · (ρVh)+ρVh
∂

∂ ẑ
(∇ẑz) .

(17.28)

Using (17.27) and (17.28) in (17.26), we can show, after some algebra, that

(
∂ ρ̂

∂ t

)
ẑ
+∇ẑ · (ρ̂Vh)+

∂

∂ ẑ
(ρ̂ŵ) = 0, (17.29)

where

ŵ≡−∂ ẑ
∂ z

[(
∂ z
∂ t

)
ẑ
+Vh ·∇ẑz−w

]
. (17.30)

Note that for ẑ≡ z Eq. (17.30) reduces to ŵ = w.

There are two ways to use (17.30):

1. Specify a formula to determine ŵ, and use (17.30) to predict z on surfaces of constant
ẑ. For example, if ẑ is potential temperature, then ŵ is proportional to the parameter-
ized heating rate. Given the heating rate, we can use (17.30) to predict the height of
θ surfaces.

2. Specify a (possibly complicated) rule to determine (∂ z/∂ t)ẑ, and use (17.30) to de-
termine ŵ. This is called the “Arbitrary Lagrangian-Eulerian” (ALE) method. It is
“arbitrary” in the sense that any physically reasonable rule can be used to determine
(∂ z/∂ t)ẑ.

It is possible (and common) to use the two approaches in combination. For example, if ẑ is
defined in such a way that the boundary-layer top is a surface of constant ẑ (e.g., Suarez
et al., 1983), then the height of the boundary-layer top can be predicted using (17.30), given
a parameterization of ŵ (which would involve the entrainment rate and the cumulus mass
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flux). This is another example of the first approach. But we might choose to impose upper
and/or lower limits on the height of the boundary-layer top. That can be done by using
(17.30) to determine the value of ŵ required to avoid violating the limits. This would be an
application of the second approach. Toy and Randall (2009) present a second example of
the two approaches in combination.

By analogy with (17.29), we can transform (17.9), the conservation equation for arbi-
trary intensive scalar, to

[
∂

∂ t
(ρ̂A)

]
ẑ
+∇ẑ · (ρ̂VhA)+

∂

∂ ẑ
(ρ̂ŵA) = ρ̂SA. (17.31)

The advective form can be obtained by combining (26) with (25):

(
∂A
∂ t

)
ẑ
+Vh ·∇ẑA+ ŵ

∂A
∂ ẑ

= SA. (17.32)

From (17.32), we see that the Lagrangian time-rate-of-change operator can be written as

D
Dt

=

(
∂

∂ t

)
ẑ
+Vh ·∇ẑ + ŵ

∂

∂ ẑ
. (17.33)

In particular,

Dẑ
Dt

= ŵ . (17.34)

If we set A≡ θ and SA = θ̇ , then (17.31) becomes the thermodynamic energy equation
in the form

[
∂

∂ t
(ρ̂θ)

]
ẑ
+∇ẑ · (ρ̂Vhθ)+

∂

∂ ẑ
(ρ̂ŵθ) = ρ̂ θ̇ . (17.35)

Let ẑS and ẑ∞ be the values of ẑ at the Earth’s surface and at the “top of the atmo-
sphere,”respectively. Integration of (17.29) gives
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∂

∂ t

∫ ẑ∞

ẑS

ρ̂ dẑ− ρ̂∞

∂ ẑ∞

∂ t
+ ρ̂S

∂ ẑS

∂ t

+∇ ·
∫ ẑ∞

ẑS

(ρ̂Vh) dẑ− (ρ̂Vh)∞
·∇ẑ∞ +(ρ̂Vh)§ ·∇ẑ§

+(ρ̂ŵ)
∞
− (ρ̂ŵ)S = 0 .

(17.36)

The condition that no mass crosses the top of the atmosphere can be written as

ρ̂∞

∂ ẑ∞

∂ t
+(ρ̂Vh)∞

·∇ẑ∞− (ρ̂ŵ)
∞
= 0. (17.37)

If the top of the model is assumed to be a surface of constant ẑ, which is usually the case,
then (17.37) reduces to

ŵT = 0. (17.38)

Similarly, the condition that no mass crosses the Earth’s surface is expressed by

ρ̂S
∂ ẑS

∂ t
+(ρ̂Vh)S ·∇ẑS− (ρ̂ŵ)S = 0. (17.39)

With the use of (17.37) and (17.39), Eq. (17.36) simplifies to

∂

∂ t

∫ ẑ∞

ẑS

ρ̂ dẑ+∇ ·
∫ ẑ∞

ẑS

(ρ̂Vh) dẑ = 0 , (17.40)

which expresses conservation of mass for the entire column of air.

17.5 Vertical coordinates for quasi-static models
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Chapter 18

Vertical coordinates for quasi-static models

18.1 Introduction

With a general vertical coordinate, ẑ, the hydrostatic equation can be expressed as

∂ p
∂ ẑ

=−ρ̂g (18.1)

In view of (18.1), Eq. (17.40) is equivalent to

∂ pS

∂ t
=−∇ ·

(∫ ẑS

ẑT

ρ̂Vdẑ
)
+

∂ pT

∂ t
, (18.2)

which is the surface pressure tendency equation. Depending on the definitions of ẑ and ẑT ,
it may or may not be appropriate to set ∂ pT/∂ t = 0, as an upper boundary condition. This
is discussed later. Corresponding to (18.2), we can show that the pressure tendency on an
arbitrary ẑ-surface satisfies

(
∂ p
∂ t

)
ẑ
=

∂ pT

∂ t
−∇ ·

(∫ ẑ

ẑT

ρ̂Vdẑ
)
+(ρ̂ŵ)ẑ. (18.3)

The thermodynamic equation can be written as

cp

[(
∂T
∂ t

)
ẑ
+V ·∇ẑT + ŵ

∂T
∂ ẑ

]
= ωα +Q, (18.4)
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where cp is the specific heat of air at constant pressure, α is the specific volume, and Q is
the heating rate per unit mass. An alternative form of the thermodynamic equation is

(
∂θ

∂ t

)
ẑ
+V ·∇ẑθ + ŵ

∂θ

∂ ẑ
=

Q
Π
, (18.5)

where

Π ≡cp
T
θ

=cp

(
p
p0

)κ (18.6)

is the Exner function. In (18.6), θ is the potential temperature; p0 is a positive, constant
reference pressure, usually taken to be 1000 hPa, and κ ≡R/cp, where R is the gas constant.

18.2 The equation of motion and the horizontal pressure-gradient
force

The horizontal momentum equation can be written as

(
∂V
∂ t

)
ẑ
+[ f +k · (∇ẑ×V)]k×V+∇ς K + ŵ

∂V
∂ ẑ

=−∇pφ +F. (18.7)

Here −∇pφ is the horizontal pressure-gradient force (hereafter abbreviated as HPGF),
which is expressed as minus the gradient of the geopotential along an isobaric surface,
and F is the friction vector. Also, k is a unit vector pointing upward, and it is important
to remember that the meaning of k is not affected by the choice of vertical coordinate sys-
tem. Similarly, V is the horizontal component of the velocity, and the meaning of V is not
affected by the choice of the vertical coordinate system. Using the relation

∇p = ∇ẑ−∇ẑ p
∂

∂ p

= ∇ẑ +
∇ẑ p
ρ̂

∂

∂ ẑ
,

(18.8)
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we can rewrite the HPGF as

−∇pφ =−∇ẑφ −
1
ρ̂

∂φ

∂ ẑ
∇ẑ p. (18.9)

In view of (18.1), this can be expressed as

−∇pφ =−∇ẑφ −α∇ẑ p. (18.10)

Eq. (18.10) is a nice result. For ẑ ≡ z it reduces to −∇pφ = −α∇z p, and for ẑ = p it
becomes −∇pφ =−∇pφ . These special cases are both very familiar.

Another useful form of the HPGF is expressed in terms of the dry static energy, which
is defined by

s≡ cpT +φ . (18.11)

For the special case in which ẑ≡ θ , which will be discussed in detail later, the hydrostatic
equation (18.1) can be written as

∂ s
∂θ

= Π . (18.12)

With the use of (18.11) and (18.12), Eq. (18.10) can be expressed as

−∇pφ =−∇ẑs+Π∇ẑθ . (18.13)

This form of the HPGF will be discussed later.

Let qẑ ≡ (k ·∇ẑ×V)+ f be the vertical component of the absolute vorticity. Note that
the meaning of qẑ depends on the choice of ẑ, because the curl of the velocity is taken along
a ẑ-surface. Starting from the momentum equation, we can derive the vorticity equation in
the form
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(
∂qẑ

∂ t

)
ẑ
+(V ·∇ẑ)qẑ + ŵ

∂qẑ

∂ ẑ
=

−qẑ (∇ẑ ·V)+
∂V
∂ ẑ
× (∇ẑŵ)−k · [∇ẑ× (∇pφ)]+k · (∇ẑ×F) .

(18.14)

The first term on the right-hand side of (18.14) represents the effects of stretching, and the
second represents the effects of twisting. When the HPGF can be written as a gradient,
it has no effect in the vorticity equation, because the curl of a gradient is always zero,
provided that the curl and gradient are taken along the same isosurfaces. It is apparent
from (18.10) and (18.13), however, that in general the HPGF is not simply a gradient along
a ẑ-surface. When ẑ is such that the HPGF is not a gradient, it can spin up or spin down a
circulation on a ẑ-surface. From (18.10) we see that the HPGF is a pure gradient for ẑ≡ p,
and from (18.13) we see that the HPGF is a pure gradient for ẑ ≡ θ . This is an advantage
shared by the pressure and theta coordinates.

The vertically integrated HPGF has a very important property that can be used in the
design of vertical differencing schemes. With the use of (18.1) and (17.11), we can rewrite
(18.9) as follows:

ρ̂HPGF =−ρ̂∇ẑφ −
∂φ

∂ ẑ
∇ẑ p

=−∇ẑ (ρ̂φ)+φ∇ẑρ̂−
∂φ

∂ ẑ
∇ẑ p

=−∇ẑ (ρ̂φ)−φ∇ẑ

(
∂ p
∂ ẑ

)
− ∂φ

∂ ẑ
∇ẑ p

=−∇ẑ (ρ̂φ)−φ
∂

∂ ẑ
(∇ẑ p)− ∂φ

∂ ẑ
∇ẑ p

=−∇ẑ (ρ̂φ)− ∂

∂ ẑ
(φ∇ẑ p) .

(18.15)

Vertically integrating with respect to mass, we find that

∫ ẑS

ẑT

ρ̂HPGFdẑ =−∇

(∫ ẑS

ẑT

ρ̂φdẑ
)
+(ρ̂φ)S∇ẑS− (ρ̂φ)T ∇ẑT −φS

(
∇ς p

)
S +φT

(
∇ς p

)
T .

(18.16)
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Here we have included the (ρ̂φ)S∇ẑS and −(ρ̂φ)T ∇ẑT terms to allow for the possibility
that ẑT and ẑS are spatially variable.

Consider a line integral of the vertically integrated HPGF, i.e.,
∫ ẑS

ẑT
ρ̂∇pφdẑ, along a

closed path. Because the term ∇ẑ
∫ ẑS

ẑT
ρ̂φdẑ is a gradient, its line integral is zero. The

line integral of φS∇pS will also be zero if either φS or pS is constant along the path of
integration, which is not likely with realistic geography. On the other hand, if either φT or
pT is constant along the path of integration, then the line integral of φT ∇pT will vanish, and
this can easily be arranged. This is a motivation to choose either φT = constant or pT =
constant, regardless of the choice of vertical coordinate. In addition, it is almost always
possible (and advisable) to choose ẑT = constant. Further discussion is given later.

To see how (18.16) plays out, let’s consider two examples. For the case of pressure
coordinates, with ρp =−1 and pT = constant, the last two terms of (18.16) vanish, because
they are proportional to the gradient of pressure on pressure surfaces. We get

∫ pS

pT

HPGF d p =−∇

(∫ pS

pT

φd p
)
+φS∇pS. (18.17)

Note that ∇pS is not the same as (∇p p)S (which is equal to zero).

For the case of height coordinates, with ρz = ρg and zT = constant, we get

∫ zS

zT

ρgHPGF dz =−∇

[∫ zS

zT

ρgφdz
]
+(ρgφ)S∇zS−φS(∇z p)S +φT (∇z p)T . (18.18)

Swapping the limits of integration, and flipping signs to compensate, we get

∫ zT

zS

ρgHPGF dz =−∇

(∫ zT

zS

ρgφdz
)
− (ρgφ)S∇zS +φS(∇z p)S−φT (∇z p)T

=−∇

(∫ zT

zS

ρgφdz+φT pT

)
+φS [−(ρg)S∇zS +(∇z p)S]

=−∇

(∫ zT

zS

ρgφdz−φT pT

)
+φS

[(
∂ p
∂ z

)
S
∇zS +(∇z p)S

]

=−∇

(∫ zT

zS

ρgφdz−φT pT

)
+φS∇pS.

(18.19)

282



Revised Monday 23rd August, 2021 at 15:57

In the final line above, we have used a coordinate transformation.

We conclude that, in the absence of topography along the path of integration, and with
either either φT = constant or pT = constant, there cannot be any net spin-up or spin-down
of a circulation in the region bounded by a closed path. This conclusion is independent of
the choice of vertical coordinate system. Later we will show how this important constraint
can be mimicked in a vertically discrete model.

18.3 Vertical mass flux for a family of vertical coordinates

Konor and Arakawa (1997) derived a diagnostic equation that can be used to compute
the vertical velocity, ŵ, for a large family of vertical coordinates that can be expressed as
functions of the potential temperature, the pressure, and the surface pressure, i.e.,

ẑ≡ F (θ , p, pS) . (18.20)

We get to choose the form of F (θ , p, pS), subject to the condition that ẑ is monotonic with
height. While not completely general, Eq. (18.20) does include a variety of interesting
cases, which will be discussed below, namely:

• Pressure coordinates

• Sigma coordinates

• The hybrid sigma-pressure coordinate of Simmons and Burridge (1981)

• Theta coordinates

• The hybrid sigma-theta coordinate of Konor and Arakawa (1997).

The height coordinate is not included in (18.20).

By taking the partial derivative (18.20) with respect to time, on a surface of constant ẑ,
we find that

0 =

[
∂

∂ t
F (θ , p, pS)

]
ẑ
. (18.21)

The chain rule tells us that this is equivalent to

∂F
∂θ

(
∂θ

∂ t

)
ẑ
+

∂F
∂ p

(
∂ p
∂ t

)
ẑ
+

∂F
∂ pS

(
∂ pS

∂ t

)
= 0. (18.22)
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Substituting from (18.5), (18.3), and (18.2), we obtain

∂F
∂θ

[
−
(

V ·∇ẑθ + ŵ∂θ

∂ ẑ

)
+ Q

Π

]
+∂F

∂ p

[
∂ pT
∂ t −∇ ·

(∫ ẑ
ẑT

ρ̂Vdẑ
)
+(ρ̂ŵ)ẑ

]
+ ∂F

∂ pS

[
∂ pT
∂ t −∇ ·

(∫ ẑS
ẑT

ρ̂Vdẑ
)]

= 0.

(18.23)

Eq. (18.23) can be solved for the vertical velocity, ŵ:

ŵ =

∂F
∂θ

(
−V ·∇ẑθ + Q

Π

)
+ ∂F

∂ p

[
∂ pT
∂ t −∇ ·

(∫ ẑ
ẑT

ρ̂Vdẑ
)]

+ ∂F
∂ pS

[
∂ pT
∂ t −∇ ·

(∫ ẑS
ẑT

ρ̂Vdẑ
)]

{
∂θ

∂ ẑ
∂F
∂θ
− ρ̂

∂F
∂ p

} .

(18.24)

Here we have assumed that the heating rate, Q, is not formulated as an explicit function
of ŵ; this is generally the case in modern numerical models, but not in some older theo-
retical models. With this assumption, the model can be constructed so that Q is computed
before determining the vertical velocity, which means that it can be considered “known” in
(18.24).

As a check of (18.24), consider the special case F ≡ p, so that ρẑ =−1, and assume that
∂ pT
∂ t = 0, as would be natural for the case of pressure coordinates. Then (18.24) reduces to

ṗ(≡ ω) =−∇ ·
(∫ p

pT

Vd p
)
. (18.25)

As a second special case, suppose that F ≡ θ . Then (18.24) becomes

θ̇ = Q/Π . (18.26)

Both of these results are as expected.

We assume that the model top is a surface of constant ẑ, i.e., ẑT = constant. Then
(18.22) must apply at the model top, so that we can write
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(
∂F
∂θ

)
θT ,pT

∂θT

∂ t
+

(
∂F
∂ p

)
θT ,pT

∂ pT

∂ t
+

(
∂F
∂ pS

)
θT ,pT

∂ pS

∂ t
= 0. (18.27)

Suppose that F (θ , p, pS) is chosen in such a way that (∂F/∂ pS)θT ,pT
= 0. This is a natural

choice, because the model top is far away from the surface. Then Eq. (18.27) simplifies to

(
∂F
∂θ

)
θT ,pT

∂θT

∂ t
+

(
∂F
∂ p

)
θT ,pT

∂ pT

∂ t
= 0. (18.28)

Now consider two possibilities. If we make the top of the model an isobaric surface, so
that ∂ pT/∂ t = 0, then the last term of (18.28) goes away, and we have the following situa-
tion: By assumption, [F (θ , p, pS)]T is a constant (because the top of the model is a surface
of constant ẑ). Also by assumption, [F (θ , p, pS)]T does not depend on pS. Finally we have
assumed that the top of the model is an isobaric surface. It follows that, when the model top
is an isobaric surface, the form of F (θ , p, pS) must be chosen so that (∂F/∂ pS)θT ,pT

= 0.

As a second possibility, when the model top is an isentropic surface, ∂θT/∂ t = 0, and
the form of F (θ , p, pS) must be chosen so that (∂F/∂ pS)θT ,pT

= 0.

Further discussion is given later.

18.4 Survey of particular vertical coordinate systems

We now discuss the following nine particular choices of vertical coordinate:

• height, z

• pressure, p

• log-pressure, z∗, which is used in many theoretical studies and some numerical mod-
els (e.g., Girard et al., 2014)

• σ , defined by

σ =
p− pT

pS− pT
, (18.29)

which is designed to simplify the lower boundary condition

• a “hybrid,” or “mix,” of σ and p coordinates, used in many global circulation models,
including the model of the European Centre for Medium Range Weather Forecasts
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• η , which is a modified σ coordinate, defined by

η ≡
(

p− pT

pS− pT

)
ηS, (18.30)

where ηS is a time-independent function of the horizontal coordinates

• potential temperature, θ , which has many attractive properties

• entropy, ε = cp ln θ

θ0
, where θ0 is a constant reference value of θ

• a hybrid sigma-theta coordinate, which behaves like σ near the Earth’s surface, and
like θ away from the Earth’s surface.

Of these nine possibilities, all except the height coordinate and the η coordinate are mem-
bers of the family of coordinates given by (18.20).

18.4.1 Height

In height coordinates, the hydrostatic equation is

∂ p
∂ z

=−ρg . (18.31)

The continuity equation in height coordinates is

(
∂ρ

∂ t

)
z
+∇z · (ρV)+

∂

∂ z
(ρw) = 0. (18.32)

This equation is easy to interpret, but it is mathematically complicated, because it is non-
linear and involves the time derivative of a quantity that varies with height, namely the
density.

The lower boundary condition in height coordinates is

∂ zS

∂ t
+VS ·∇zS−wS = 0. (18.33)

Normally we can assume that zS is independent of time, but (18.33) can accommodate
the effects of a specified time-dependent value of zS (e.g., to represent the effects of an
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earthquake, or a wave on the sea surface). Because height surfaces intersect the Earth’s
surface, height-coordinates are relatively difficult to implement in numerical models. This
complexity is mitigated somewhat by the fact that the horizontal spatial coordinates where
the height surfaces meet the Earth’s surface are normally independent of time.

The thermodynamic energy equation in height coordinates can be written as

cpρ

(
∂T
∂ t

)
z
=−cpρ

(
V ·∇zT +w

∂T
∂ z

)
+ω +ρQ. (18.34)

Here

ω =

(
∂ p
∂ t

)
z
+V ·∇z p+w

∂ p
∂ z

=

(
∂ p
∂ t

)
z
+V ·∇z p−ρgw.

(18.35)

By using (18.35) in (18.34), we find that

cpρ

(
∂T
∂ t

)
z
=−cpρV ·∇zT −ρwcp (Γd−Γ )+

[(
∂ p
∂ t

)
z
+V ·∇z p

]
+ρQ, (18.36)

where the actual lapse rate and the dry-adiabatic lapse rate are given by

Γ ≡−∂T
∂ z

, (18.37)

and

Γd ≡
g
cp

, (18.38)

respectively. Eq. (18.36) is awkward because it involves the time derivatives of both T and
p. The time derivative of the pressure can be eliminated by using the height-coordinate
version of (18.3), which is
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(
∂ p
∂ t

)
z
=−g∇z ·

∫
∞

z
(ρV)dz+gρ (z)w(z)+

∂ pT

∂ t
. (18.39)

Substitution into (18.36) gives

cpρ

(
∂T
∂ t

)
z
=−cpρV ·∇zT −ρwcp (Γd−Γ )

+

[
−g∇z ·

∫
∞

z
(ρV)dz+gρ (z)w(z)+

∂ pT

∂ t

]
+V ·∇z p+ρQ.

(18.40)

According to (18.40), the time rate of change of the temperature at a given height is in-
fluenced by the convergence of the horizontal wind field through a deep layer. The reason
is that convergence above causes a pressure increase, which leads to compression, which
warms.

An alternative, considerably simpler form of the thermodynamic energy equation in
height coordinates is

(
∂θ

∂ t

)
z
=−

(
V ·∇zθ +w

∂θ

∂ z

)
+

Q
Π
. (18.41)

We need the vertical velocity, w, for vertical advection, among other things. In quasi-
static models based on height coordinates, the equation of vertical motion is replaced by
the hydrostatic equation, in which w does not even appear. How then can we determine w?
The height coordinate is not a member of the family of schemes defined by (18.20), and so
(18.24), the formula for the vertical mass flux derived from (18.20), does not apply. Instead,
w has to be computed using “Richardson’s equation,” which is an expression of the physical
fact that hydrostatic balance applies not just at a particular instant, but continuously through
time. Richardson’s equation is actually closely analogous to (18.24), but somewhat more
complicated. The derivation of Richardson’s equation is also more complicated than the
derivation of (18.24). Here it comes:

As the state of the atmosphere evolves, the temperature, pressure, and density all change,
at a location in the three-dimensional space. Many complicated and somewhat independent
processes contribute to these changes, and it is easy to imagine that a hydrostatically bal-
anced initial state would quickly be pushed out of balance. Balance is actually maintained
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over time through a process called hydrostatic adjustment (e.g., Bannon (1995)). The state-
ment that balance is maintained leads to Richardson’s equation. It can be derived by starting
from the equation of state, in the form

p = ρRT. (18.42)

“Logarithmic differentiation” of (18.42) with respect to time gives

1
p

(
∂ p
∂ t

)
z
=

1
ρ

(
∂ρ

∂ t

)
z
+

1
T

(
∂T
∂ t

)
z
. (18.43)

The time derivatives can be eliminated by using continuity (18.32), the thermodynamic en-
ergy equation (18.36) and the pressure tendency equation (18.39). Note that the derivation
of (18.39) involves use of the hydrostatic equation. After some manipulation, we find that

cpT
∂

∂ z
(ρw)+ρw

[
g

cv

R
+ cp (Γd−Γ )

]
= (−cpρV ·∇zT +V ·∇z p)

− cpT ∇z · (ρV)+g
cv

R
∇z ·

∫
∞

z
(ρV)dz′+ρQ.

(18.44)

where

cv ≡ cp−R (18.45)

is the specific heat of air at constant volume.

Eq. (18.44) has been arranged so that the vertical velocity appears in both terms on the
left-hand side, but not at all on the right-hand side. Expand the first term on the left-hand
side using the product rule:

cpT
∂ (ρw)

∂ z
= ρcpT

∂w
∂ z

+wcpT
∂ρ

∂ z
, (18.46)
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A second logarithmic differentiation of (18.42), this time with respect to height, gives

1
p

∂ p
∂ z

=
1
ρ

∂ρ

∂ z
+

1
T

∂T
∂ z

. (18.47)

Using the hydrostatic equation again, we can rewrite (18.47) as

1
ρ

∂ρ

∂ z
=−ρg

p
+

Γ

T

=
1
T

(
− g

R
+Γ

)
.

(18.48)

Substitution of (18.48) into (18.46) gives

cpT
∂ (ρw)

∂ z
= ρcpT

∂w
∂ z

+ρwcp

(
− g

R
+Γ

)
. (18.49)

Finally, substitute (18.49) into (18.44), and combine terms, to obtain

∂w
∂ z

=

(
−cpρV ·∇zT +V ·∇z p

ρcpT

)
− 1

ρ
∇z · (ρV)

+
cv

cp p

[
g∇z ·

∫
∞

z
(ρV)dz′− ∂ pT

∂ t

]
+

Q
cpT

.

(18.50)

This beast is Richardson’s equation. It can be integrated to obtain w(z), given a lower
boundary condition and the information needed to compute the various terms on the right-
hand side, which involve both the mean horizontal motion and the heating rate, as well
as various horizontal derivatives. A physical interpretation of (18.50) is that the vertical
motion is whatever it takes to maintain hydrostatic balance through time despite the fact
that the various processes represented on the right-hand side of (18.50) may (individually)
tend to upset that balance.

As a very simple illustration of the use of (18.50), suppose that we have no horizontal
motion. Then (18.50) drastically simplifies to

∂w
∂ z

=
1
cp

(
Q
T
− cv

p
∂ pT

∂ t

)
. (18.51)
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If w = 0 at both the surface zS and the finite top height zT , then the pressure at the model
top changes according to

∂ pT

∂ t
=

∫ zT
zS

Q
cvT dz′∫ zT

zS
1
pdz′

, (18.52)

This shows that heating causes the pressure at the model top to increase with time, like in
a pressure cooker. The vertical velocity satisfies

w(z) =
z∫

0

(
Q

cpT
− cv

cp p
∂ pT

∂ t

)
dz′, (18.53)

which says that heating (cooling) below a given level induces rising (sinking) motion at
that level, as the air expands (or contracts) above the rigid lower boundary.

The complexity of Richardson’s equation has discouraged the use of height coordinates
in quasi-static models; one of the very few exceptions was the early NCAR GCM (Kasahara
and Washington (1967)). We are now entering an era of non-hydrostatic global models, in
which use of height coordinates is becoming more common, but of course Richardson’s
equation is not needed (and cannot be used) in non-hydrostatic models.

18.4.2 Pressure

The hydrostatic equation in pressure coordinates is

∂φ

∂ p
=−α . (18.54)

Eq. (17.11) reduces to

ρp =−1/g. (18.55)

The continuity equation in pressure coordinates is relatively simple; it is linear and does
not involve a time derivative:
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∇p ·V+
∂ω

∂ p
= 0. (18.56)

On the other hand, the lower boundary condition is complicated in pressure coordinates:

∂ pS

∂ t
+VS ·∇pS−ωS = 0. (18.57)

Recall that pS can be predicted using the surface pressure-tendency equation, (18.2). Sub-
stitution from (18.2) into (18.57) gives

ωS =
∂ pT

∂ t
−∇ ·

(∫ pS

pT

Vd p
)
+VS ·∇pS, (18.58)

which can be used to diagnose ωS. The fact that pressure surfaces intersect the ground
at locations that change with time (unlike height surfaces), means that models that use
pressure coordinates are complicated. Largely for this reason, pressure coordinates are
hardly ever used in numerical models. One of the few exceptions was the early and short-
lived general circulation model developed by Leith at the Lawrence National Laboratory
(now the Lawrence Livermore National Laboratory).

With the pressure coordinate, we can write

[
∂

∂ t

(
∂φ

∂ p

)]
p
=−R

p

(
∂T
∂ t

)
p
. (18.59)

This allows us to eliminate the temperature in favor of the geopotential, which is often done
in theoretical studies.

18.4.3 Log-pressure

Obviously a surface of constant p is also a surface of constant ln p. Nevertheless, the
equations take different forms in the p and ln p coordinate systems.

Let T0 be a constant reference temperature, and H ≡ RT0

g
the corresponding scale

height. Define the “log-pressure coordinate,” denoted by z∗, in terms of the differential
relationship
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dz∗ ≡−H
d p
p
. (18.60)

Note that z∗ has the units of length (i.e., it is “like” height). It is easy to show that

dz∗ =
T0

T
dz, (18.61)

so that

dz∗ = dz when T (p) = T0. (18.62)

Although generally z 6= z∗, we can force z(p = pS) = z∗ (p = pS). From (18.60), we see
that

∂φ∗

∂ p
=−RT0

p
, (18.63)

where

φ
∗ ≡ gz∗. (18.64)

Although (18.63) looks like the hydrostatic equation, it is really nothing more than the
definition of the log pressure coordinate. Since z∗ is a constant along a log-pressure surface
(i.e., along a pressure surface), φ∗ is also constant.

We do of course have the true hydrostatic equation, which can be written as

∂φ

∂ p
=−RT

p
. (18.65)

Here the true (non-constant) temperature appears. Subtracting (18.63) from (18.65), we
obtain a useful form of the hydrostatic equation:
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∂ (φ −φ∗)

∂ p
=−R(T −T0)

p
. (18.66)

Since φ∗ and T0 are independent of time on z∗ surfaces, we see that

∂

∂ t

(
∂φ

∂ p

)
z∗
=−R

p

(
∂T
∂ t

)
z∗
. (18.67)

The pseudo-density in log-pressure coordinates is given by

ρz∗ =
p

RT0
. (18.68)

The vertical velocity in log-pressure coordinates is

w∗ ≡ Dz∗

Dt

=−H
p

Dp
Dt

=−H
p

ω.

(18.69)

The continuity equation in log-pressure coordinates is given by

(
∂ρz∗

∂ t

)
z∗
+∇z∗ · (ρz∗V)+

∂

∂ z∗
(ρz∗w∗) = 0. (18.70)

18.4.4 Terrain-following coordinates

The σ -coordinate of Phillips (1957) is defined by

σ ≡ p− pT

π
, (18.71)
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where

π ≡ pS− pT , (18.72)

which is independent of height. From (18.71) and (18.72), it is clear that

σS = 1 and σT = 0. (18.73)

This is by design, of course. Notice that if pT = constant, which is always assumed, than
the top of the model is an isobaric surface. Phillips (1957) chose pT = 0.

Rearranging (18.71), we can write

p = pT +σπ. (18.74)

For a fixed value of σ , i.e., along a surface of constant σ , this implies that

d p = σdπ, (18.75)

where the differential can represent a fluctuation in either time or horizontal position. Also,

∂

∂ p
( ) =

1
π

∂

∂σ
( ) . (18.76)

Here the partial derivatives are evaluated at fixed horizontal position and time.

The pseudodensity in σ -coordinates is

ρσ = π, (18.77)

which is independent of height. Here we choose not to use the minus sign in (17.11). The
continuity equation in σ -coordinates can therefore be written as
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∂π

∂ t
+∇σ · (πV)+

∂ (πσ̇)

∂σ
= 0. (18.78)

Although this equation does contain a time derivative, the differentiated quantity, π , is in-
dependent of height, which makes it considerably simpler than than the continuity equation
in height coordinates.

The lower boundary condition in σ -coordinates is very simple:

σ̇ = 0 at σ = 1. (18.79)

This simplicity was in fact Phillips’ motivation for the invention of σ -coordinates. The
upper boundary condition is similar:

σ̇ = 0 at σ = 0. (18.80)

The continuity equation in σ -coordinates plays a dual role. First, it is used to predict π .
This is done by integrating (18.78) through the depth of the vertical column and using the
boundary conditions (18.79) and (18.80), to obtain the surface pressure-tendency equation
in the form

∂π

∂ t
=−∇ ·

(∫ 1

0
πVdσ

)
. (18.81)

The continuity equation is also used to determine πσ̇ . Once ∂π

∂ t has been evaluated using
(18.81), which does not involve πσ̇ , we can substitute back into (18.78) to obtain

∂

∂σ
(πσ̇) = ∇ ·

(∫ 1

0
πVdσ

)
−∇σ · (πV) . (18.82)

This can be integrated vertically to obtain πσ̇ as a function of σ , starting from either the
Earth’s surface or the top of the atmosphere, and using the appropriate boundary condition
at the bottom or top. The same result is obtained regardless of the direction of integration,
and the result is consistent with Eq. (18.24).
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The hydrostatic equation in σ -coordinates is simply

1
π

∂φ

∂σ
=−α, (18.83)

which is closely related to the hydrostatic equation in pressure coordinates.

Finally, the horizontal pressure-gradient force takes a relatively complicated form:

HPGF =−σα∇π−∇σ φ , (18.84)

which can easily be obtained from (18.10). Consider the two contributions to the HPGF
when evaluated near a mountain, as illustrated in Fig. 18.1. Near steep topography, the
spatial variations of pS and the near-surface value of φ along a σ -surface are strong and of
opposite sign. For example, moving uphill pS decreases while φS increases. As a result,
the two terms on the right-hand side of (18.83) are individually large and opposing, and the
HPGF is the relatively small difference between them – a dangerous situation. Near steep
mountains the relatively small discretization errors in the individual terms of the right-hand
side of (18.83) can be as large as the HPGF.

Figure 18.1: Sketch illustrating the opposing terms of the horizontal pressure gradient force as
measured in σ -coordinates.

Using the hydrostatic equation, (18.83), we can rewrite (18.84) as

HPGF = σ

(
1
π

∂φ

∂σ

)
∇π−∇σ φ . (18.85)

Rearranging, we find that
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π (HPGF) = σ
∂φ

∂σ
∇π−π∇σ φ

=

[
∂ (σφ)

∂σ
−φ

]
∇π−π∇σ φ

=
∂ (σφ)

∂σ
∇π−∇σ (πφ) .

(18.86)

This is a special case of (18.15).

Figure 18.2: Sketch illustrating the pressure-gradient force as seen in σ -coordinates and pressure
coordinates.

The problem with the hydrostatic equation in σ -coordinates may appear to be an issue
mainly with horizontal differencing, because the HPGF involves only horizontal deriva-
tives, but vertical differencing also comes in. To see how, consider Fig. 18.2. At the point
O, the σ = σ∗ and p = p∗ surfaces intersect. As we move away from point O, the two
surfaces separate. By a coordinate transformation, we can write

HPGF =−∇pφ

=−∇σ φ +
∂φ

∂ p
∇σ p.

(18.87)

This second line of (18.87) expresses the HPGF in terms of both the horizontal change in φ

along a σ -surface, say between two neighboring horizontal grid points (mass points), and
the vertical change in φ between neighboring model layers. The latter depends, hydrostati-
cally, on the temperature. Using hydrostatics, the ideal gas law, and the definition of σ , we
can rewrite (18.87) as
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HPGF =−∇σ φ −
(

RT
p

)
σ∇π. (18.88)

Compare with (18.83).

If the σ -surfaces are very steeply tilted relative to constant height surfaces, which is
expected near steep mountains, the temperature needed on the right-hand side of (18.87)
will be representative of two or more σ -layers, rather than a single layer. If the temperature
is changing rapidly with height, this can lead to large errors. It can be shown that the
problem is minimized if the model has sufficiently high horizontal resolution relative to
its vertical resolution (Janjic, 1977; Mesinger, 1982; Mellor et al., 1994), i.e., it is good to
have

δσ

δx
≥

∣∣∣(δφ

δx

)
σ

∣∣∣∣∣∣( δφ

δσ

)
x

∣∣∣ . (18.89)

This is a condition on the aspect ratio of the grid cells. It means that δσ must be coarse
enough for a given δx, or that δx must be small enough for a given δσ . This implies that
an increase in the vertical resolution without a corresponding increase in the horizontal
resolution can cause problems. The numerator of the right-hand side of (18.89) increases
when the terrain is steep, especially in the lower troposphere. The denominator increases
when T is warm, i.e., near the surface, which means that it is easier to satisfy (18.89) near
the surface.

Finally, the Lagrangian time derivative of pressure can be expressed in σ -coordinates
as

ω ≡ Dp
Dt

=

(
∂ p
∂ t

)
σ

+V ·∇σ p+ σ̇
∂ p
∂σ

= σ

(
∂π

∂ t
+V ·∇π

)
+πσ̇ .

(18.90)

18.4.5 Hybrid sigma-pressure coordinates

The advantage of the sigma coordinate is realized in the lower boundary condition. The
disadvantage, in terms of the complicated and poorly behaved pressure-gradient force, is
realized at all levels. This has motivated the use of hybrid coordinates that reduce to sigma
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at the lower boundary, and become pure pressure-coordinates at higher levels. In principle
there are many ways of doing this. The most widely cited paper on this topic is by Simmons
and Burridge (1981). They recommended the coordinate

σp (p, pS)≡
(

p− pT

p0− pT

)(
pS− p

pS− pT

)
+

(
p− pT

pS− pT

)2

, (18.91)

where p0 is a positive constant. You can confirm that σp is monotonic with pressure,
provided that p0 > pS/2. Inspection of (18.91) shows that

σp = 0 for p = 0, and σp = 1 for p = pS. (18.92)

It can be shown that σp-surfaces are nearly parallel to isobaric surfaces in the upper tro-
posphere and stratosphere, despite possible variations of the surface pressure in the range
~1000 mb to ~500 mb. When we evaluate the HPGF with the σp-coordinate, there are still
two terms, as with the σ -coordinate, but above the lower troposphere one of the terms is
strongly dominant.

18.4.6 The eta coordinate

As a solution to the problem with the HPGF in σ -coordinates, Mesinger and Janjic (1985)
proposed the η-coordinate, which was used operationally at NCEP (the National Centers
for Environmental Prediction). The coordinate is defined by

η ≡ σηS, (18.93)

where

ηS =
pr f (zS)− pT

pr f (0)− pT
. (18.94)

Whereas σ = 1 at the Earth’s surface, Eq. (18.93) shows that η = ηS at the Earth’s surface.
According to (18.94), ηS = 1 (just as σ = 1) if zS = 0. Here zS = 0 is chosen to be at
or near “sea level.” The function pr f (zS) is pre-specified so that it gives typical surface
pressures for the full range of possible values of zS. Because zS depends on the horizontal
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coordinates, ηS does too. In fact, after choosing the function pr f (zS) and the map zS (x,y),
it is possible to make a map of ηS (x,y), and of course this map is independent of time.

When we build a σ -coordinate model, we must specify (i.e., choose) values of σ to
serve as layer-edges and/or layer centers. These values are constant in the horizontal and
time. Similarly, when we build an η-coordinate model, we must specify fixed values of
η to serve as layer edges and/or layer centers. The values of η to be chosen include the
possible values of ηS. This means that only a finite number of discrete (and constant) values
of ηS are permitted; the number increases as the vertical resolution of the model increases.
It follows that only a finite number of discrete values of zS are permitted: Mountains must
come in a few discrete sizes, like off-the-rack clothing! This is sometimes called the “step-
mountain” approach. Fig. 18.3 shows how the η-coordinate works near mountains. Note
that, unlike σ -surfaces, η-surfaces are nearly flat, in the sense that they are close to being
isobaric surfaces. The circled u-points have u = 0, which is the appropriate boundary
condition on the cliff-like sides of the mountains.

Figure 18.3: Sketch illustrating the η-coordinate.

In η-coordinates, the HPGF still consists of two terms:

−∇pφ =−∇ηφ −α∇η p. (18.95)

Because the η-surfaces are nearly flat, however, these two terms are each comparable in
magnitude to the HPGF itself, even near mountains, so the problem of near-cancellation is
greatly mitigated.

18.4.7 Potential temperature

The potential temperature is defined by
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θ ≡ T
(

p0

p

)κ

. (18.96)

The potential temperature increases upwards in a statically stable atmosphere, so that there
is a monotonic relationship between θ and z. Note, however, that potential temperature
cannot be used as a vertical coordinate when static instability occurs, and that the vertical
resolution of a θ -coordinate model becomes very poor when the atmosphere is close to
neutrally stable.

Potential temperature coordinates have highly useful properties that have been recog-
nized for many years. In the absence of heating, θ is conserved following a particle. This
means that the vertical motion in θ -coordinates is proportional to the heating rate:

θ̇ =
θ

cpT
Q; (18.97)

in the absence of heating, there is “no vertical motion,” from the point of view of θ -
coordinates; we can also say that, in the absence of heating, a particle that is on a given
θ -surface remains on that surface. Eq. (18.97) is equivalent to (18.5), and is an expression
of the thermodynamic energy equation in θ -coordinates. In fact, θ -coordinates provide
an especially simple pathway for the derivation of many important results, including the
conservation equation for the Ertel potential vorticity. In addition, θ -coordinates prove to
have some important advantages for the design of numerical models (e.g., Eliassen and
Raustein (1968); Bleck (1973); Johnson and Uccellini (1983); Hoskins et al. (1985); Hsu
and Arakawa (1990)).

The continuity equation in θ -coordinates is given by

(
∂ρθ

∂ t

)
θ

+∇θ · (ρθ V)+
∂

∂θ

(
ρθ θ̇

)
= 0 . (18.98)

Note, however, that θ̇ = 0 in the absence of heating; in such case, (18.98) reduces to

(
∂ρθ

∂ t

)
θ

+∇θ · (ρθ V) = 0, (18.99)
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which is closely analogous to the continuity equation of a shallow-water model. In the
absence of heating, a model that uses θ -coordinates behaves like “a stack of shallow-water
models.”

The lower boundary condition in θ -coordinates is

∂θS

∂ t
+V ·∇θS− θ̇S = 0. (18.100)

As a reminder, this means that mass does not cross the Earth’s surface. Eq. (18.100) can
be used to predict θS. The complexity of the lower boundary condition in θ -coordinates is
one of its chief drawbacks. This will be discussed further below.

For the case of θ -coordinates, the hydrostatic equation, (18.1), reduces to

∂φ

∂θ
= α

∂ p
∂θ

. (18.101)

Logarithmic differentiation of (18.94) gives

dθ

θ
=

dT
T
−κ

d p
p
. (18.102)

It follows that

α
∂ p
∂θ

= cp
∂T
∂θ
− cp

T
θ
. (18.103)

Substitution of (18.103) into (18.101) gives

∂ s
∂θ

= Π , (18.104)

where s was defined in (18.11).

Following (18.10), the HPGF in θ -coordinates can be written as
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HPGF =−α∇θ p−∇θ φ . (18.105)

From (18.102) it follows that

∇θ p = cp

( p
RT

)
∇θ T. (18.106)

Substitution of (18.106) into (18.105) gives

HGPF =−∇θ s. (18.107)

This can also be obtained directly from (18.13).

Of course, θ -surfaces can intersect the lower boundary, but following Lorenz (1955) we
can consider that they actually follow along the boundary, like coats of paint. This leads to
the concept of “massless layers,” as shown in the middle panel of Fig. 18.4.

Figure 18.4: Coordinate surfaces with topography: Left, the σ -coordinate. Center, the θ -coordinate.
Right, a hybrid σ -θ coordinate.

Obviously, a model that follows the massless-layer approach has to avoid producing
negative mass. This can be done, for example, through the use of flux-corrected transport.
Nevertheless, this practical difficulty has led most modelers to avoid θ -coordinates up to
this time.

The massless layer approach leads us to use values of θ that are colder than any actu-
ally present in an atmospheric column, particularly in the tropics of a global model. The
coldest possible value of θ is zero Kelvin. Consider the lower boundary condition on the
hydrostatic equation, (18.104). We can write
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s(θ)− s(0) =
θ∫

0

Π
(
θ
′)dθ

′, (18.108)

where θ ′ is a dummy variable of integration. From the definition of s, we have s(0) = φS.
For “massless” portion of the integral, the integrand, Π (θ ′), is just a constant, namely ΠS,
i.e., the surface value of Π . We can therefore write

s(θ) = φS +

θS∫
0

Π
(
θ
′)dθ

′+

θ∫
θS

Π
(
θ
′)dθ

′

= φS +ΠSθS +

θ∫
θS

Π
(
θ
′)dθ

′

= φS + cpTS +

θ∫
θS

Π
(
θ
′)dθ

′.

(18.109)

It follows that

s(θ) = sS +

θ∫
θS

Π
(
θ
′)dθ

′, (18.110)

as expected.

The dynamically important isentropic potential vorticity, q, is easily constructed in θ -
coordinates, since it involves the curl of V on a θ -surface:

q≡ (k ·∇θ ×V+ f )
∂θ

∂ p
. (18.111)

The available potential energy is also easily obtained, since it involves the distribution of
pressure on θ -surfaces.
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18.4.8 Entropy

The entropy coordinate is very similar to the θ -coordinate. We define the entropy by

ε ≡ cp ln
θ

θ0
, (18.112)

where θ0 is a constant reference value of θ . It follows that

dε = cp
dθ

θ
. (18.113)

The hydrostatic equation can then be written as

∂ s
∂ε

= T. (18.114)

This is a particularly attractive form because the “thickness” (in terms of s) between two
entropy surfaces is simply the temperature.

18.4.9 Hybrid sigma-theta coordinates

Konor and Arakawa (1997) discuss a hybrid vertical coordinate, which we will call ẑKA,
that reduces to θ away from the surface, and to σ near the surface. This hybrid coordinate
is a member of the family of schemes given by (18.20). It is designed to combine the
strengths of θ and σ coordinates, while avoiding their weaknesses. Hybrid coordinates
have also been considered by other authors, e.g., Johnson and Uccellini (1983) and Zhu
et al. (1992).

To specify the scheme, we must choose the function F (θ , p, pS) that appears in (18.20).
Following Konor and Arakawa (1997), define

ẑKA = F (θ , p, pS)≡ f (σ)+g(σ)θ , (18.115)

where σ ≡ σ (p, pS) is a modified sigma coordinate, defined so that it is (as usual) a con-
stant at the Earth’s surface, and (not as usual) increases upwards, e.g.,
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σ ≡ pS− p
pS

. (18.116)

If we specify f (σ) and g(σ), then the hybrid coordinate is fully determined.

We require, of course, that ẑKA itself increases upwards, so that

∂ ẑKA

∂σ
> 0. (18.117)

We also require that

ẑKA = constant for σ = σS, (18.118)

which means that ẑKA is σ -like at the Earth’s surface, and that

ẑKA = θ for σ = σT , (18.119)

which means that ẑKA becomes θ at the model top (or lower). These conditions imply, from
(18.115), that

g(σ)→ 0 as σ → σS, (18.120)

f (σ)→ 0 and g(σ)→ 1 as σ → σT . (18.121)

Now substitute (18.115) into (18.117), to obtain

d f
dσ

+
dg
dσ

θ +g
∂θ

∂σ
> 0. (18.122)

307



Revised Monday 23rd August, 2021 at 15:57

This is the requirement that ẑKA increases monotonically upward. Any choices for f and g
that satisfy (18.120) - (18.122) can be used to define the hybrid coordinate.

Here is a way to satisfy those requirements: First, we agree to choose g(σ) so that it is
a monotonically increasing function of σ , i.e.,

dg
dσ

> 0 for all σ . (18.123)

Since θ also increases upward, the condition (18.123) simply ensures that g(σ) and θ

change in the same sense, and the middle term on the left-hand side of (18.122) is guar-
anteed to be positive. We also choose g(σ) so that the conditions (18.120) - (18.121) are
satisfied. There are many possible choices for g(σ) that meet these requirements.

Next, define θmin and
(

∂θ

∂σ

)
min

as lower bounds on θ and ∂θ

∂σ
, respectively, so that

θ > θmin and
∂θ

∂σ
>

(
∂θ

∂σ

)
min

. (18.124)

When we choose the value of θmin, we are saying that we have no interest in simulating
situations in which θ is actually colder than θmin. For example, we could choose θmin = 10
K. This is not necessarily an ideal choice, for reasons to be discussed below, but we can be
sure that θ in our simulations will exceed 10 K everywhere at all times, unless the model is
in the final throes of blowing up. Similarly, when we choose the value of

(
∂θ

∂σ

)
min

, we are

saying that we have no interest in simulating situations in which ∂θ

∂σ
is actually less stable

(or more unstable) than
(

∂θ

∂σ

)
min

. We can choose
(

∂θ

∂σ

)
min

< 0, i.e., a value of
(

∂θ

∂σ

)
min

that corresponds to a statically unstable sounding. Further discussion is given below.

Now, with reference to the inequality (18.122), we write the following equation:

d f
dσ

+
dg
dσ

θmin +g
(

∂θ

∂σ

)
min

= 0. (18.125)

Remember that g(σ) will be specified in such a way that (18.119) is satisfied. You should
be able to see that if the equality (18.125) is satisfied, then the inequality (18.122) will
also be satisfied, i.e., ẑKA will increase monotonically upward. This will be true even if the
sounding is statically unstable in some regions, provided that (18.120) is satisfied.

308



Revised Monday 23rd August, 2021 at 15:57

Eq. (18.125) is a first-order ordinary differential equation for f (σ), which can be
solved subject to the boundary condition (18.121).

That’s all there is to it. Amazingly, the scheme does not involve any “if-tests.” It is
simple and fairly flexible.

The vertical velocity is obtained using (18.24).

18.4.10 Summary of vertical coordinate systems

Table 18.1 summarizes key properties of some important vertical coordinate systems. All of
the systems discussed here (with the exception of the entropy coordinate) have been used in
many theoretical and numerical studies. Each system has its advantages and disadvantages,
which must be weighed with a particular application in mind.

Table 18.1: Summary of properties of some vertical coordinate systems.

z ∂p
∂z

= −ρg −α∇z p w ≡ Dz
Dt

∂ρ
∂t
+∇z ⋅ ρV( )

+
∂ ρw( )
∂z

= 0
VS ⋅ ∇zS −wS = 0

p ∂φ
∂p

= −α −∇ pφ ω ≡ Dp
Dt

∇ p ⋅ V( ) + ∂ω
∂p

= 0
∂pS
∂t

+VS ⋅ ∇pS

−ωS = 0

z* ≡ −H ln p
p0

⎛

⎝
⎜

⎞

⎠
⎟

∂z
∂z*

= − T
T0

−∇
z*
φ

w ≡ Dz
*

Dt

= − Hω
p

∇
z*
⋅V + ∂w

*

∂z*

− w
*

H
= 0

∂zS
*

∂t
+VS ⋅ ∇zS

*

−wS
* = 0

σ ≡ p − pT
π

1
π
∂φ
∂σ

= −α −∇σφ
−σαπ  

!σ ≡ Dσ
Dt

 

∂π
∂t
+∇σ ⋅ πV( )

+
∂ π !σ( )
∂z

= 0
 − !σ S = 0

θ
∂M
∂θ

= π −∇θM
 
!θ ≡ Dθ

Dt

 

∂m
∂t

+∇θ ⋅ mV( )

+
∂ m !θ( )
∂θ

= 0  

∂θS
∂t

+VS ⋅ ∇θS

− !θS = 0

s ∂ψ
∂s

= T −∇sM
 
!s ≡ Ds

Dt
 

∂µ
∂t
+∇s ⋅ µV( )

+
∂ µ !s( )
∂s

= 0  

∂sS
∂t

+VS ⋅ ∇sS

− !sS = 0

Coordinate Hydrostatics HPGF Vertical 
velocity Continuity LBC

�1
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18.5 Problems

1. Derive the form of the HPGF in σp coordinates, and compare with the corresponding
formula in σ coordinates.

2. Starting from ∂ p/∂ z =−ρg, show that ∂φ/∂Π =−θ .

3. Prove that the method to determine πσ̇ with the σ coordinate, i.e.,

∂

∂σ
(πσ̇) = ∇ ·

(∫ 1

0
πVdσ

)
−∇σ · (πV) (18.126)

is consistent with the method to determine the vertical velocity for a general family
of schemes (that includes the σ coordinate), i.e.,

ŵ=

∂F
∂θ

(
−V ·∇ẑθ + Q

Π

)
+ ∂F

∂ p

[
∂ pT
∂ t −∇ ·

(∫ ẑ
ẑT

ρ̂Vdẑ
)]

+ ∂F
∂ pS

[
∂ pT
∂ t −∇ ·

(∫ ẑS
ẑT

ρ̂Vd p
)]

{
∂θ

∂ ẑ
∂F
∂θ
− ρ̂

∂F
∂ p

} .

(18.127)

4. For the hybrid sigma-pressure coordinate of Simmons and Burridge (1981), work
out:

(a) The form of the pseudo-density, expressed as a function of the vertical coordi-
nate.

(b) A method to determine the vertical velocity, modeled after the method used
with σ -coordinates. Write down a “recipe” explaining how you would program
the calculation of the vertical velocity.

(c) The form of the horizontal pressure-gradient force.
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Chapter 19

Vertical differencing

19.1 Vertical staggering

19.1.1 Lorenz vs. Charney-Phillips

After the choice of vertical coordinate system, the next issue is the choice of vertical stag-
gering. Two possibilities are discussed here, and are illustrated in Fig. 19.1. These are the
“Lorenz” or “L” staggering, and the “Charney-Phillips” or “CP” staggering. Suppose that
both grids have N wind-levels. The L-grid also has N θ -levels, while the CP-grid has N +1
θ -levels. On both grids, φ is hydrostatically determined on the wind-levels, and

φl−φl+1 ∼ θl+ 1
2
. (19.1)

On the CP-grid, θ is located between φ -levels, so (19.1) is convenient. With the L-grid, θ

must be interpolated. For example, we might choose

φl−φl+1 ∼
1
2
(θl +θl+1) . (19.2)

Because (19.2) involves averaging, an oscillation in θ is not “felt” by φ , and so has no
effect on the winds; it is dynamically inert. No such problem occurs with the CP-grid.

There is a second, less obvious problem with the L-grid. The vertically discrete poten-
tial vorticity corresponding to (18.111) is

ql ≡ (k ·∇θ ×Vl + f )
(

∂θ

∂ p

)
l
. (19.3)
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Figure 19.1: A comparison of the Lorenz and Charney-Phillips staggering methods.

Inspection shows that (19.3) “wants” the potential temperature to be defined at levels in
between the wind levels, as they are on the CP-grid. Suppose that we have N wind levels.
Then with the CP-grid we will have N + 1 potential temperature levels and N potential
vorticities. This is nice. With the L-grid, on the other hand, it can be shown that we
effectively have N +1 potential vorticities. The “extra” degree of freedom in the potential
vorticity is spurious, and allows a spurious “computational baroclinic instability” (Arakawa
and Moorthi (1988)). This is a further drawback of the L-grid.

19.1.2 The continuity equation at layer edges

With the Charney-Phillips staggering, we need continuity equations at the layer edges that
are consistent with and actually implied by the continuity equations at layer centers. The
discsusion in this subsection very closely follows the ideas presented in Section 3b of
Arakawa and Konor (1996).

Let the total number of model layers be K, so that 1 ≤ k ≤ K; as mentioned earlier, k
increases downward. Here we assume for simplicity that the vertical velocity vanishes at
the top and bottom edges of the model, so that
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(ρσw)i,1/2
j = (ρσw)i,K+1/2

j = 0. (19.4)

Consider a layer, k, with its upper edge at k−1/2, and its lower edge at k+1/2. There is
a “half layer” at the top of the model, between k = 1/2 and k = 1, and another half layer at
the bottom of the model, between k = K and k = K +1/2. Following Arakawa and Konor
(1996), we set

(ρσ)
i,k+1/2
j = ak+1/2 (ρσ)i,k

j +bk+1/2 (ρσ)i,k+1
j , (19.5)

where

ak+1/2 +bk+1/2 = 1 for 0≤ k ≤ K, (19.6)

and

a1/2 = bK+1/2 = 0, so that b1/2 = aK+1/2 = 1. (19.7)

The interpolation weights a and b are assumed to be independent of time and the horizontal
coordinates. Eq. (19.7) makes it possible to apply (19.5) for all k in the range 1 ≤ k ≤ K.
Defining

ρ̄
i,k+1/2
j ≡∑

j
(ρσ)

i,k+1/2
j (19.8)

and

σ̂
i,k+1/2
j ≡

(ρσ)
i,k+1/2
j

ρ̄
i,k+1/2
j

, (19.9)

we see that
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∑
j

σ̂
i,k+1/2
j = 1. (19.10)

With these preparations, and using (19.9), we can rewrite (19.5) as

(ρ̄σ̂)
i,k+1/2
j = ak+1/2 (ρ̄σ̂)i,k

j +bk+1/2 (ρ̄σ̂)i,k+1
j , (19.11)

Now we take
∂

∂ t
of (19.5) and substitute from XXX to obtain

∂

∂ t
(ρ̄σ̂)

i,k+1/2
j =

1
Ai

(
∑
j′ 6= j

E i,k+1/2
j′, j − ∑

j′ 6= j
E i,k+1/2

j, j′ −Gi,k+1/2
tot, j

)

−ak+1/2

δ zk

[
(ρ̄σ̂w)i,k−1/2

j − (ρ̄σ̂w)i,k+1/2
j

]
− bk+1/2

δ zk+1

[
(ρ̄σ̂w)i,k+1/2

j − (ρ̄σ̂w)i,k+3/2
j

]
.

(19.12)

Here we define

E i,k+1/2
j′, j ≡ ak+1/2E i,k

j′, j +bk+1/2E i,k+1
j′, j , (19.13)

and

Gi,k+1/2
j′, j ≡ ak+1/2Gi,k

j, j′+bk+1/2Gi,k+1
j′, j , (19.14)

From (19.7), it follows that

(ρ̄σ̂)
i,1/2
j = (ρ̄σ̂)i,1

j and (ρ̄σ̂)
i,K+1/2
j = (ρ̄σ̂)i,K

j , (19.15)

E i,1/2
j′, j = E i,1

j′, j and E i,K+1/2
j′, j = E i,K

j′, j, (19.16)
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and

Gi,1/2
j′, j = Gi,1

j′, j and Gi,K+1/2
j′, j = Gi,K

j′, j. (19.17)

Inspection of (19.12) shows that the vertical mass flux difference centered on layer edge
k+1/2 satisfies

(ρ̄σ̂w)i,k
j − (ρ̄σ̂w)i,k+1

j =

δ zk+1/2

{
ak+1/2

δ zk

[
(ρ̄σ̂w)i,k−1/2

j − (ρ̄σ̂w)i,k+1/2
j

]
− bk+1/2

δ zk+1

[
(ρ̄σ̂w)i,k+1/2

j − (ρ̄σ̂w)i,k+3/2
j

]}
.

(19.18)

The analogous formulae for layer edges k−1/2 and k+3/2 are

(ρ̄σ̂w)i,k−1
j − (ρ̄σ̂w)i,k

j =

δ zk−1/2

{
ak−1/2

δ zk−1

[
(ρ̄σ̂w)i,k−3/2

j − (ρ̄σ̂w)i,k−1/2
j

]
− bk−1/2

δ zk

[
(ρ̄σ̂w)i,k−1/2

j − (ρ̄σ̂w)i,k+1/2
j

]}
,

(19.19)

and

(ρ̄σ̂w)i,k+1
j − (ρ̄σ̂w)i,k+2

j =

δ zk+3/2

{
ak+3/2

δ zk+1

[
(ρ̄σ̂w)i,k+1/2

j − (ρ̄σ̂w)i,k+3/2
j

]
− bk+3/2

δ zk+2

[
(ρ̄σ̂w)i,k+3/2

j − (ρ̄σ̂w)i,k+5/2
j

]}
.

(19.20)

respectively. The expressions on the left-hand sides of (19.18), (19.19), and (19.20) are
flux differences, which will cancel when we sum over k. We require that the expressions on
the right-hand sides of (19.18), (19.19), and (19.20) also have the form of flux differences,
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so that the layer-edge continuity equation will have a flux-divergence form. With this in
mind, we require that when summed over k in the range 1 to K− 1 the total coefficient
of each layer-edge value of ρ̄σ̂w is zero (a very Arakawa move). Inspection shows that
(ρ̄σ̂w)i,k+1/2

j appears on the right-hand sides of all three equations: (19.18), (19.19), and

(19.20). Setting the sum of the three coefficients of (ρ̄σ̂w)i,k+1/2
j to zero gives

δ zk+1/2

[
−ak+1/2

δ zk +
bk+1/2

δ zk+1

]
−δ zk−1/2

(
bk−1/2

δ zk

)
+δ zk+3/2

(
ak+3/2

δ zk+1

)
= 0

for 2≤ k ≤ K−2.

(19.21)

As indicated, this condition must be satisfied for 2 ≤ k ≤ K− 2. Substitution shows that
(19.21) can be satisfied by setting

ak+1/2 =
1
2

(
δ zk

δ zk+1/2

)
and bk+1/2 =

1
2

(
δ zk+1

δ zk+1/2

)
for 2≤ k ≤ K−2. (19.22)

We also use (19.21) for k = 1 and k = K− 1. Using (19.6) and (19.22), we find that the
thickness of the “layer” centered on the layer edge is given by

δ zk+1/2 =
1
2

(
δ zk +δ zk+1

)
. (19.23)

Substitution of these various results into the vertical-velocity terms of (19.12) allows us to
rewrite it as

∂

∂ t
(ρ̄σ̂)

i,k+1/2
j =

1
Ai

(
∑
j′ 6= j

E i,k+1/2
j′, j − ∑

j′ 6= j
E i,k+1/2

j, j′ −∑
i′

(
Gi,i′

j

)i,k+1/2
)

− 1
δ zk+1/2

[
(ρ̄σ̂w)i,k

j − (ρ̄σ̂w)i,k+1
j

]
for 1≤ k ≤ K−1,

(19.24)

where
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(ρ̄σ̂w)i,k
j ≡

1
2

[
(ρ̄σ̂w)i,k−1/2

j +(ρ̄σ̂w)i,k+1/2
j

]
for 2≤ k ≤ K−1. (19.25)

The thicknesses of the half-layers satisfy

δ zK+1/2 =
1
2

δ zK and δ z1/2 =
1
2

δ z1. (19.26)

The vertical mass fluxes at levels 1 and K are given by

(ρ̄σ̂w)i,1
j =

1
2
(ρ̄σ̂w)i,3/2

j and (ρ̄σ̂w)i,K
j =

1
2
(ρ̄σ̂w)i,K−1/2

j . (19.27)

These definitions for the top and bottom half-layers, along with the boundary conditions
(19.4), allow us to apply (19.24) at all layer edges:

∂

∂ t
(ρ̄σ̂)

i,k+1/2
j =

1
Ai

[
∑
j′ 6= j

E i,k+1/2
j′, j − ∑

j′ 6= j
E i,k+1/2

j, j′ −∑
i′

(
Gi,i′

j

)i,k+1/2
]

− 1
δ zk+1/2

[
(ρ̄σ̂w)i,k

j − (ρ̄σ̂w)i,k+1
j

]
for 0≤ k ≤ K.

(19.28)

This is the layer-edge continuity equation.

We have shown how to construct a set of layer-edge continuity equations that are im-
plied by the layer-center continuity equations. In other words, given that we time-step the
layer-center continuity equations, the layer-edge continuity equations are satisfied “auto-
matically.” There is no need to time-step them separately.

As Lorenz (1960) pointed out, however, the L-grid is convenient for maintaining total
energy conservation, because the kinetic and thermodynamic energies are defined at the
same levels. Today, most models use the L-grid. Exceptions are the UK’s Unified Model
and the Canadian Environmental Multiscale model (Girard et al. (2014)), both of which use
the CP-grid.
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19.2 Conservation of total energy with continuous pressure coordi-
nates

Even with the continuous equations, the derivation of the total energy equation in σ co-
ordinates is a bit complicated. It may be helpful to see the simpler derivation in pressure
coordinates first.

In pressure coordinates, the starting points are the following equations, which have
appeared earlier but are repeated here for convenience: Continuity is

∇p ·V+
∂ω

∂ p
= 0, (19.29)

where

ω ≡ Dp
Dt

(19.30)

the Lagrangian time derivative of pressure. The momentum equation is

(
∂V
∂ t

)
p
+[ f +k · (∇p×V)]k×V+ω

∂V
∂ p

+∇pK =−∇pφ . (19.31)

We have assumed no friction for simplicity. Potential temperature conservation is expressed
by

(
∂θ

∂ t

)
p
+∇p · (Vθ)+

∂

∂ p
(ωθ) = 0. (19.32)

Here we have omitted the heating term, for simplicity. Hydrostatics is

∂φ

∂ p
=−α, (19.33)

where α ≡ 1/ρ is the specific volume. Finally, we need the definition of θ and the equation
of state:
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cpT = Πθ , (19.34)

p = ρRT. (19.35)

In (19.34),

Π ≡ cp

(
p
p0

)κ

(19.36)

is the Exner function, with κ ≡ R/cp.

Using continuity, (19.32) can be expressed in advective form:

(
∂θ

∂ t

)
p
+V ·∇pθ +ω

∂θ

∂ p
= 0. (19.37)

By logarithmic differentiation of (19.34), and with the use of (19.33), (19.35), and (19.36),
we can write (19.37) in terms of temperature, as follows:

cp

[(
∂T
∂ t

)
p
+V ·∇pT +ω

∂T
∂ p

]
=

cpT
Π

[(
∂Π

∂ t

)
p
+V ·∇pΠ +ω

∂Π

∂ p

]

=
cpT κ

p

[(
∂ p
∂ t

)
p
+V ·∇p p+ω

∂ p
∂ p

]
= ωα.

(19.38)

Continuity then allows us to transform (19.38) to the flux form:

cp

[(
∂T
∂ t

)
p
+∇p · (VT )+

∂

∂ p
(ωT )

]
= ωα . (19.39)
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The ωα term on the right-hand side of (19.39) represents conversion between thermody-
namic energy and mechanical energy.

Next, we derive a suitable form of the kinetic energy equation. Dotting the equation of
horizontal motion (19.31) with the horizontal wind vector, we obtain

(
∂K
∂ t

)
p
+V ·∇pK +ω

∂K
∂ p

=−V ·∇pφ . (19.40)

where

K ≡ 1
2
(V ·V) (19.41)

is the kinetic energy per unit mass. The corresponding flux form is

(
∂K
∂ t

)
p
+∇p · (VK)+

∂

∂ p
(ωK) =−V ·∇pφ . (19.42)

The pressure-work term on the right-hand side of (19.42) has to be manipulated to facilitate
comparison with (19.39). We write

−V ·∇pφ =−∇p · (Vφ)+φ∇p ·V

=−∇p · (Vφ)−φ
∂ω

∂ p

=−∇p · (Vφ)− ∂

∂ p
(ωφ)+ω

∂φ

∂ p

=−∇p · (Vφ)− ∂

∂ p
(ωφ)−ωα.

(19.43)

Here we have used first continuity and then hydrostatics. Substituting (19.43) back into
(19.42), and collecting terms, we obtain the kinetic energy equation in the form
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(
∂K
∂ t

)
p
+∇p · [V(K +φ)]+

∂

∂ p
[ω (K +φ)] =−ωα . (19.44)

Finally, adding (19.39) and (19.44) gives a statement of the conservation of total energy:

[
∂

∂ t
(K + cpT )

]
p
+∇p · [V(K +φ + cpT )]+

∂

∂ p
[ω (K +φ + cpT )] = 0 . (19.45)

Note that the energy conversion terms of (19.39) and (19.44) have cancelled.

19.3 Conservation of total energy with continuous sigma coordi-
nates

We now present the corresponding derivation using σ coordinates. The steps involved are
basically “the same” as those used in p coordinates, but a little more complicated. The
starting equations are

∂π

∂ t
+∇σ · (πV)+

∂ (πσ̇)

∂σ
= 0, (19.46)

ω ≡ Dp
Dt

=

(
∂ p
∂ t

)
σ

+V ·∇σ p+ σ̇
∂ p
∂σ

= σ

(
∂π

∂ t
+V ·∇π

)
+πσ̇ ,

(19.47)

(
∂V
∂ t

)
σ

+[ f +k · (∇σ ×V)]k×V+ σ̇
∂V
∂σ

+∇σ K =−σα∇π−∇σ φ , (19.48)
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[
∂

∂ t
(πθ)

]
σ

+∇σ · (πVθ)+
∂

∂σ
(πσ̇θ) = 0, (19.49)

∂φ

∂σ
=−πα. (19.50)

Using continuity, (19.49) can be expressed in advective form:

(
∂θ

∂ t

)
σ

+V ·∇σ θ + σ̇
∂θ

∂σ
= 0. (19.51)

By logarithmic differentiation of (19.34), and with the use of (19.35), (19.36), and (19.50),
we can write (19.51) in terms of temperature, as follows:

cp

[(
∂T
∂ t

)
σ

+V ·∇σ T + σ̇
∂T
∂σ

]
=

cpT
Π

[(
∂Π

∂ t

)
σ

+V ·∇σ Π + σ̇
∂Π

∂σ

]

=
cpT κ

p

[(
∂ p
∂ t

)
σ

+V ·∇σ p+ σ̇
∂ p
∂σ

]

= σα

(
∂π

∂ t
+V ·∇π +πσ̇

)
= ωα.

(19.52)

Continuity allows us to rewrite (19.52) in flux form:

[
∂

∂ t
(πcpT )

]
σ

+∇σ · (πVcpT )+
∂

∂σ
(πσ̇cpT ) = σπα

(
∂π

∂ t
+V ·∇π +πσ̇

)
.

(19.53)

Here we have used
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πωα = σπα

(
∂π

∂ t
+V ·∇π +πσ̇

)
. (19.54)

The product “sigma pi alpha” before the parentheses on the right-hand side of (19.54) has
been called “SPA” in model codes that I have worked with. At first sight, I thought it was
pretty mysterious.

To derive the kinetic energy equation in σ coordinates, we dot (19.48) with V to obtain

(
∂K
∂ t

)
σ

+V ·∇σ K + σ̇
∂K
∂σ

=−V · (∇σ φ +σα∇π) . (19.55)

The corresponding flux form is

[
∂ (πK)

∂ t

]
σ

+∇σ · (πVK)+
∂ (πσ̇K)

∂σ
=−πV · (∇σ φ +σα∇π) . (19.56)

The pressure-work term on the right-hand side of (19.56) has to be manipulated to facilitate
comparison with (19.53). Begin as follows:

−πV · (∇σ φ +σα∇π) =−∇σ · (πVφ)+φ∇σ · (πV)−πσαV ·∇π

=−∇σ · (πVφ)−φ

[
∂π

∂ t
+

∂ (πσ̇)

∂σ

]
−πσαV ·∇π

=−∇σ · (πVφ)− ∂ (πσ̇φ)

∂σ
+πσ̇

∂φ

∂σ
−φ

∂π

∂ t
−πσαV ·∇π

=−∇σ · (πVφ)− ∂ (πσ̇φ)

∂σ
−
(

πσ̇απ +φ
∂π

∂ t
+πσαV ·∇π

)
.

(19.57)

To get the second line of (19.57) we have used continuity, and to get the final line we have
used hydrostatics. One more step is needed, and it is not at all obvious. We know that we
need πωα , where ω is given by (19.47). With this in mind, we rewrite the last three terms
(in parentheses) on the bottom line of (19.57) as follows:
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πσ̇απ +φ
∂π

∂ t
+πσαV ·∇π = πωα−πα

[
σ

(
∂π

∂ t
+V ·∇π

)
+πσ̇

]
+πσ̇απ +φ

∂π

∂ t
+πσαV ·∇π

= πωα−πασ

(
∂π

∂ t

)
+φ

∂π

∂ t

= πωα +

(
∂φ

∂σ
σ +φ

)
∂π

∂ t

= πωα +
∂

∂σ

(
φσ

∂π

∂ t

)
.

(19.58)

What is the ∂

∂σ

(
φσ

∂π

∂ t

)
term doing on the last line of (19.58)? It is a contribution to the

vertical pressure-work term. Substituting (19.58) back into (19.57), we conclude that

−πV · (∇σ φ +σα∇π) =−∇σ · (πVφ)− ∂ (πσ̇)

∂σ
−
[

πωα +
∂

∂σ

(
φσ

∂π

∂ t

)]
=−∇σ · (πVφ)− ∂

∂σ

[
φ

(
πσ̇ +σ

∂π

∂ t

)]
−πωα.

(19.59)

This can be compared with (19.43). Using (19.59) in (19.56), we obtain the kinetic energy
equation in the form

[
∂ (πK)

∂ t

]
σ

+∇σ · [πV(K +φ)]+
∂

∂σ

[
πσ̇K +φ

(
πσ̇ +σ

∂π

∂ t

)]
=−σπα

(
∂π

∂ t
+V ·∇π +πσ̇

)
,

(19.60)

where (19.54) has been used.

We can now add (19.60) and (19.53) to obtain the total energy equation in σ coordi-
nates:

{
∂

∂ t
[π (K + cpT )]

}
σ

+∇σ · [πV(K + cpT +φ)]+
∂

∂σ

[
πσ̇ (K + cpT )+φ

(
πσ̇ +σ

∂π

∂ t

)]
= 0 .

(19.61)
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Compare with (19.45).

19.4 Total energy conservation as seen in generalized coordinates

Finally, we do the derivation using the generalized ζ coordinate. The starting equations are

(
∂ρζ

∂ t

)
ζ

+∇ζ ·
(
ρζ V

)
+

∂

∂ζ

(
ρζ ζ̇

)
= 0, (19.62)

ω ≡ Dp
Dt

=

(
∂ p
∂ t

)
ζ

+V ·∇ζ p+ ζ̇
∂ p
∂ζ

=

(
∂ p
∂ t

)
ζ

+V ·∇ζ p−ρζ ζ̇ ,

(19.63)

(
∂V
∂ t

)
ζ

+
[

f +k ·
(
∇ς ×V

)]
k×V+∇ς K + ζ̇

∂V
∂ζ

=−∇ζ φ − 1
ρζ

∂φ

∂ζ
∇ζ p, (19.64)

[
∂
(
ρζ θ

)
∂ t

]
ζ

+∇ζ ·
(
ρζ Vθ

)
+

∂

∂ζ

(
ρζ ζ̇ θ

)
= 0, (19.65)

∂φ

∂ζ
= αρζ . (19.66)

Using continuity, (19.65) can be expressed in advective form:

(
∂θ

∂ t

)
ζ

+V ·∇ζ θ + ζ̇
∂θ

∂ζ
= 0. (19.67)
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By logarithmic differentiation of (19.34), and with the use of (19.35), (19.36), and (19.66),
we can write the thermodynamic energy equation in terms of temperature, as follows:

cp

[(
∂T
∂ t

)
ς

+V ·∇ς T + ς̇
∂T
∂ς

]
=

cpT
Π

[(
∂Π

∂ t

)
ς

+V ·∇ς Π + ς̇
∂Π

∂ς

]

=
cpT κ

p

[(
∂ p
∂ t

)
ς

+V ·∇ς p+ ς̇
∂ p
∂ς

]
= ωα.

(19.68)

Continuity allows us to rewrite (19.68) in flux form:

[
∂

∂ t

(
ρζ cpT

)]
ς

+∇ς ·
(
ρζ VcpT

)
+

∂

∂ς

(
ρζ ς̇cpT

)
= ρζ ωα . (19.69)

To derive the kinetic energy equation in ζ coordinates, we dot (19.64) with V to obtain

(
∂K
∂ t

)
ς

+V ·∇ς K + ς̇
∂K
∂ς

= V ·

(
−∇ζ φ − 1

ρζ

∂φ

∂ζ
∇ζ p

)
. (19.70)

The corresponding flux form is

[
∂
(
ρζ K

)
∂ t

]
ς

+∇ς ·
(
ρζ VK

)
+

∂
(
ρζ ς̇K

)
∂ς

= ρζ V ·

(
−∇ζ φ − 1

ρζ

∂φ

∂ζ
∇ζ p

)
. (19.71)

The pressure-work term on the right-hand side of (19.71) has to be manipulated to facilitate
comparison with (19.69). Begin as follows:
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ρζ V ·

(
−∇ζ φ − 1

ρζ

∂φ

∂ζ
∇ζ p

)
=−∇ζ ·

(
ρζ Vφ

)
+φ∇ζ ·

(
ρζ V

)
− ∂φ

∂ζ
V ·∇ζ p

=−∇ς ·
(
ρζ Vφ

)
−φ

[(
∂ρζ

∂ t

)
ζ

+
∂

∂ζ

(
ρζ ζ̇

)]
− ∂φ

∂ζ
V ·∇ζ p

=−∇ς ·
(
ρζ Vφ

)
−

∂

(
ρζ ζ̇ φ

)
∂ζ

+ρζ ζ̇
∂φ

∂ζ
−φ

(
∂ρζ

∂ t

)
ζ

− ∂φ

∂ζ
V ·∇ζ p.

(19.72)

To complete the derivation, we write

φ

(
∂ρζ

∂ t

)
ζ

= φ

[
∂

∂ t

(
−∂ p

∂ζ

)]
ζ

=−φ
∂

∂ζ

[(
∂ p
∂ t

)
ζ

]

=− ∂

∂ζ

[
φ

(
∂ p
∂ t

)
ζ

]
+

∂φ

∂ζ

(
∂ p
∂ t

)
ζ

.

(19.73)

Substituting (19.73) into (19.72), and rearranging, we obtain
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ρζ V ·

(
−∇ζ φ − 1

ρζ

∂φ

∂ζ
∇ζ p

)
=−∇

ζ
·
(
ρζ Vφ

)
− ∂

∂ζ

[
ρζ ζ̇ φ −φ

(
∂ p
∂ t

)
ζ

]

+
∂φ

∂ζ

[
ρζ ζ̇ −

(
∂ p
∂ t

)
ζ

−V ·∇ζ p

]

=−∇
ζ
·
(
ρζ Vφ

)
− ∂

∂ζ

[
ρζ ζ̇ φ −φ

(
∂ p
∂ t

)
ζ

]

−αρζ

[(
∂ p
∂ t

)
ζ

+V ·∇ζ p+
∂ p
∂ζ

ζ̇

]

=−∇
ζ
·
(
ρζ Vφ

)
− ∂

∂ζ

[
ρζ ζ̇ φ −φ

(
∂ p
∂ t

)
ζ

]
−ρζ ωα.

(19.74)

Substituting back into (19.71), we obtain the kinetic energy equation in the form

[
∂
(
ρζ K

)
∂ t

]
ς

+∇ς ·
[
ρζ V(K +φ)

]
+

∂

∂ς

[
ρζ ζ̇ (K +φ)−φ

(
∂ p
∂ t

)
ζ

]
=−ρζ ω .

(19.75)

We can now add (19.75) and (19.69) to obtain the total energy equation in ζ coordi-
nates:

{
∂

∂ t

[
ρζ (K + cpT )

]}
ζ

+∇ζ ·
[
ρζ V(K + cpT +φ)

]
+

∂

∂ς

[
ρζ ζ̇ (K + cpT +φ)−φ

(
∂ p
∂ t

)
ζ

]
= 0 .

(19.76)
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19.5 Conservation properties of vertically discrete models using sigma-
coordinates

We now investigate conservation properties of the vertically discrete equations, using σ -
coordinates, and using the L-grid. The discussion follows Arakawa and Lamb (1977),
although some of the ideas originated with Lorenz (1960). For simplicity, we keep both the
temporal and horizontal derivatives in continuous form.

We begin by writing down the vertically discrete prognostic equations of the model.
Conservation of mass is expressed, in the vertically discrete system, by

∂π

∂ t
+∇σ · (πVl)+

[
δ (πσ̇)

δσ

]
l
= 0, (19.77)

where

[δ ( )]l ≡ ( )l+ 1
2
− ( )l− 1

2
. (19.78)

Similarly, conservation of potential temperature is expressed, in flux form, by

∂ (πθl)

∂ t
+∇σ · (πVlθl)+

[
δ (πσ̇θ)

δσ

]
l
= 0. (19.79)

Here we omit the heating term, for simplicity. In order to use (19.79) it is necessary to
define values of θ at the layer edges, via an interpolation. In Chapter 4 we discussed the
interpolation issue in the context of horizontal advection, and that discussion applies to
vertical advection as well. As one possibility, the interpolation methods that allow conser-
vation of an arbitrary function of the advected quantity can be used for vertical advection.
As discussed later, a different choice may be preferable.

The hydrostatic equation is

δφ

δσ
= παl. (19.80)

This equation involves the geopotentials at the layer edges, and also the specific volume
in the layer center. These must be determined somehow, by starting from the prognostic
variables of the model.
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Finally, the momentum equation is

∂Vl

∂ t
+[ f +k · (∇σ ×Vl)]k×Vl +

(
σ̇

∂V
∂σ

)
l
+∇Kl =−∇φl− (σα)l∇π. (19.81)

Here we omit the friction term, for simplicity. The momentum equation involves the geopo-
tentials at the layer centers, which will have to be determined somehow, presumably using
the hydrostatic equation. Note, however, that the hydrostatic equation listed above involves
the geopotentials at the layer edges, rather than the layer centers.

To complete the system, we need the upper and lower boundary conditions

σ̇ 1
2
= σ̇L+ 1

2
= 0. (19.82)

We define the vertical coordinate, σ , at layer edges, which are denoted by half-integer
subscripts. The change in σ across layer l is written as δσl . Note that

L

∑
l=1

δσl = 1, (19.83)

pl+ 1
2
= πσl+ 1

2
+ pT , (19.84)

where pT is a constant, and the constant values of σl+ 1
2

are assumed to be prescribed for
each layer edge. Eq. (19.84) tells how to compute layer-edge pressures. A method to
determine layer-center pressures is also needed, and will be discussed later.

By summing (19.77) over all layers, and using (19.82), we obtain

∂π

∂ t
+∇ ·

{
L

∑
l=1

[(πVl)(δσl)]

}
= 0, (19.85)

which is the vertically discrete form of the surface pressure tendency equation. From
(19.85), we see that mass is, in fact, conserved, i.e., the vertical mass fluxes do not pro-
duce any net source or sink of mass. We can use (19.85) with (19.77) to determine πσ̇ at

330



Revised Monday 23rd August, 2021 at 15:57

the layer edges, exactly paralleling the method used to determine πσ̇ with the vertically
continuous system of equations.

19.5.1 The horizontal pressure-gradient force

Consider the HPGF, in connection with (18.84) and (18.86). A finite-difference analog of
(18.86) is

π(HPGF)l =

[
δ (σφ)

δσ

]
l
∇π−∇(πφl) . (19.86)

Multiplying (19.86) by δσl , and summing over all layers, we obtain

L

∑
l=1

π(HPGF)l(δσ)l =
L

∑
l=1

[δ (σφ)]l∇π−
L

∑
l=1

[∇(πφl)(δσ)l]

= φS∇π−∇

{
L

∑
l=1

[(πφl)(δσ)l]

}
.

(19.87)

This is analogous to Eq. (18.16), which applies in the continuous system. Inspection of
(19.82) shows that, if we use the form of the HPGF given by (19.81), the vertically summed
HPGF cannot spin up or spin down a circulation inside a closed path, in the absence of
topography (Arakawa and Lamb (1977)). A vertical differencing scheme of this type is
often said to be “angular-momentum conserving” (e.g., Simmons and Burridge (1981)).

The idea outlined above provides a rational way to choose which of the many possible
forms of the HPGF should be used in a model. At this point the form is not fully determined,
however, because we do not yet have a method to compute either φl or the layer-edge values
of φ that appear in (19.86).

Eq. (19.86) is equivalent to

π(HPGF)l =

{[
δ (σφ)

δσ

]
l
−φl

}
∇π−π∇φl. (19.88)

By comparison with (18.84), we identify

π(σα)l = φl−
[

δ (σφ)

δσ

]
l
. (19.89)
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An analogous equation is true in the continuous case. This allows us to write (19.88) as

π(HPGF)l =−π(σα)l∇π−π∇φl. (19.90)

Eq. (19.90) will be used later.

19.5.2 The thermodynamic energy equation

Suppose that we choose to predict θl by using (19.79), because we want to conserve the
globally mass-integrated value of θ in the absence of heating. We relate the temperature to
the potential temperature using

cpTl = Πlθl, (19.91)

which corresponds to (19.34). In order to use (19.91), we need a way to determine

Πl ≡ cp

(
pl

p0

)κ

. (19.92)

Norman Phillips (1974) suggested

Πl =

(
1

1+κ

)[
δ (Π p)

δ p

]
l
, (19.93)

on the grounds that this form leads to a good simulation of vertical wave propagation.
Eq. (19.93) gives us away to compute the layer-center value of the Exner function, and
the layer-center value of the pressure, from the neighboring layer-edge values. Tokioka
(1978) showed that with (19.93), the finite-difference hydrostatic equation (discussed later)
is exact for atmospheres in which the potential temperature is uniform with height.

The advective form of the potential temperature equation can be obtained by combining
(19.79) with (19.77):
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π

(
∂θl

∂ t
+Vl ·∇θl

)
+

(πσ̇)l+ 1
2

(
θl+ 1

2
−θl

)
+(πσ̇)l− 1

2

(
θl−θl− 1

2

)
(δσ)l

= 0. (19.94)

A similar manipulation was shown way back in Chapter 5. Substitute (19.91) into (19.94),
to obtain the corresponding prediction equation for Tl:

cpπ

(
∂Tl

∂ t
+Vl ·∇Tl

)
−πθl

∂Πl

∂π

(
∂π

∂ t
+Vl ·∇π

)

+

(πσ̇)l+ 1
2

(
Πlθl+ 1

2
− cpTl

)
+(πσ̇)l− 1

2

(
cpTl−Πlθl− 1

2

)
(δσ)l

= 0.

(19.95)

The derivative ∂Πl
∂π

can be evaluated using (19.93). We now introduce the terms that rep-
resent the vertical advection of temperature, modeled after the corresponding terms of
(19.94). These involve the layer-edge temperatures, i.e., Tl+ 1

2
and Tl− 1

2
, but keep in mind

that a method to determine the layer-edge temperatures has not yet been specified. By
simply “adding and subtracting,” we rewrite (19.95) as

cpπ

(
∂Tl

∂ t
+Vl ·∇Tl

)
+ cp

(πσ̇)l+ 1
2

(
Tl+ 1

2
−Tl

)
+(πσ̇)l− 1

2

(
Tl−Tl− 1

2

)
(δσ)l



= πθl
∂Πl

∂π

(
∂π

∂ t
+Vl ·∇π

)
+

(πσ̇)l+ 1
2

(
cpTl+ 1

2
−Πlθl+ 1

2

)
+(πσ̇)l− 1

2

(
Πlθl− 1

2
− cpTl− 1

2

)
(δσ)l

 .
(19.96)

The layer-edge temperatures can simply be cancelled out in (19.90) to recover (19.89).
Obviously, the left-hand side of (19.96) can be rewritten in flux form through the use of the
vertically discrete continuity equation:
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cp

{
∂

∂ t
(πTl)+∇ · (πVlTl)+

[
δ (πσT )

δσ

]
l

}

= πθl
∂Πl

∂π

(
∂π

∂ t
+Vl ·∇π

)
+

1
(δσ)l

[
(πσ̇)l+ 1

2

(
cpTl+ 1

2
−Πlθl+ 1

2

)
+(πσ̇)l− 1

2

(
Πlθl− 1

2
− cpTl− 1

2

)]
.

(19.97)

We now observe, by comparison of (19.97) with the continuous form (19.52), that the
expression on the right-hand side of (19.97) must be a form of πωα , i.e.,

π(ωα)l = πθl
∂Πl

∂π

(
∂π

∂ t
+Vl ·∇π

)
+

(πσ̇)l+ 1
2

(
cpTl+ 1

2
−Πlθl+ 1

2

)
+(πσ̇)l− 1

2

(
Πlθl− 1

2
− cpTl− 1

2

)
(δσ)l

 .

(19.98)

Eq. (19.98) is a finite-difference analog of the not-so-obvious continuous equation

πωα = πθ
∂Π

∂π

(
∂π

∂ t
+V ·∇π

)
+

∂ (πσ̇cpT )
∂σ

−Π
∂ (πσ̇θ)

∂σ
, (19.99)

which you should be able to prove is correct. We will return to (19.98) below, after deriving
the corresponding expression from the mechanical energy side of the problem.

19.5.3 The mechanical energy equation

We now derive the mechanical energy equation using the vertically discrete system. Tak-
ing the dot product of πVl with the HPGF for layer l, we write, closely following the
continuous case,
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−πVl · [∇φl +(σα)l∇π] =−∇ · (πVlφl)+φl∇ · (πVl)−π(σα)lVl ·∇π

=−∇ · (πVlφl)−φl

{
∂π

∂ t
+

[
δ (πσ̇φ)

δσ

]
l

}
−π(σα)lVl ·∇π

=−∇ · (πVlφl)−
[

δ (πσ̇φ)

δσ

]
l
+

(πσ)l+ 1
2

(
φl+ 1

2
−φl

)
+(πσ̇)l− 1

2

(
φl−φl− 1

2

)
(δσ)l


−φl

∂π

∂ t
−π(σα)lVl ·∇π.

(19.100)

Continuing down this path, we construct the terms that we need by adding and subtracting

−πVl [∇φl +(σα)l∇π] =−∇ · (πVlφl)−
[

δ (πσ̇φ)

δσ

]
l
+[π(σα)l−φl]

∂π

∂ t

−π

(σα)l

(
∂π

∂ t
+Vl ·∇π

)
−

(πσ̇)l+ 1
2

(
φl+ 1

2
−φl

)
+(πσ̇)l− 1

2

(
φl−φl− 1

2

)
π(δσ)l

 .

(19.101)

Using the continuity equation (19.77), we can rewrite (19.101) as

−πVl · [∇φl +(σα)l∇π] =−∇ · (πVlφl)−

δ

[(
πσ̇ +σ

∂π

∂ t

)
φ

]
δσ


l

−π

(σα)l

(
∂π

∂ t
+Vl ·∇π

)
−

(πσ̇)l+ 1
2

(
φl+ 1

2
−φl

)
+(πσ̇)l− 1

2

(
φl−φl− 1

2

)
π(δσ)l

 .

(19.102)

By comparing with the continuous form, (19.59), we infer that

π(ωα)l = π(σα)l

(
∂π

∂ t
+Vl ·∇π

)
− 1

(δσ)l

[
(πσ̇)l+ 1

2

(
φl+ 1

2
−φl

)
+(πσ̇)l− 1

2

(
φl−φl− 1

2

)]
.

(19.103)
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19.5.4 Total energy conservation

We have now reached the crux of the problem. To ensure total energy conservation, the
form of π(ωα)l given by (19.103) must match that given by (19.98). Comparison of the
two equations shows that this can be accomplished by setting:

(σα)l = θl
∂Πl

∂π
, (19.104)

φl−φl+ 1
2
=
(

cpTl+ 1
2
−Πlθl+ 1

2

)
, (19.105)

and

φl− 1
2
−φl =

(
Πlθl− 1

2
− cpTl− 1

2

)
. (19.106)

As discussed below, all three of these equations are vertically discrete forms of the hydro-
static equation.

Eq. (19.104) gives us an expression for (σα)l . We already had one, though, in Eq.
(19.89). By requiring that these two expressions to agree, we obtain

φl−
[

δ (σφ)

δσ

]
l
= πθl

∂Πl

∂π
. (19.107)

This is yet another a finite-difference form of the hydrostatic equation. It involves geopo-
tentials at both layer centers and layer edges. You should be able to derive the continuous
form of the hydrostatic equation that corresponds to (19.107).

By adding Πlθl to both sides of both (19.105) and (19.106), and using (19.91), we find
that

(
cpTl+ 1

2
+φl+ 1

2

)
− (cpTl +φl) = Πl

(
θl+ 1

2
−θl

)
, (19.108)
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and

(cpTl +φl)−
(

cpTl− 1
2
+φl− 1

2

)
= Πl

(
θl−θl− 1

2

)
, (19.109)

respectively. These finite-difference analogs of the hydrostatic equation have the familiar
form ∂M

∂θ
= Π . Add one to each subscript in (19.109), and add the result to (19.108). This

yields

φl+1−φl =−θl+ 1
2
(Πl+1−Πl) . (19.110)

This is a finite-difference version of yet another form of the hydrostatic equation, namely
∂φ

∂Π
= −θ . What have we gained by the manipulation just performed? If the forms of Πl

and θl+ 1
2

are specified, we can use (19.110) to integrate the hydrostatic equation upward
from level l +1 to level l.

19.5.5 The problem with the L grid

In (19.110), the problem with the L grid becomes apparent. We must determine θl+ 1
2

by
some form of interpolation, e.g., the arithmetic mean of the neighboring layer-center values
of θ . The interpolation will “hide” a vertical zig-zag in θ , if one is present in the solution.
A hidden zig-zag cannot influence the pressure-gradient force, so it cannot participate in
the model’s dynamics. Therefore it cannot propagate, as a physical solution would. The
dynamically inert zig-zag can become a permanent, unwelcome feature of the simulated
temperature sounding. This problem does not arise with the CP grid.

The problem is actually both more complicated and more serious than it may appear at
this point. Although we can use (19.110) to integrate the hydrostatic equation upward, it
is still necessary to provide a boundary condition to determine the starting value, φL, i.e.,
the layer-center geopotential for the lowest layer. This can be done by first summing (δσ)l
times (19.107) over all layers:

L

∑
l=1

φl(δσ)l−φS =
L

∑
l=1

πθl
∂Πl

∂π
(δσ)l. (19.111)

Now we use the mathematical identity
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L

∑
l=1

φl(δσ)l =
L

∑
l=1

φl

(
σl+ 1

2
−σl− 1

2

)

= φL +
L−1

∑
l=1

σl+ 1
2
(φl−φl+1).

(19.112)

Substitution of (19.112) into the left-hand side of (19.111), and use of (19.110), gives

φL = φS +
L

∑
l=1

πθl
∂Πl

∂π
(δσ)l−

L−1

∑
l=1

σl+ 1
2
(Πl+1−Πl)θl+ 1

2
, (19.113)

which can be used to determine the geopotential height at the lowest layer center. We can
then use (19.110) to determine the geopotential for the remaining layers above.

Eq. (19.113) is a bit odd, howver, because it says that the thickness between the Earth’s
surface and the middle of the lowest model layer depends on all of the values of θl , through-
out the entire column. An interpretation is that all values of θl are being used to estimate the
effective value of θ between the surface and level L. Since we start from φL to determine
φl for l < L, all values of θl are being used to determine each value of φl throughout the
entire column. This means that the hydrostatic equation is very non-local, i.e., the thickness
between each pair of layers is influenced by the potential temperature at all model levels.

To avoid this problem, Arakawa and Suarez (1983) proposed an interpolation for θl+ 1
2

in which only θL influences the thickness between the surface and the middle of the bottom
layer. To see how this works, the starting point is to write local hydrostatic equation in the
form

φl−φl+1 = cp

(
Al+ 1

2
θl +Bl+ 1

2
θl+1

)
, (19.114)

where Al+ 1
2

and Bl+ 1
2

are non-dimensional parameters to be determined. Comparing with
(19.110), we see that

(Πl+1−Πl)θl+ 1
2
= Al+ 1

2
θl +Bl+ 1

2
θl+1 . (19.115)

In order that (19.115) have the form of an interpolation, we must choose Al+ 1
2

and Bl+ 1
2

so
that
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Al+ 1
2
+Bl+ 1

2

Πl+1−Πl
= 1. (19.116)

Eq. (19.115) essentially determines the form of θl+ 1
2
, if the forms of Al+ 1

2
and Bl+ 1

2
are

specified.

If we use (19.115), we are not free to use the methods of Chapter 5 to choose θl+ 1
2

in
such a way that some F (θ) is conserved. A choice has to be made between these two
alternatives. It seems preferable to use (19.115).

After substitution from (19.114), Eq. (19.113) becomes

φL−φS =
L

∑
l=1

πθl
∂Πl

∂π
(δσ)l−

L−1

∑
l=1

σl+ 1
2

(
Al+ 1

2
θl +Bl+ 1

2
θl+1

)
. (19.117)

Every term on the right-hand-side of (19.117) involves a layer-center value of θ . To elim-
inate any dependence of φL on the values of θ above the lowest layer, we “collect terms”
around individual values of θl , and force the coefficients to vanish for l < L. This leads to

π
∂Πl

∂π
(δσ)l = σl+ 1

2
Al+ 1

2
+σl− 1

2
Bl− 1

2
for l < L. (19.118)

With the use of (19.118), (19.117) simplifies to

φL = φS +

[
π

∂Πl

∂π
(δσ)L−σL− 1

2
BL− 1

2

]
cpθL . (19.119)

Because the coefficient of each θl has been forced to vanish for all l < L, only θL influences
φL. We have succeeded in making the thickness between the surface and the middle of
the lowest layer depend only on the lowest-layer temperature. Note, however, that the
thicknesses between the layer centers still depend on interpolated or averaged potential
temperatures, so we still have the L grid’s problem of the dynamically inert zig-zag in
temperature, although it is not as serious as before.

Once the lowest-layer geopotential has been determined from (19.119), we can use
either (19.110) or (19.114) to determine the geopotentials for the remaining layers; the
result is the same with either method.
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Methods to choose Al+ 1
2

and Bl+ 1
2

are discussed by Arakawa and Suarez (1983). They
recommended

Al+ 1
2
= Πl+ 1

2
−Πl and Bl+ 1

2
= Πl+1−Πl+ 1

2
, (19.120)

which satisfy (19.116).

19.6 Summary and conclusions

The problem of representing the vertical structure of the atmosphere in numerical models is
receiving a lot of attention at present. Among the most promising of the current approaches
are those based on isentropic or hybrid-isentropic coordinate systems. Similar methods are
being used in ocean models.

At the same time, models are more commonly being extended through the stratosphere
and beyond, and vertical resolutions are increasing; the era of hundred-layer models is upon
us.

19.7 Problems

1. Assume that the surface elevation is given by ∂ zS
∂x = A

[
1+ sin

(2πx
L

)]
. Also assume

that the temperature is independent of height, and equal to 250 K, and that the hor-
izontal temperature gradient is given by ∂T

∂x =
(
10−5 K m−1)sin

(2πx
M

)
K per meter

at all levels throughout the atmospheric column. Set M = 106 m. Calculate the x-
component of the horizontal pressure gradient force using both the sigma coordinate
and the hybrid sigma-pressure coordinate of Simmons and Burridge (1981), for all
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Chapter 20

When the advector is the advectee

20.1 Introduction

If the wind field is specified, as for example in the discussion of Chapter 5, then the advec-
tion of a tracer can be considered as a linear problem; it is, at least, linear in the tracer. With
momentum advection, however, the wind field is both the “advector” and the “advectee.”
Momentum advection is thus unavoidably nonlinear. Up to now, we have mostly avoided
the subject of momentum advection, except for a brief discussion in Chapter 9, which
was limited to the one-dimensional case, without rotation. We now consider the advection
terms of the momentum equation for the multi-dimensional case, in which the important
new physical ingredient that must be considered is rotation, including both Earth-rotation,
f , and the relative vorticity, ζ , that is associated with the wind field. Vorticity is key to
almost all atmospheric dynamics, on both large and small scales.

20.2 Scale interactions and nonlinearity

“Nonlinear” is a mathematical term. A more physical perspective is that the processes that
are described by nonlinear mathematical terms bring about interactions among scales in a
fluid system. Scale interactions arise when we try to solve either nonlinear equations or
linear equations with variable coefficients. For example, suppose that we have two modes
on a one-dimensional grid, given by

A
(
x j
)
= Âeik j∆x and B

(
x j
)
= B̂eil j∆x, (20.1)

respectively. Here the wave numbers of A and B are denoted by k and l, respectively. We
assume that k and l both “fit” on the grid in question. If we combine A and B linearly, e.g.,
form
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αA+βB, (20.2)

where α and β are spatially constant coefficients, then no “new” waves are generated; k
and l continue to be the only wave numbers present. In contrast, if we multiply A and B
together, then we generate the new wave number, k+ l:

AB = ÂB̂ei(k+l) j∆x, (20.3)

Other nonlinear operations such as division, exponentiation, etc., will also generate new
wave numbers. It can easily happen that (k+ l)∆x > π , in which case the new mode
created by multiplying A and B together does not fit on the grid. What actually happens in
such a case is that the new mode is “aliased” onto a mode that does fit on the grid.

20.2.1 Aliasing error

Suppose that we have a wave given by the continuous solid line in Fig. 20.1. There are
discrete, evenly spaced grid points along the x-axis, as shown by the black dots in the figure.
The wave has been drawn with a wave length of (4/3)∆x, corresponding to a wave number
of 3π

2∆x . Because (4/3)∆x < 2∆x, the wave is too short to be represented on the grid. What
the grid points “see” instead is not the wave represented by the solid line, but rather the
wave of wavelength 4∆x, as indicated by the dashed line (again drawn as a continuous
function of x). At the grid points, the wave of length 4∆x takes exactly the values that the
wave of (4/3)∆x would take at those same grid points, if it could be represented on the
grid at all. This misrepresentation of a wavelength too short to be represented on the grid
is called “aliasing error.” Aliasing is a high wave number (or frequency) masquerading as
a low wave number (or frequency). In the example of Fig. 20.1, aliasing occurs because
the grid is too coarse to resolve the wave of length (4/3)∆x. Another way of saying this
is that the wave is not adequately “sampled” by the grid. Aliasing error is always due to
inadequate sampling.

20.2.2 Almost famous

Aliasing error can be important in observational studies, because observations taken “too
far apart” in space (or time) can make a short wave (or high frequency) appear to be a
longer wave (or lower frequency). Fig. 20.2 is an example, from real life. The blue curve
in the figure makes it appear that the precipitation rate averaged over the global tropics
fluctuates with a period of 23 days and an amplitude approaching 1 mm day−1. If this
tropical precipitation oscillation (TPO) were real, it would be one of the most amazing
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Figure 20.1: An example of aliasing error. Distance along the horizontal axis is measured in units
of ∆x. The wave given by the solid line has a wave length of (4/3)∆x. This is shorter than 2∆x, and
so the wave cannot be represented on the grid. Instead, the grid “sees” a wave of wavelength 4∆x,
as indicated by the dashed line. Note that the 4∆x-wave is “upside-down.”

phenomena in atmospheric science, and its discoverer would no doubt appear on the cover
of Rolling Stone. But alas, the TPO is bogus, even though you can see it with your own
eyes in Fig. 20.2, and even though the figure is based on real data.

How is that possible? The satellite from which the data was collected has an orbit
that takes it over the same point on Earth at the same time of day once every 23 days.
Large regions of the global tropics have a strong diurnal (i.e., day-night) oscillation of
the precipitation rate. This high-frequency diurnal signal is aliased onto a much lower
frequency, i.e., 23 days, because the sampling by the satellite is not frequent enough to
resolve the diurnal cycle.

20.2.3 A mathematical view of aliasing

In an earlier chapter, we saw that the shortest wavelength that a grid can represent is L =
2∆x, the maximum representable wave number is kmax ≡ π/∆x. What happens when a
wave with k > kmax is produced through nonlinear interactions? Since 2kmax∆x = 2π , a
wave with k > 2kmax =

2π

∆x “folds back.” We can therefore assume that

2kmax > k > kmax. (20.4)

The expression sin(k j∆x) can be written as as
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Figure 20.2: An example of aliasing in the analysis of observations. The blue curve shows the
precipitation rate, averaged over the global tropics (20◦ S to 20◦ N), and the red curve shows a the
thermal radiation in the 11.8 µm band, averaged over the same region. The horizontal axis is time,
and the period covered is slightly more than two years. The data were obtained from the TRMM
(Tropical Rain Measuring Mission) satellite. The obvious oscillation in both curves, with a period
close to 23 days, is an artifact due to aliasing. See the text for further explanation.

sin [k ( j∆x)] = sin [(2kmax−2kmax + k) j∆x]

= sin [2π j− (2kmax− k) j∆x]

= sin [−(2kmax− k) j∆x]

= sin [k∗ ( j∆x)] ,

(20.5)

where

k∗ ≡−(2kmax− k) for |k|> kmax. (20.6)

Note that 0 < |k∗|< kmax because, by assumption, 2kmax > k > kmax. Similarly,

cos [k ( j∆x)] = cos [k∗ ( j∆x)] . (20.7)
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Eqs. (20.5) and (20.7) show that a wave of wave number k > kmax is interpreted (or misin-
terpreted) by the grid as a wave of wave number k∗. The minus sign means that the phase
change per ∆x is reversed, or “backwards.”

Fig. 20.3 illustrates how k∗ varies with k. For−kmax≤ k≤ kmax, we simply have k∗= k.
For k > kmax, we get 0 > k∗ >−kmax, and so on.

Figure 20.3: The red line is a plot of k∗ on the vertical axis, versus k on the horizontal axis. The
dashed black line connects k = 3π

2∆x with k∗ =− π

2∆x , corresponding to the example of Fig. 20.1.

In the example shown in Fig. 20.1, L = (4/3)∆x so k = 2π

L = 3π

2∆x . Therefore k∗ ≡
−(2kmax− k) = 2π

∆x −
3π

2∆x =
π

2∆x , which implies that L∗ = 4∆x, as we have already surmised
by inspection of the figure.

For k < kmax, the phase change, as j increases by one, is less than π . This is shown in
Fig. 20.4 a. For k > kmax, the phase change, as j increases by one, is greater than π . This
is shown in Fig. 20.4 b. For k > kmax, the dot in the figure appears to move clockwise,
i.e., “backwards.” This is a manifestation of aliasing that is familiar from the movies, in
which wheels appear to spin backwards when the frame rate is too slow to capture the true
motion. It also helps in understanding the minus sign that appears in Eq. (20.6).

20.3 Advection by a variable, non-divergent current

We now prepare for a discussion of aliasing errors in numerical models of the atmosphere.
Some background is needed on two-dimensional nondivergent flow.

Suppose that an arbitrary variable q is advected in two dimensions, so that
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Figure 20.4: The phase change per grid point for: a) k∆x < π, and b) k∆x > π.

∂q
∂ t

+V ·∇q = 0, (20.8)

where the flow is assumed to be non-divergent, i.e.,

∇ ·V = 0. (20.9)

Two-dimensional non-divergent flow is a not-too-drastic idealization of the large-scale cir-
culation of the atmosphere. In view of (20.9), we can describe V in terms of a stream
function ψ , such that

V = k×∇ψ. (20.10)

In Cartesian coordinates, u = −∂ψ

∂y , and v = ∂ψ

∂x . (These sign conventions are arbitrary,
but is essential that one of the derivatives has a plus sign and the other a minus sign.)
Substituting (20.10) into (20.8), we get
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∂q
∂ t

+(k×∇ψ) ·∇q = 0. (20.11)

Using the identity

(V1×V2) ·V3 = V2 · (V3×V1) , (20.12)

which holds for any three vectors, we set V1 ≡ k, V2 ≡ ∇ψ , and V3 ≡ ∇q, to obtain

(k×∇ψ) ·∇q = k · (∇ψ×∇q) . (20.13)

With the use of (20.13), we can re-write (20.11) as

∂q
∂ t

+ J (ψ,q) = 0, (20.14)

or alternatively as

∂q
∂ t

= J (q,ψ) . (20.15)

Here J is the Jacobian operator, which is defined by

J (A,B)≡ k · (∇A×∇B) (20.16)

=−k ·∇× (A∇B) (20.17)

= k ·∇× (B∇A) , (20.18)
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for arbitrary A and B. Note that

J (A,B) =−J (B,A) , (20.19)

which can be deduced from (20.16). Eq. (20.19) has been used to go from (20.14) to
(20.15). From the definition of the Jacobian, it follows that J (p,q) = 0 if either A or B is
constant.

In Cartesian coordinates, we can write J (A,B), in the following three alternative forms,
which are suggested by the forms of (20.16)-(20.18):

J (A,B) =
∂A
∂x

∂B
∂y
− ∂A

∂y
∂B
∂x

(20.20)

=
∂

∂y

(
B

∂A
∂x

)
− ∂

∂x

(
B

∂A
∂y

)
(20.21)

=
∂

∂x

(
A

∂B
∂y

)
− ∂

∂y

(
A

∂B
∂x

)
. (20.22)

These will be used later.

Let an overbar denote an average over a two-dimensional domain that has no boundaries
(e.g., a sphere or a torus), or on the boundary of which either A or B is constant. You should
be able to prove the following:

J (A,B) = 0, (20.23)

AJ (A,B) = 0, (20.24)
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BJ (A,B) = 0. (20.25)

Multiplying both sides of the advection equation (20.15) by q, we obtain

1
2

∂q2

∂ t
= qJ (q,ψ)

= J
(

1
2

q2,ψ

)
.

(20.26)

Integrating over the entire area, we find that

∫ 1
2

∂q2

∂ t
ds =

∫
J
(

1
2

q2,ψ

)
ds

=−
∫

V ·∇1
2

q2ds

=−
∫

∇ ·
(

V
1
2

q2
)

ds = 0.

(20.27)

if the domain is surrounded by a rigid boundary where the normal component of V is zero,
or if the domain is periodic.

20.4 Aliasing instability

Scale interactions are an essential aspect of aliasing errors. Aliasing is particularly likely
when the “input” scales have high wave numbers, close to the truncation scale. It is possible
for aliasing error to lead to a form of instability, which can be called “aliasing instability.”
It is more often called “non-linear” instability, but this is somewhat misleading because the
instability can also occur in the numerical integration of a linear equation with spatially
variable coefficients. The instability is caused by a spurious growth of small-scale features
of the flow, due in part to the aliasing error arising from the multiplication of the finite-
difference analogs of any two spatially varying quantities.

20.4.1 An example of aliasing instability

We now work through a simple example that illustrates the possibility of aliasing instabil-
ity. The example was invented by Phillips (1959a) (also see Lilly (1965)). We keep the
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time derivatives continuous. This is not done merely for simplicity. The fact that the insta-
bility can be seen with continuous time derivatives makes the point that the mechanism of
the instability comes purely from space differencing and has nothing to do with time dif-
ferencing. It is quite different from the linear computational instability discussed in earlier
chapters.

We begin by writing down a differential-difference version of (20.15), on a plane, using
a simple finite-difference approximation for the Jacobian. For simplicity, we take ∆x =
∆y = d. We investigate the particular choice

dqi, j

dt
= [J1 (q,ψ)]i, j (20.28)

where we define J1 as a particular finite-difference form of the Jacobian:

[J1 (q,ψ)]i· j≡
1

4d2

[(
qi+1, j−qi−1, j

)(
ψi, j+1−ψi, j−1

)
−
(
qi, j+1−qi, j−1

)(
ψi+1, j−ψi−1, j

)]
.

(20.29)

The finite-difference Jacobian given in (20.29) is based on (20.20). Later we are going to
discuss several other finite-difference approximations to the Jacobian. Combining (20.28)
and (20.29), we obtain

dqi, j

dt
≡ 1

4d2

[(
qi+1, j−qi−1, j

)(
ψi, j+1−ψi, j−1

)
−
(
qi, j+1−qi, j−1

)(
ψi+1, j−ψi−1, j

)]
.

(20.30)

We assume that the solution, qi, j (t), has the form

qi, j (t) =
[
C (t)cos

(
πi
2

)
+S (t)sin

(
πi
2

)]
sin
(

2π j
3

)
. (20.31)

This strange-looking assumption will be justified later. For all t, we prescribe the stream
function ψi, j as

ψi, j = Ψcos(πi)sin
(

2π j
3

)
. (20.32)
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The wavelength in the x-direction is 2d. By means of (20.32), we are prescribing a time-
independent but spatially variable advecting current. The advecting current has almost
always been prescribed in earlier chapters too, but until now it has been spatially uniform.
Because ψi, j is prescribed, the model under discussion here is linear, but with spatially
variable coefficients. The forms of qi, j and ψi, j given by (20.31) and (20.32) are plotted in
Fig. 20.5. They are nasty functions.

Figure 20.5: Plots of the functions qi, j(t = 0) and ψi, j given by (20.46) and (20.47), respectively.
For plotting purposes, we have used C = S = Ψ = 1. The functions have been evaluated only for
integer values of i and j, which gives them a jagged appearance. Nevertheless it is fair to say
that they are rather ugly. This is the sort of thing that can appear in your simulations as a result of
aliasing instability.

Because (20.32) says that ψi, j has a wavelength of 2d in the x-direction, we can simplify
(20.30) to

∂qi, j

∂ t
=

1
4d2

(
qi+1, j−qi−1, j

)(
ψi, j+1−ψi, j−1

)
. (20.33)

From (20.31), we see that

qi+1, j−qi−1, j =

{
C
[

cos
π (i+1)

2
− cos

π (i−1)
2

]
+S
[

sin
π (i+1)

2
− sin

π (i−1)
2

]}
sin
(

2π j
3

)
= 2

(
−C sin

πi
2
+Scos

πi
2

)
sin
(

2π j
3

)
.

(20.34)
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Here we have used some trigonometric identities. Similarly, we can use some trig identities
with (20.32) to show that

ψi, j+1−ψi, j−1 = Ψcos(πi)2cos
(

2π j
3

)
sin
(

2π

3

)
=
√

3U cos(πi)cos
(

2π j
3

)
.

(20.35)

As already mentioned, (20.35) holds for all t. The product of (20.34) and (20.35) gives the
right-hand side of (20.33), which can be written, again using trigonometric identities, as

dqi, j

dt
=

√
3

4d2 Ψ

{
−C
[

sin
(

3πi
2

)
− sin

(
πi
2

)]
+S
[

cos
(

3πi
2

)
+ cos

(
πi
2

)]}
sin
(

4π j
3

)
=

√
3

4d2 Ψ

[
C sin

(
πi
2

)
+Scos

(
πi
2

)]
sin
(

4π j
3

)
.

(20.36)

Now we make the important observation that the wave number in the y-direction, de-
noted by l, satisfies

ly = l ( jd) =
4π j

3
. (20.37)

By inspection of (20.37),

ld =
4π

3
> π. (20.38)

Eq. (20.38) shows that the product on the right-hand side of (20.33) has produced a wave
number in the y-direction that is too short to be represented on the grid. In other words,
aliasing occurs. According to our earlier analysis, this wave will be interpreted by the grid
as having the smaller wave number l∗ = −(2lmax− l) = −2π

3d . Therefore (20.36) can be
re-written as
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dqi, j

dt
=−
√

3Ψ

4d2

(
C sin

πi
2
+Scos

πi
2

)
sin

2π j
3

. (20.39)

Rewriting (20.36) as (20.39) is a key step in the analysis, because this is where aliasing
enters. Because we are doing the problem algebraically, we have to put in the aliasing “by
hand.”

Next, we observe that the spatial form of dqi, j
dt , as given by (20.39), agrees with the

assumed form of qi, j, given by (20.31). This means that the shapes of the sine and cosine
parts of qi, j do not change with time, thus justifying our the assumed form of (20.31), in
which the only time-dependence is in C(t) and S(t). In order to recognize this, we had to
take into account that aliasing occurs.

If we now simply differentiate (20.31) with respect to time, and substitute the result
into the left-hand side of (20.39), we find that

dC
dt

cos
πi
2

sin
2π j

3
+

dS
dt

sin
πi
2

sin
2π j

3
=−
√

3
4d2 Ψ

(
C sin

πi
2
+Scosπ

i
2

)
sin

2π j
3

. (20.40)

Note that time derivatives of C(t) and S(t) appear on the left-hand side of (20.40). Using
the linear independence of the sine and cosine functions, we find by inspection of (20.40)
that

dC
dt

=−
√

3
4d2 ΨS, and

dS
dt

=−
√

3
4d2 ΨC. (20.41)

From (20.41), it follows that

d2C
dt2 = σ

2C and
d2S
dt2 = σ

2S, (20.42)

where

σ ≡
√

3Ψ

4d2 . (20.43)
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According to (20.42), C and S will grow exponentially, and the growth rate actually in-
creases as the grid spacing becomes finer. This demonstrates that the finite-difference
scheme is unstable. The unstable modes will have the ugly form given by (20.31) and
plotted in Fig. 20.5.

Figure 20.6: Sketch illustrating the mechanism of aliasing instability.

Fig. 20.6 summarizes the mechanism of aliasing instability. Nonlinear interactions feed
energy into waves that cannot be represented on the grid. Aliasing causes this energy to
“fold back” onto scales that do fit on the grid, but typically these are rather small scales
that are not well resolved and suffer from large truncation errors. In the example given, the
truncation errors lead to further production of energy on scales too small to be represented.

Note, however, that if the numerical scheme conserved energy, the total amount of
energy could not increase, and the instability would be prevented, even though aliasing
would still occur, and even though the truncation errors for the smallest scales would still
be large. In the example discussed above, we used J1. Later we demonstrate that J1 does
not conserve energy. As we will discuss, some other finite-difference Jacobians do conserve
energy. Instability would not occur with those Jacobians.

20.4.2 Analysis in terms of discretization error

Further general insight into this type of instability can be obtained by investigating the
discretization error of (20.30). This can be expressed as

(
dq
dt

)
i, j

= [J1 (q,ψ)]i, j

= [J (q,ψ)]i, j +
d2

6

[
∂q
∂x

∂ 3ψ

∂y3 −
∂q
∂y

∂ 3ψ

∂x3 +
∂ 3q
∂x3

∂ψ

∂y
− ∂ 3q

∂y3
∂ψ

∂x

]
i, j
+O

(
d4) .
(20.44)
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The second line is obtained by Taylor series expansion. Here [J (q,ψ)]i, j is the exact Jaco-
bian at the point (i, j). Because [J1 (q,ψ)]i, j has second-order accuracy, the leading term
in the error is proportional to d2. Multiplying (20.44) by q, integrating over the whole
domain, and using (20.27), we find, after repeated integration by parts and a page or so of
algebra, that the second-order part of the discretization error (i.e., the leading term in the
discretization error) causes the square of q to change at the rate

1
2

d
dt

∫
q2ds =

d2

4

∫
∂ 2ψ

∂x∂y

[(
∂q
∂x

)2

−
(

∂q
∂y

)2
]

ds+
∫

O
(
d4)ds. (20.45)

Note that ∂ 2ψ

∂x∂y = −∂u
∂x = ∂v

∂y . Eq. (20.45) means that, for ∂ 2ψ

∂x∂y > 0, q2 will falsely grow

with time if
(

∂q
∂x

)2
is bigger than

(
∂q
∂y

)2
, in an overall sense. In such a situation, instability

will occur. The scheme will blow up locally, in the particular portions of the domain

where ∂ 2ψ

∂x∂y > 0, and the growing modes will have
[(

∂q
∂x

)2
−
(

∂q
∂y

)2
]
> 0. Similarly, where

∂ 2ψ

∂x∂y < 0, there will be growing modes with
[(

∂q
∂x

)2
−
(

∂q
∂y

)2
]
< 0.

Now look at Fig. 20.7. In the figure, the streamlines are given such that ψ1 < ψ2 < ψ3,
so that (∂ψ/∂y) < 0, which implies westerly flow. The figure shows that the westerly
flow is decreasing towards the east, as in the “exit” region of the jet stream, so that ∂ 2ψ

∂x∂y <
0. In fact, the solution of the differential-difference equation tends to prefer a positive
value of the integrand of the right-hand side of (20.45), as illustrated schematically in Fig.
20.7. Notice that at t2, ∂q

∂x becomes greater than it was at t1, and the reverse is true for
∂q
∂y . The spatial distribution of q is being stretched out in the meridional direction. This is

called “noodling.” Although the expression
∫ ∂ 2ψ

∂x∂y

[(
∂q
∂x

)2
−
(

∂q
∂y

)2
]

ds vanishes at t1, it

has become positive at t2. From (20.45), it can be seen that the area-integrated q2 will then
tend to increase with time, due to the discretization error.

In contrast to the linear computational instabilities discussed earlier in this course, alias-
ing instability has nothing to do with time truncation error. Making the time step shorter
cannot prevent the instability, which can occur, in fact, even in the time-continuous case.
The example we have just considered illustrates this fact, because we have left the time
derivatives in continuous form.

20.4.3 Discussion

A number of methods have been proposed to prevent or control aliasing instability. One
approach is to eliminate aliasing. As will be discussed in Chapter 13, aliasing error can
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Figure 20.7: Schematic illustration of the mechanism of aliasing instability. The solid lines denote
the stream function, which is independent of time. The implied mostly zonal flow is from left to
right in the figure, and becomes weaker towards the right. The dashed lines show contours of the
advected quantity q, at two different times, denoted by t1 and t2 > t1. As q is carried towards the
right, its contours are stretched in the y direction.

actually be eliminated in a spectral model, at least for terms that involve only “quadratic”
aliasing, i.e., aliasing that arises from the multiplication of two spatially varying fields.
Aliasing instability can also be prevented without eliminating aliasing, however.

Phillips (1959a) suggested that aliasing instability can be avoided if a Fourier anal-
ysis of the predicted fields is made after each time step, and all waves of wave number
k > kmax/2 are simply discarded. With this “filtering” method, Phillips could guarantee
absolutely no aliasing error due to quadratic nonlinearities, because the shortest possible
wave would have wave number kmax/2 (his maximum wave number), and thus any wave
generated by quadratic nonlinearities would have a wave number of at most kmax. The filter
is strongly dissipative, however, because it removes variance.

Others have suggested that use of a dissipative advection scheme, such as the Lax-
Wendroff scheme, can overcome aliasing instability. Experience shows that this is not true.
The damping of a dissipative scheme depends on the value of c∆t

∆x , but aliasing instability
can occur even for c∆t

∆x → 0.

A third approach is to use a sign-preserving advection scheme, as discussed in Chapter
4, and advocated by Smolarkiewicz (1991).
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A fourth way to eliminate aliasing instability is to use advection schemes that conserve
the square of the advected quantity. This has the advantage that stability is ensured simply
by mimicking a property of the exact equations. In particular, to prevent aliasing instability
with the momentum equations, we can use finite-difference schemes that conserve either
kinetic energy, or enstrophy (squared vorticity), or both. This approach was developed by
Arakawa (1966). It will be explained below, after a digression in which we discuss a little
more about the nature of two-dimensional non-divergent flows.

20.5 Fjortoft’s Theorem

When the flow is non-divergent, so that (20.2) is satisfied, the vorticity equation, (20.3),
reduces to

∂

∂ t
(ζ + f ) =−V ·∇(ζ + f ) . (20.46)

This says that the absolute vorticity is simply advected by the mean flow. We also see that
only the sum (ζ + f ) matters for the vorticity equation; henceforth we just replace (ζ + f )
by ζ , for simplicity. The vorticity and the stream function are related by

ζ ≡ k · (∇×V) = ∇
2
ψ. (20.47)

(This relationship was used as an example of a boundary-value problem, back in the chapter
on relaxation methods.) Eq. (20.46) can be rewritten as

∂ζ

∂ t
=−∇ · (Vζ ) , (20.48)

or, alternatively, as

∂ζ

∂ t
= J (ζ ,ψ) . (20.49)

From (20.49) and (20.23) we see that the domain-averaged vorticity is conserved:
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dζ̄

dt
=

∂ζ

∂ t
= 0. (20.50)

By combining (20.49) and (20.24), we can show that

ζ
∂ζ

∂ t
= 0, (20.51)

from which it follows that the domain-average of the enstrophy is also conserved:

d
dt

(
1
2

ζ 2
)
= 0. (20.52)

Similarly, from (20.49) and (20.25) we find that

ψ
∂ζ

∂ t
= 0. (20.53)

To see what Eq. (20.53) implies, substitute (20.47) into (20.53), to obtain

ψ
∂

∂ t
∇2ψ = 0. (20.54)

This is equivalent to
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0 = ψ
∂

∂ t
∇2ψ

= ψ
∂

∂ t
[∇ · (∇ψ)]

= ψ∇ · ∂

∂ t
∇ψ

= ∇ ·
(

ψ
∂

∂ t
∇ψ

)
−∇ψ · ∂

∂ t
∇ψ

=− ∂

∂ t

(
1
2
|∇ψ|2

)
.

(20.55)

Eq. (20.55) demonstrates that (20.49) implies kinetic energy conservation. It can also be
shown that, for a purely rotational flow,

K̄ =−ψζ . (20.56)

Since both kinetic energy and enstrophy are conserved in frictionless two-dimensional
flows, their ratio is also conserved. It has the dimensions of a length squared:

energy
enstrophy

∼ L2t−2

t−2 = L2. (20.57)

This length can be interpreted as the scale of the most energetic vortices, and (20.57) states
that it is invariant. An implication is that energy does not cascade in frictionless two-
dimensional flows; it “stays where it is” in wave number space.

Figure 20.8: Diagram used in the explanation of Fjørtoft (1953) analysis of the exchanges of energy
and enstrophy among differing scales in two-dimensional motion

The exchanges of energy and enstrophy among different scales in two-dimensional tur-
bulence were studied by Ragnar Fjørtoft (1953), a Norwegian meteorologist who obtained
some very fundamental and famous results, which can be summarized in a simplified way
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as follows. Consider three equally spaced wave numbers, as shown in Fig. (20.8). By
“equally spaced,” we mean that

λ2−λ1 = λ3−λ2 = ∆λ . (20.58)

The enstrophy, E, is

E = E1 +E2 +E3, (20.59)

and the kinetic energy is

K = K1 +K2 +K3. (20.60)

It can be shown that

En = λ
2

nKn, (20.61)

where λn is a wave number, and the subscript n denotes a particular Fourier component.

Suppose that nonlinear processes redistribute kinetic energy among the three wave
numbers, i.e.,

Kn→ Kn +δKn, (20.62)

while conserving both kinetic energy and enstrophy so that

∑δKn = 0, (20.63)

and
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∑δEn = 0. (20.64)

From (20.61), we see that

δEn = λ
2
n δKn. (20.65)

It follows from (20.63) that

δK1 +δK3 =−δK2, (20.66)

and from (20.64) and (20.65) that

λ
2
1 δK1 +λ

2
3 δK3 =−λ

2
2 δK2

= λ2
2 (δK1 +δK3) .

(20.67)

Collecting terms in (20.67), we find that

δK3

δK1
=

λ 2
2 −λ 2

1
λ 2

3 −λ 2
2
> 0. (20.68)

The fact that δK3
δK1

is positive means that either both δK3 and δK1 are positive, or both are
negative. Using (20.58), Eq. (20.68) can be simplified to

0 <
δK3

δK1
=

λ2 +λ1

λ3 +λ2
< 1. (20.69)

Eq. (20.69) shows that the energy transferred to or from higher wave numbers (δK3) is less
than the energy transferred to or from lower wave numbers (δK1). This conclusion is based
on both (20.63) and (20.64), i.e., on both energy conservation and enstrophy conservation.
The implication is that kinetic energy actually “migrates” from higher wave numbers to
lower wave numbers, i.e., from smaller scales to larger scales.
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We now perform a similar analysis for the enstrophy. As a first step, we use (20.65) and
(20.69) to write

δE3

δE1
=

λ 2
3

λ 2
1

(
λ2 +λ1

λ3 +λ2

)

=
(λ2 +∆λ )2

(λ2−∆λ )2

(
λ2− 1

2∆λ
)(

λ2 +
1
2∆λ

) > 1.

(20.70)

To show that this ratio is actually greater than one, as indicated above, we demonstrate that
δE3
δE1

= a ·b · c, where a, b, and c are each greater than one. We can choose:

a =
λ2 +∆λ

λ2−∆λ
> 1, b =

λ2− 1
2∆λ

λ2−∆λ
> 1, and c =

λ2 +∆λ

λ2 +
1
2∆λ

> 1. (20.71)

The conclusion is that enstrophy cascades to higher wave numbers in two-dimensional
turbulence. Of course, such a cascade ultimately leads to enstrophy dissipation by viscosity.

When viscosity acts on two-dimensional turbulence, enstrophy is dissipated but kinetic
energy is (almost) unaffected. Then the denominator of (20.57) decreases with time, while
the numerator remains nearly constant. It follows that the length scale, L, will tend to
increase with time. This means that the most energetic vortices will become larger. This
is an “anti-cascade” of kinetic energy. The implication is that two-dimensional turbulence
tends to remain smooth, so that the kinetic energy of the atmosphere tends to remain on
large, quasi-two-dimensional scales, instead of cascading down to small scales where it
can be dissipated.

In three dimensions, vorticity is not conserved because of stretching and twisting, and
enstrophy is not conserved because of stretching (although it is unaffected by twisting).
Vortex stretching causes small scales to gain energy at the expense of larger scales. As a
result, kinetic energy cascades in three-dimensional turbulence. Ultimately the energy is
converted from kinetic to internal by viscosity. This is relevant to small-scale atmospheric
circulations, such as boundary-layer eddies and cumulus cells.

In summary, advection and rotation have no effect on the domain-averaged vorticity,
enstrophy, or kinetic energy in two-dimensional flows. Because two-dimensional flows
conserve both energy and enstrophy, they “have fewer options” than three-dimensional
flows. In particular, a kinetic energy cascade cannot happen in two dimensions. What
happens instead is an enstrophy cascade. Enstrophy is dissipated but kinetic energy is
(almost) not.
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Because kinetic energy does not cascade in two-dimensional flows, the motion remains
smooth and is dominated by “large” eddies. This is true with the continuous equations, and
we want it to be true in our models as well.

20.6 Kinetic energy and enstrophy conservation in two-dimensional
non-divergent flow

Lorenz (1960) suggested that energy-conserving finite-difference schemes would be ad-
vantageous in efforts to produce realistic numerical simulations of the general circulation
of the atmosphere. Arakawa (1966) developed a method for numerical simulation of two-
dimensional, purely rotational motion, that conserves both kinetic energy and enstrophy, as
well as vorticity. His method has been and still is very widely used, and is explained below.

We begin by writing down a spatially discrete version of (20.63), keeping the time
derivative in continuous form:

σi
dζi

dt
= σiJi (ζ ,ψ)

= ∑
i′

∑
i′′

ci,i′,i′′ζi+i′ψi+i′′ .
(20.72)

The bold subscripts are two-dimensional counters that can be used to specify a grid cell on
a two-dimensional grid by giving a single number, as was done already in Chapter 2. The
area of grid cell i is denoted by σi. The ci,i′,i′′ are coefficients that must be specified to
define a finite-difference scheme, following the approach that we first used in Chapter 2.
For later reference, with double subscripts, (20.72) would become

σi, j
dζi, j

dt
= ∑

j′
∑
i′

∑
j′′

∑
i′′

(
ci, j;i+i′, j+ j′;i+i′′, j+ j′′

)
ζi+i′, j+ j′ψi+i′′, j+ j′′ . (20.73)

The second line of (20.72) looks a little mysterious and requires some explanation. As can
be seen by inspection of (20.16), the Jacobian operator, J (ζ ,ψ), involves derivatives of
the vorticity, multiplied by derivatives of the stream function. We can anticipate, therefore,
that the finite-difference form of the Jacobian at the point i will involve products of the
vorticity at some nearby grid points with the stream function at other nearby grid points.
We have already seen an example of this in (20.29). Such products appear in (20.72).
The neighboring grid points can be specified in (20.72) by assigning appropriate values
to i′ and i′′. As you can see from the subscripts, i′ picks up vorticity points, and i′′

picks up stream function points. The ci,i′,i′′ can be called “interaction coefficients.” Their
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form will be chosen later. By making appropriate choices of the ci,i′,i′′ we can construct
an approximation to the Jacobian. The double sum in (20.72) essentially picks out the
combinations of ζ and ψ , at neighboring grid points, that we wish to bring into our finite-
difference operator. This is similar to the notation that we used in Chapter 2, but a bit more
complicated.

Of course, there is nothing about the form of (20.72) that shows that it is actually a
consistent finite-difference approximation to the Jacobian operator; all we can say at this
point is that (20.72) has the potential to be a consistent finite-difference approximation to
the Jacobian, if we choose the interaction coefficients properly. The coefficients can be
chosen to give any desired order of accuracy (in the Taylor series sense), using the methods
discussed in Chapter 2.

The form of (20.72) is sufficiently general that it is impossible to tell what kind of grid
is being used. It could be a rectangular grid on a plane, or a latitude-longitude grid on the
sphere, or something more exotic like a geodesic grid on the sphere (to be discussed in the
next chapter).

As an example, consider the finite-difference Jacobian J1, introduced in Eq. (20.29).
Applying J1 to vorticity advection on a square grid with grid spacing d, we can write,
corresponding to (20.73),

d2 dζi, j

dt
= d2

{
1

4d2 [(ζi+1, j−ζi−1, j)(ψi, j+1−ψi, j−1)− (ζi, j+1−ζi, j−1)(ψi+1, j−ψi−1, j)]

}
=

1
4
(ζi+1, jψi, j+1−ζi+1, jψi, j−1−ζi−1, jψi, j+1 +ζi−1, jψi, j−1−ζi, j+1ψi+1, j +ζi, j+1ψi−1, j

+ζi, j−1ψi+1, j−ζi, j−1ψi−1, j) .
(20.74)

By inspection of the second line of (20.74), and comparing with (20.73), we see that for
J1 each value of ci, j;i+i′, j+ j′;i+i′′, j+ j′′ is either 1/4 or −1/4. The values are can be listed as
follows:
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ci, j;i+1, j;i, j+1 =+
1
4
,

ci, j;i+1, j;i, j−1 =−
1
4
,

ci, j;i−1, j;i, j+1 =−
1
4
,

ci, j;i−1, j;i, j−1 =+
1
4
,

ci, j;i, j+1;i+1, j =−
1
4
,

ci, j;i, j+1;i−1, j =+
1
4
,

ci, j;i, j−1;i+1, j =+
1
4
,

ci, j;i, j−1;i−1, j =−
1
4
.

(20.75)

Look carefully at the subscripts. As an example, you should be able to see that ci, j;i+1, j;i, j+1
specifies the contribution of the vorticity east of the point (i, j) combined with the stream
function north of the point (i, j) to the time rate of change of the vorticity at the point (i, j).
Each coefficient involves three (not necessarily distinct) points. With the uniform square
grid on a plane, the forms of the coefficients are very simple, as seen in (20.75). The same
methods can be applied to very different cases, however, such as nonuniform grids on a
sphere.

Any finite-difference Jacobian should give zero if both of the input fields are spatially
constant, so we require that

0 = ∑
i′

∑
i′′

ci,i′,i′′ for all i , (20.76)

i.e., the sum of the coefficients is zero for all i. The requirement (20.76) would emerge
automatically if we enforced, for example, second-order accuracy of the Jacobian. You can
easily confirm that J1 satisfies (20.76).

Similarly, in case the vorticity is spatially constant, it should remain so for all time.
From (20.72), this requirement takes the form
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0 = ∑
i′

∑
i′′

ci,i′,i′′ψi+i′′ for all i . (20.77)

Eq. (20.77) can be interpreted as the condition that the motion is non-divergent, i.e., ∇ ·
(k×∇ψ) = −k · (∇×∇ψ) = 0. Note that (20.77) must be true regardless of how the
stream function varies in space. This is only possible if each grid-point value of ψi+i′′

appears more than once (in other words, at least twice) in the sum. Then we can arrange
that the “total coefficient” multiplying ψi+i′′ , i.e., the sum of the two or more ci,i′,i′′’s that
multiply ψi+i′′ , is zero. In that case, the actual values of ψi+i′′ have no effect on the sum
in (20.77). You can confirm that J1 satisfies (20.77).

In order to ensure conservation of the domain-averaged vorticity under advection, we
must require that

0 = ∑
i

∑
i′

∑
i′′

ci,i′,i′′ζi+i′ψi+i′′ . (20.78)

Here we have a triple sum, because we are taking a spatial average. In this respect, Eq.
(20.78) is different in kind from (20.76) and (20.77). Eq. (20.78) has to be true regard-
less of how the vorticity and stream function vary in space. This is only possible if each
product ζi+i′′ψi+i′′ appears more than once in the sum, such that the sum of the two or
more ci,i′,i′′s that multiply each ζi+i′′ψi+i′′ , is zero. In that case, the actual values of
ζi+i′′ψi+i′′ have no effect on the sum in (20.78).

Figure 20.9: Stencil used in the discussion of vorticity conservation for J1. See text for details.

With a little work, we can show that J1 satisfies (20.78).

As pointed out above, ci, j;i+1, j;i, j+1 specifies the contributions of the vorticity at i+1, j
and the stream function at i, j + 1 to the time rate of change of the vorticity at the point
i, j. See Fig. 11.9. Similarly, ci+1, j+1;i+1, j;i, j+1 specifies the contributions of the vorticity
at i+1, j and the stream function at i, j+1 to the time rate of change of the vorticity at the
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point i+ 1, j+ 1. The point here is that the vorticity at i+ 1, j and the stream function at
i, j+1 are “paired up” twice, once to predict the vorticity at i+1, j and a second time to
predict the vorticity at the point i+1, j+1. Therefore, when we sum over the domain, this
pair will appear twice. Cancellation will occur if the coefficients sum to zero, or in other
words if they satisfy

ci, j;i+1, j;i, j+1 =−ci+1, j+1;i+1, j;i, j+1. (20.79)

How can we use (20.79) to choose the forms of the coefficients? The key is to use the
essential fact that we use the same scheme for all points on the grid. We can “shift” the
stencil for the scheme from one grid cell to another by adding any (positive or negative)
integer to all i subscripts for each coefficient, and adding a (generally different, positive or
negative) integer to all j subscripts, without changing the numerical values of the coeffi-
cients. For example, the value of ci+1, j+1;i+1, j;i, j+1, which appears on the right-hand side
of (20.79), has to remain unchanged if we subtract one from each i subscript and one from
each j subscript. In other words, it must be true that

ci+1, j+1;i+1, j;i, j+1 = ci, j;i, j−1;i−1, j. (20.80)

Eq. (20.80) allows us to rewrite (20.79) as

ci, j;i+1, j;i, j+1 =−ci, j;i, j−1;i−1, j . (20.81)

What has been accomplished here is that in (20.81), both of the coefficients are associated
with the time-rate of change of the vorticity at the point i, j, and so, for J1, both of them
are explicitly listed in (20.75). The meaning of (20.81) is that the “right, up” coefficient
is equal to minus the “down, left” coefficient. Inspection of (20.75) shows that (20.81) is
indeed satisfied. Similar results apply for the remaining terms. In this way, we can satisfy
ourselves that J1 conserves vorticity.

Returning to the general problem, what we are going to do now is find a way to enforce
finite-difference analogs of (20.51) and (20.53), namely:
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0 = ∑
i

σiζiJi (ζ ,ψ)

= ∑
i

ζi

(
∑
i′

∑
i′′

ci,i′,i′′ζi+i′ψi+i′′

)

= ∑
i

(
∑
i′

∑
i′′

ci,i′,i′′ζiζi+i′ψi+i′′

)
, (20.82)

0 = ∑
i

σiψiJi (ζ ,ψ)

= ∑
i

ψi

(
∑
i′

∑
i′′

ci,i′,i′′ζi+i′ψi+i′′

)

= ∑
i

(
∑
i′

∑
i′′

ci,i′,i′′ζi+i′ψiψi+i′′

)
. (20.83)

By enforcing these two requirements, we can ensure conservation of enstrophy and kinetic
energy in the finite-difference model (although to ensure kinetic energy conservation we
also need to attend to one additional requirement, discussed later). Eqs. (20.82) and (20.83)
can be satisfied, as shown below, by suitable choices of the interaction coefficients. They
look daunting, though, because they involve triple sums. How in the world are we ever
going to figure this out?

Inspection of (20.82) shows that the individual terms of the triple sum are going to
involve products of vorticities at pairs of grid points. With this in mind, we go back to
(20.72) and rewrite the scheme as

σiJi (ζ ,ψ) = ∑
i′

∑
i′′

ci,i′,i′′ζi+i′ψi+i′′

= ∑
i′

ai,i+i′ζi+i′,
(20.84)

where, by definition,

ai,i+i′ ≡∑
i′′

ci,i′,i′′ψi+i′′ . (20.85)
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This definition simplifies things because, in going from the first line of (20.84) to the second
line, we replace a double sum involving three subscripts to a single sum involving two
subscripts. We can now write (20.84) times ζi as

σiζiJi (ζ ,ψ) = ∑
i′

ai,i+i′ζiζi+i′. (20.86)

Here we have simply taken ζi inside the sum, which we can do because the sum is over i′,
not i. From this point it is straightforward to enforce (20.82), which can be rewritten using
our new notation as

0 = ∑
i

(
∑
i′

ai,i+i′ζiζi+i′

)
. (20.87)

The value of ai,i+i′ (which involves a weighted sum of stream functions) measures the
influence of ζi+i′ on the enstrophy at the point i. Similarly, the value of ai+i′,i measures
the influence of ζi on the enstrophy at the point i + i′. If these effects are equal and
opposite, there will be no effect on the total enstrophy. In other words, we can achieve
enstrophy conservation by enforcing

ai,i+i′ =−ai+i′,i for all i and i′. (20.88)

This is a symmetry condition; it means that if we exchange the order of the subscript pairs,
and also flip the sign, there is no net effect on the value of the coefficient a. As a special
case, Eq. (20.88) implies that

ai,i = 0 for all i. (20.89)

This means that the stream function at the point i has no effect on the time rate of change
of the enstrophy at point i.

With the definition (20.85), we can rewrite the non-divergence condition (20.77) as

0 = ∑
i′

ai,i+i′ for all i. (20.90)
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Any scheme that satisfies (20.88) and (20.89) will also satisfy (20.90). In other words, any
enstrophy-conserving scheme satisfies the non-divergence condition “automatically.”

Kinetic energy conservation can be achieved using a very similar approach. We rewrite
(20.72) as

σiJi (ζ ,ψ) = ∑
i′

∑
i′′

ci,i′,i′′ζi+i′ψi+i′′

= ∑
i′′

bi,i+i′′ψi+i′′ ,
(20.91)

where

bi,i+i′′ ≡∑
i′

ci,i′,i′′ζi+i′. (20.92)

The requirement for kinetic energy conservation, (20.83), can then be written as

0 = ∑
i

(
∑
i′′

bi,i+i′′ψiψi+i′′

)
, (20.93)

which is analogous to (20.87). Kinetic energy conservation can be achieved by requiring
that

bi,i+i′′ =−bi+i′′,i all i and i′′, (20.94)

which is analogous to (20.88).

Actually, that’s not quite true. As mentioned earlier, there is one more thing to check. In
order to ensure kinetic energy conservation, we have to make sure that the finite-difference
analog of (20.55) holds, i.e.,

∑
i

(
σiψi

dζi

dt

)
=−∑

i

[
σi

d
dt

(
1
2
|∇ψ|2i

)]
, (20.95)
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so that we can mimic, with the finite-difference equations, the demonstration of kinetic
energy conservation that we performed with the continuous equations. In order to pursue
this objective, we have to define a finite-difference Laplacian. As an example, consider a
square grid with grid spacing d:

ζi, j =
(
∇

2
ψ
)

i, j

≡ 1
d2

(
ψi+1, j +ψi−1, j +ψi, j+1 +ψi, j−1−4ψi, j

)
.

(20.96)

Here we have reverted to a conventional double-subscripting scheme, for clarity. We also
define a finite-difference kinetic energy by

Ki, j ≡
1
2
|∇ψ|2i, j

≡ 1
4d2

[(
ψi+1, j−ψi, j

)2
+
(
ψi, j+1−ψi, j

)2
+
(
ψi, j−ψi−1, j

)2
+
(
ψi, j−ψi, j−1

)2
]
.

(20.97)

Because the right-hand side of (20.97) is a sum of squares, we are guaranteed that kinetic
energy is non-negative. With the use of (20.96) and (20.97), it can be demonstrated, after a
little algebra, that (20.95) is actually satisfied.

The results obtained above are very general; they apply on an arbitrary grid, and on a
two-dimensional domain of arbitrary shape. For instance, the domain could be a sphere.

This is all fine, as far as it goes, but we still have some very basic and important business
to attend to: We have not yet ensured that the sum in (20.72) is actually a consistent finite-
difference approximation to the Jacobian operator. The approach that we will follow is to
write down three independent finite-difference Jacobians and then identify, by inspection,
the c’s in (20.72). When we say that the Jacobians are “independent,” we mean that it is not
possible to write any one of the three as a linear combination of the other two. The three
finite-difference Jacobians are:

(J1)i, j =
1

4d2

[(
ζi+1, j−ζi−1, j

)(
ψi, j+1−ψi, j−1

)
−
(
ζi, j+1−ζi, j−1

)(
ψi+1, j−ψi−1, j

)]
,

(20.98)
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(J2)i, j =
1

4d2

[
−
(
ζi+1, j+1−ζi+1, j−1

)
ψi+1, j +

(
ζi−1, j+1−ζi−1, j−1

)
ψi−1, j

+
(
ζi+1, j+1−ζi−1, j+1

)
ψi, j+1−

(
ζi+1, j−1−ζi−1, j−1

)
ψi, j−1

]
,

(20.99)

(J3)i, j =
1

4d2

[
ζi+1, j

(
ψi+1, j+1−ψi+1, j−1

)
−ζi−1, j

(
ψi−1, j+1−ψi−1, j−1

)
−ζi, j+1

(
ψi+1, j+1−ψi−1, j+1

)
+ζi, j−1

(
ψi+1, j−1−ψi−1, j−1

)]
.

(20.100)

These can be interpreted as finite-difference analogs to the right-hand sides of (20.20) -
(20.22), respectively. We can show that all three of these finite-difference Jacobians vanish
if either of the input fields is spatially constant, and all three conserve vorticity, i.e., they
all satisfy (20.78).

What we need to do next is identify (“by inspection”) the coefficients a and b for each of
(20.98) - (20.100), and then check each scheme to see whether the requirements (20.88) and
(20.94) are satisfied. In order to understand more clearly what these requirements actually
mean, look at Fig. 20.10. The Jacobians J1, J2, and J3 are represented in the top row of the
figure. The colored lines show how each Jacobian at the point (i, j) is influenced (or not)
by the stream function and vorticity at the various neighboring points. We can interpret
that ai,i+i′ denotes ζ -interactions of point i with point i+ i′, while ai+i′,i denotes ζ -
interactions of point i+ i′ with point i. When we compare ai,i+i′ with ai+i′,i, it is like
peering along one of the red (or purple) lines in Fig. 20.10, first outward from the point
(i, j), to one of the other points, and then back toward the point (i, j). The condition (20.88)
on the as essentially means that all such interactions are “equal and opposite,” thus allowing
algebraic cancellations to occur when we sum over all points. The condition (20.94) on the
bs has a similar interpretation.

To check whether (J1)i conserves enstrophy and kinetic energy, we begin by rewriting
(20.100) using the double-subscript notation, and equating it to (J1)i:
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Figure 20.10: The central point in each figure is (i, j). Stream function and vorticity are both defined
at each of the mesh points indicated by the black dots. The colored lines represent contributions
to Ji, j from ψ, ζ , or both, from the various neighboring points. For J1 and JA, the red and blue lines
overlap, so you only see the pink lines.

σi, j(J1)i, j (ζ ,ψ) = ∑i′∑ j′∑i′′∑ j′′ ci′, j′;i′′, j′′ζi, j;i+i′, j+ j′ψi+i′′, j+ j′′

= ∑i′∑ j′ ai, j;i+i′, j+ j′ζi, j;i+i′, j+ j′

=
1
4
[(

ζi+1, j−ζi−1, j
)(

ψi, j+1−ψi, j−1
)
−
(
ζi, j+1−ζi, j−1

)(
ψi+1, j−ψi−1, j

)]
=

1
4
[
ζi+1, j

(
ψi, j+1−ψi, j−1

)
−ζi−1, j

(
ψi, j+1−ψi, j−1

)
−ζi, j+1

(
ψi+1, j−ψi−1, j

)
+ζi, j−1

(
ψi+1, j−ψi−1, j

)]
.

(20.101)

Here we have used

σi, j = d2. (20.102)

In the last line of (20.101), we have collected the coefficients of each distinct value of
the vorticity. By inspection of (20.101) and comparison with (20.85), we can read off the
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expressions for the as of J1:

ai, j;i+1, j =
1
4
(
ψi, j+1−ψi, j−1

)
, (20.103)

ai, j;i−1, j =−
1
4
(
ψi, j+1−ψi, j−1

)
, (20.104)

ai, j;i, j+1 =−
1
4
(
ψi+1, j−ψi−1, j

)
, (20.105)

ai, j;i, j−1 =
1
4
(
ψi+1, j−ψi−1, j

)
. (20.106)

Are these consistent with (20.88)? To find out, replace i by i+1 in (20.104); this gives:

ai+1, j;i, j =−
1
4
(
ψi+1, j+1−ψi+1, j−1

)
. (20.107)

Now simply compare (20.107) with (20.103), to see that the requirement (20.88) is not
satisfied by J1. This shows that J1 does not conserve enstrophy.

In this way, we can reach the following conclusions:

• J1 conserves neither enstrophy nor kinetic energy;

• J2 conserves enstrophy but not kinetic energy; and

• J3 conserves kinetic energy but not enstrophy.

It looks like we are out of luck.

We can form a new Jacobian, however, by combining J1, J2, and J3 with weights, as
follows:

JA = αJ1 +βJ2 + γJ3, (20.108)
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where

α +β + γ = 1. (20.109)

With three unknown coefficients, and only one constraint, namely (20.109), we are free to
satisfy two additional constraints; and we take these to be (20.88) and (20.94). In this way,
we can show that JA will conserve both enstrophy and kinetic energy if we choose

α = β = γ = 1/3. (20.110)

The composite Jacobian, JA, is often called the “Arakawa Jacobian.” It is also called J7.

Fig. 20.11 shows the results of tests with J1, J2, and J3, and also with three other Jaco-
bians called J4, J5, and J6, as well as with JA. The leapfrog time-differencing scheme was
used in these tests. The influence of time differencing on the conservation properties of the
schemes will be discussed later; it is minor, as long as the criterion for linear computational
instability is not violated. The various space-differencing schemes do indeed display the
conservation properties expected on the basis of the preceding analysis.

The approach outlined above yields a second-order accurate (in space) finite-difference
approximation to the Jacobian that conserves vorticity, kinetic energy, and enstrophy. Arakawa
(1966) also showed how to obtain a fourth-order Jacobian with the same conservation prop-
erties.

In Chapter 5, we concluded that, by suitable choice of the interpolated “cell-wall” val-
ues of an arbitrary advected quantity, A, it is possible to conserve exactly one non-trivial
function of A, i.e., F(A), in addition to A itself. Conserving more than A and one F(A)
was not possible because the only freedom that we had to work with was the form of the
interpolated “cell-wall” value, which will be denoted here by Â. Once we chose Â so as
to conserve, say, A2, we had no room left to maneuver, so we could not conserve anything
else.

We have just shown, however, that the vorticity equation for two-dimensional non-
divergent flow can be discretized so as to conserve two quantities, namely the kinetic energy
and the enstrophy, in addition to the vorticity itself. How is that possible?

The key difference with the vorticity equation is that we can choose not only how
to interpolate the vorticity (so as to conserve the enstrophy), but also the actual finite-
difference expression for the advecting wind itself, in terms of the stream function, because
that expression is implicit in the form of the Jacobian that we use. In choosing the form of
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Figure 20.11: Results of tests with the various finite-difference Jacobians. Panel c shows that the
initial kinetic energy is at a low wave number.

the advecting current, we have a second “freedom,” which allows us to conserve a second
quantity, namely the kinetic energy.

As discussed earlier, the constraint of enstrophy conservation is needed to ensure that
kinetic energy does not cascade in two-dimensional non-divergent flow. If kinetic energy
does not cascade, the flow remains smooth. When the flow is smooth, kinetic energy con-
servation is approximately satisfied, even if it is not exactly guaranteed by the scheme. This
means that a scheme that exactly conserves enstrophy and approximately conserves kinetic
energy will behave well.

These considerations suggest that formal enstrophy conservation is “more important”
than formal kinetic energy conservation.
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20.7 The effects of time differencing on conservation of squares

When time differencing is included, a family of finite-difference schemes for (20.15) can
be written in the generic form

qn+1
i, j −qn

i, j

∆t
= Ji, j (q∗,ψ) , (20.111)

where Ji, j is a finite difference analog to the Jacobian at the point (i, j), and different choices
of q∗ give different time-differencing schemes. Here q is a generic scalar. Examples are
given in Table 20.1.

Multiplying (20.111) by q∗, we get

q∗
(
qn+1−qn)= ∆tq∗J (q∗,ψ) . (20.112)

Here we drop the subscripts for simplicity. Eq. (20.112) can be rearranged to

(
qn+1)2− (qn)2 = 2

(
qn+1 +qn

2
−q∗

)(
qn+1−qn)+2∆tq∗J (q∗,ψ) . (20.113)

The left-hand side of (20.113) represents the change of q2 in one time step. Let an overbar
denote a sum over all grid points, divided by the number of grid points. Applying this
averaging operator to (20.113), we find that

(qn+1)
2− (qn)2 = 2

(
qn+1 +qn

2
−q∗

)
(qn+1−qn)+2∆tq∗J (q∗,ψ). (20.114)

We have already shown that we can choose our space differencing scheme in such a way
that q∗J (q∗,ψ) = 0. Time differencing will not enter in that choice, because only one “time
level” of q, namely q∗, appears in q∗J (q∗,ψ).

The first term on the right-hand side of (20.114) is where the time-differencing comes
in. For q∗ = qn, the contribution of this term is positive and so tends to increase q2. For
q∗= qn+1, the contribution of the first term is negative and so tends to decrease q2. With the
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trapezoidal implicit scheme, i.e., q∗ = qn+1+qn

2 , which is absolutely stable and neutral (in
the linear case with constant coefficients), there is no contribution from the first term. This
means that the trapezoidal implicit scheme is consistent with (allows) exact energy con-
servation. This could be anticipated given the time-reversibility of the trapezoidal implicit
scheme, which was discussed earlier. Of course, the form of the finite-difference Jacobian
must also be consistent with energy conservation.

Table 20.1: Examples of time differencing schemes corresponding to various choices of q∗.

q* = qn

q* = qn+1

q* = 1
2
qn + qn+1( )

∆t / 2 q* = q
n+ 1
2

q* = 3
2
qn − 1

2
qn−1

q* = qn + ∆t
2
J qn ,ψ( )

q* = Sqn + ∆t
2
J qn ,ψ( )

q* = qn + ∆tJ qn ,ψ( )

Name of Scheme Form of Scheme

Euler forward

Backward implicit

Trapezoidal implicit

Leapfrog, with time interval

Second-order Adams Bashforth

Heun

Lax-Wendorff
(here S is a smoothing 
operator)

Matsuno

�1

In most cases, time truncation errors that interfere with exact energy conservation do
not cause serious problems, provided that the scheme is stable in the linear sense, e.g., as
indicated by von Neumann’s method.
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20.8 Conservative schemes for the two-dimensional shallow water
equations with rotation

We now present a generalization of the ideas discussed in Chapter 9. The two-dimensional
shallow-water equations with rotation can be written as

∂h
∂ t

+∇ · (hV) = 0, (20.115)

and

∂V
∂ t

+

(
ζ + f

h

)
k× (hV)+∇ [K +g(h+hS)] = 0, (20.116)

where K ≡ 1
2V ·V and

f ≡ 2Ωsinϕ (20.117)

is the Coriolis parameter. In (20.116), we have multiplied and divided the vorticity term
by h, for reasons to be explained later. The corresponding equations for the zonal and
meridional wind components are

∂u
∂ t
−
(

ζ + f
h

)
(hv)+

∂

∂x
[K +g(h+hS)] = 0, (20.118)

and

∂v
∂ t

+

(
ζ + f

h

)
(hu)+

∂

∂y
[K +g(h+hS)] = 0, (20.119)

respectively. Here

V = ui+ vj, (20.120)
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where i and j are the unit vectors in the zonal and meridional directions, respectively.

When we take the dot product of (20.116) with hV, we obtain the advective form of the
kinetic energy equation, i.e.,

h
∂K
∂ t

+(hV) ·∇ [K +g(h+hS)] = 0. (20.121)

Here we have used

(hV) ·
[(

ζ + f
h

)
k× (hV)

]
= 0, (20.122)

which is based on a vector identity, i.e., the cross product of two vectors is perpendicular
to both. Combining (20.121) with the continuity equation (20.115), we can obtain the flux
form of the kinetic energy equation:

∂

∂ t
(hK)+∇ · (hVK)+(hV) ·∇ [g(h+hS)] = 0. (20.123)

Similarly, the flux form of the potential energy equation is

∂

∂ t

[
h
(

ghS +
1
2

h
)]

+∇ · [(hV)g(h+hS)]− (hV) ·∇ [g(h+hS)] = 0. (20.124)

By adding (20.122) and (20.124), we obtain conservation of total energy.

By taking the curl of (20.116) we can obtain the vorticity equation

∂ζ

∂ t
+V ·∇(ζ + f )+(ζ + f )∇ ·V = 0. (20.125)

To derive (20.125), we have used

k ·∇×{∇ [K +g(h+hS)]}= 0, (20.126)
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which is based on another vector identity, i.e., the curl of any gradient is zero. Eq. (20.125)
can be rearranged to

∂ (ζ + f )
∂ t

+∇ · [V(ζ + f )] = 0. (20.127)

The combination
(

ζ+ f
h

)
is the potential vorticity for the shallow-water system. As you

know, conservation of potential vorticity is key to the dynamics of balanced flows. The
flux form of the potential vorticity equation for shallow water can be obtained simply by
rewriting (20.127) as

∂

∂ t

[
h
(

ζ + f
h

)]
+∇ ·

[
hV
(

ζ + f
h

)]
= 0. (20.128)

Earlier in this chapter, we have shown how vorticity, kinetic energy and enstrophy can
be conserved under advection in numerical simulations of two-dimensional non-divergent
flow. In practice, however, we have to consider the presence of divergence. When the flow
is divergent, vorticity and enstrophy are not conserved, but potential vorticity and potential
enstrophy are conserved.

The approach outlined below follows Arakawa and Lamb (1981). We adopt the C-
grid, as shown in Fig. 20.12. Recall that on the C-grid, the zonal winds are east and
west of the mass points, and the meridional winds are north and south of the mass points.
The divergence “wants” to be defined at mass points, e.g., at point

(
i+ 1

2 , j+ 1
2

)
, and the

vorticity “wants” to be defined at the corners of the mass boxes that lie along the diagonal
lines connecting mass points, e.g., at the point (i, j). Note that the vorticity is at the integer
points, which is a departure from the system used earlier.

The finite-difference form of the continuity equation is

dhi+ 1
2 , j+

1
2

dt
=

(hu)i, j+ 1
2
− (hu)i+1, j+ 1

2

∆x
+

(hv)i+ 1
2 , j
− (hv)i+ 1

2 , j+1

∆y
. (20.129)

The various mass fluxes that appear in (20.129) have not yet been defined, but mass will be
conserved regardless of how we define them.

Simple finite-difference analogs of the two components of the momentum equation are
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Figure 20.12: The arrangement of the mass, zonal wind, and meridional wind on the C grid. In this
setup, the vorticity is at the integer points.

dui, j+ 1
2

dt
−
[(

ζ + f
h

)
(hv)

]
i, j+ 1

2

+

(
Ki+ 1

2 , j+
1
2
−Ki− 1

2 , j+
1
2

∆x

)
+g

[
(h+hS)i+ 1

2 , j+
1
2
− (h+hS)i− 1

2 , j+
1
2

∆x

]
= 0,

(20.130)

and

dvi+ 1
2 , j

dt
+

[(
ζ + f

h

)
(hu)

]
i+ 1

2 , j
+

(
Ki+ 1

2 , j+
1
2
−Ki+ 1

2 , j−
1
2

∆y

)
+g

[
(h+hS)i+ 1

2 , j+
1
2
− (h+hS)i+ 1

2 , j−
1
2

∆y

]
= 0,

(20.131)

respectively. As in the one-dimensional case discussed in Chapter 9, the kinetic energy per
unit mass, Ki+ 1

2 , j+
1
2
, is undefined at this stage, but resides at mass points. The potential

vorticities
(

ζ+ f
h

)
i, j+ 1

2

and
(

ζ+ f
h

)
i+ 1

2 , j
, and the mass fluxes (hv)i, j+ 1

2
and (hu)i+ 1

2 , j
are

also undefined.

Note that the mass fluxes that appear in (20.130) and (20.131) are in the “wrong” places;
the mass flux (hv)i, j+ 1

2
that appears in the equation for the u-wind is evidently at a u-wind

point, and the mass flux (hu)i+ 1
2 , j

that appears in the equation for the v-wind is evidently at
a v-wind point. The vorticities that appear in (20.130) and (20.131) are also in the “wrong”
places. Obviously, what we have to do is interpolate somehow to obtain mass fluxes and
vorticities suitable for use in the vorticity terms of (20.130) and (20.131). Note, however,
that it is actually products of mass fluxes and vorticities that are needed.
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One obvious and important question is: Is there a finite-difference scheme that allows
us to “mimic” the vector identity (20.122)? Since (20.122) is based on a purely mathemat-
ical identity, the input variables are irrelevant, and our goal is to mimic the identity itself.
Arakawa and Lamb (1981) constructed the finite-difference vorticity terms in such a way
that a finite-difference analog to (20.122) is satisfied, regardless of the specific forms of the
mass fluxes and potential vorticities that are chosen. Their approach is to write:

[(
ζ+ f

h

)
(hv)

]
i, j+ 1

2

= αi, j+ 1
2 ;i+ 1

2 , j+1(hv)i+ 1
2 , j+1 +βi, j+ 1

2 ;i− 1
2 , j+1(hv)i− 1

2 , j+1

+γi, j+ 1
2 ;i− 1

2 , j
(hv)i− 1

2 , j
+δi, j+ 1

2 ;i+ 1
2 , j
(hv)i+ 1

2 , j

(20.132)

and

[(
ζ+ f

h

)
(hu)

]
i+ 1

2 , j
= γi+ 1

2 , j;i+1, j+ 1
2
(hu)i+1, j+ 1

2
+δi+ 1

2 , j;i, j+
1
2
(hu)i, j+ 1

2

+αi+ 1
2 , j;i, j−

1
2
(hu)i, j− 1

2
+βi+ 1

2 , j;i+1, j− 1
2
(hu)i+1, j− 1

2
.

(20.133)

In reality, the forms assumed by Arakawa and Lamb are slightly more general and slightly
more complicated than these; we simplify here for ease of exposition. In (20.132) and
(20.133), the α’s, β ’s, γ’s, and δ ’s obviously represent interpolated potential vorticities
whose forms are not yet specified. Each of these quantities has four subscripts, to indi-
cate that it links a specific u-wind point with a specific v-wind point. The α’s, β ’s, γ’s,
and δ ’s are somewhat analogous to the a’s and b’s that were defined in the discussion of
two-dimensional non-divergent flow, in that the a’s and b’s also linked pairs of points. In
(20.132), the interpolated potential vorticities multiply the mass fluxes hv at the four v-wind
points surrounding the u-wind point

(
i, j+ 1

2

)
, and similarly in (20.133), the interpolated

potential vorticities multiply the mass fluxes hu at the four u-wind points surrounding the
v-wind point

(
i+ 1

2 , j
)
.

When we form the kinetic energy equation, we have to take the dot product of the
vector momentum equation with the mass flux hV. This means that we have to multiply
(20.133) by (hu)i+ 1

2 , j
and (20.133) by (hv)i, j+ 1

2
, and add the results. With the forms given

by (20.132) and (20.133), the vorticity terms will sum to
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−(hu)i, j+ 1
2

[(
ζ+ f

h

)
(hv)

]
i, j+ 1

2

+(hv)i+ 1
2 , j

[(
ζ+ f

h

)
(hu)

]
i+ 1

2 , j

=−(hu)i, j+ 1
2

[
αi, j+ 1

2 ;i+ 1
2 , j+1(hv)i+ 1

2 , j+1 +βi, j+ 1
2 ;i− 1

2 , j+1(hv)i− 1
2 , j+1 + γi, j+ 1

2 ;i− 1
2 , j
(hv)i− 1

2 , j
+δi, j+ 1

2 ;i+ 1
2 , j
(hv)i+ 1

2 , j

]
+(hv)i+ 1

2 · j

[
γi+ 1

2 , j;i+1, j+ 1
2
(hu)i+1, j+ 1

2
+δi+ 1

2 , j;i, j+
1
2
(hu)i, j+ 1

2
+αi+ 1

2 , j;i, j−
1
2
(hu)i, j− 1

2
+βi+ 1

2 , j;i+1, j− 1
2
(hu)i+1, j− 1

2

]
.

(20.134)

An analysis of (20.134) shows that cancellation will occur when we sum over the whole
grid. This means that the vorticity terms will drop out of the finite-difference kinetic energy
equation, just as they drop out of the continuous kinetic energy equation. This cancellation
will occur regardless of the expressions that we choose of the mass fluxes, and regardless
of the expressions that we choose for the α’s, β ’s, γ’s, and δ ’s. The cancellation arises
purely from the forms of (20.132) and (20.133), and is analogous to the cancellation that
makes (20.126) work, i.e.,

AV · (k×V) = A(ui+ vj) · (−vi+uj) = A(−uv+uv) = 0, (20.135)

regardless of the input quantities A and V.

The above discussion shows that the finite-difference momentum equations represented
by (20.130) and (20.131) with the use of (20.132) and (20.133), will guarantee kinetic en-
ergy conservation under advection, regardless of the forms chosen for the mass fluxes and
the interpolated potential vorticities α , β , γ , and δ . From this point, the methods used
in the discussion of the one-dimensional purely divergent flow will carry through essen-
tially without change to give us conservation of mass, potential energy, and total energy.
Arakawa and Lamb (1981) went much further, however, showing how the finite-difference
momentum equations presented above (or, actually, slightly generalized versions of these
equations) allow conservation of both potential vorticity and potential enstrophy. The de-
tails are rather complicated and will not be presented here.

20.9 Angular momentum conservation

Define the relative angular momentum per unit mass, M, by

Mrel ≡ uacosϕ. (20.136)
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This is actually the component of the relative angular momentum vector in the direction of
the axis of the Earth’s rotation. Here we consider motion on the sphere, a is the radius of
the Earth, and u is the zonal component of the wind. From the momentum equation, we
can show that in the absence of pressure-gradient forces and friction,

∂M
∂ t

=−(V ·∇)M, (20.137)

where λ is longitude, and

M ≡Mrel +Ωa2 cosϕ (20.138)

is the component of the absolute angular momentum vector in the direction of the axis
of the Earth’s rotation. From (20.137) it follows that the absolute angular momentum is
conserved under advection.

Using integration by parts, it can be demonstrated that

Mrel = a2
∫ π

2

− π

2

∫ 2π

0
ζ sinϕ cosϕdλdϕ. (20.139)

This demonstrates that the globally averaged relative angular momentum is a constant times
the global average of ζ sinϕ . We can also prove that

d
dt

Mrel = a2
∫ π

2

− π

2

∫ 2π

0

∂ζ

∂ t
sinϕ cosϕdλdϕ = 0. (20.140)

*** MORE TO BE ADDED HERE.

20.10 Summary

We began this chapter by discussing two-dimensional advection. When the advecting cur-
rent is variable, a new type of instability can occur, which can be called “aliasing instabil-
ity.” In practice, it is often called “non-linear instability.” This type of instability occurs
regardless of the time step, and cannot be detected by von Neumann’s method. It can be
detected by the energy method, and it can be controlled by enforcing conservation of ap-
propriate quadratic variables, such as energy or enstrophy. It is particularly likely to cause
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trouble with the momentum equations, which describe how the wind is “advected by it-
self.” Conservation of potential vorticity is an extremely important dynamical principle, as
discussed in courses on atmospheric dynamics. Conservation of potential enstrophy is key
to determining the distribution of kinetic energy with scale. Schemes that permit conserva-
tion of potential vorticity and potential enstrophy under advection therefore provide major
benefits in the simulation of geophysical circulations.

20.11 Problems

1. A wagon wheel rotates at R revolutions per second. It is featureless except for a
single dot painted near its outer edge. The wheel is filmed at F frames per second.

(a) What inequality must F satisfy to avoid aliasing?

(b) How does the apparent rotation rate, R∗, vary as a function of F and R? Assume
R > 0 and F > 0.

2. Prove that J2 conserves vorticity.

3. Prove that J3 conserves kinetic energy.

4. Work out the continuous form of the Jacobian for the case of spherical coordinates
(longitude, λ , and latitude, ϕ).

5. For the case of two-dimensional non-divergent flow on a periodic domain, prove that
if the vorticity is an eigensolution of the Laplacian, then the time-rate-of-change of
the vorticity is zero.

6. Using the form of the Laplacian for the hexagonal grid that you worked out earlier in
the semester, show that

∑
i

(
σiψi

dζi

dt

)
=−∑

i

[
σi

d
dt

(
1
2
|∇ψ|2i

)]
(20.141)

can be satisfied. Note that this condition only has to hold for the sum over all grid
points, as shown.

7. For a hexagonal grid on a plane, show that a finite-difference Jacobian of the form

dζ0

dt
=

1
A

6

∑
i=1

(
ψi+1−ψi−1

∆s

)(
ζ0 +ζi

2

)
∆s (20.142)
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conserves vorticity, enstrophy, and kinetic energy. Here subscript 0 denotes the cen-
tral point, the sum is over the six surrounding points (assumed to be numbered con-
secutively in a counter-clockwise fashion), A is the area of a hexagon, and ∆s is the
length of a side.

8. (a) Make a finite-difference model that solves the non-divergent vorticity equation
on a doubly periodic plane, using an approximately square hexagonal grid with
about 8000 grid cells, like the one used in the Chapter 2 homework. Use the Ja-
cobian given in Problem 7 above, with Matsuno time differencing. You should
check your Jacobian code by using a test function for which you can compute
the Jacobian analytically.

(b) Create diagnostics for the domain-averaged enstrophy and kinetic energy.

(c) Invent an analytical function that you can use to specify an initial condition
such that the periodic domain contains two pairs of (nearly) circular large-scale
vortices of equal strength but opposite sign – two “highs” and two “lows.” Be-
cause of the periodic boundary conditions, the solution will actually represent
infinitely many vortices. Run the model with this smooth initial condition and
discuss the results.

(d) Run the model again using initial conditions that approximate “white noise,”
and examine the time evolution of the solution. Does it follow the behavior
expected for two-dimensional turbulence? You may have to run a thousand
time steps or more to see the expected evolution.
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Chapter 21

Finite Differences on the Sphere

21.1 Introduction

Before we can use grid-point methods to discretize a model on the sphere, we must first
define a grid that covers the sphere, i.e., we must discretize the sphere itself. There are
many ways to do this. Perhaps the most obvious possibility is to generate a grid using
lines of constant latitude and longitude, i.e., a “spherical coordinate system.” On such a
grid, indexing can be defined along coordinate lines, so that the neighbors of a particular
cell can be referenced by defining an index for each coordinate direction, and then simply
incrementing the indices to specify neighbors, as we have done many times when using
cartesian grids, which are structured grids derived from cartesian coordinates.

It is also possible to define grids without starting from a coordinate system. Examples
are planar hexagonal and triangular grids, and spherical grids derived from the icosahedron,
the octahedron, and the cube. These are called “unstructured grids,” although the term is
not very descriptive, and sounds almost pejorative. With an unstructured grid, the locations
of each cell and its neighbors are listed in a table, which can be generated once and saved.

The governing equations can be written either with or without a coordinate system.
When a coordinate system is used, the components of the wind vector are defined along
the coordinate directions. On an unstructured grid, the orientations of the cell walls can
be used to define local normal and tangent components of the wind vector. For example, a
model that uses an unstructured C-grid can predict the normal component of the wind on
each cell wall.

21.2 Spherical coordinates

21.2.1 Vector calculus in spherical coordinates

In three-dimensional spherical coordinates (λ ,ϕ,r), i.e., longitude, latitude, and radius, the
gradient, divergence, and curl operators take the following forms:
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∇A =

(
1

r cosϕ

∂A
∂λ

,
1
r

∂A
∂ϕ

,
∂A
∂ r

)
, (21.1)

∇ ·V =
1

r cosϕ

∂Vλ

∂λ
+

1
r cosϕ

∂

∂ϕ

(
Vϕ cosϕ

)
+

1
r2

∂

∂ r

(
Vrr2) (21.2)

∇×V=

{
1
r

[
∂Vr

∂ϕ
− ∂

∂ r

(
rVϕ

)]
,
1
r

∂

∂ r
(rVλ )−

1
r cosϕ

∂Vr

∂λ
,

1
r cosϕ

[
∂Vϕ

∂λ
− ∂

∂ϕ
(Vλ cosϕ)

]}
.

(21.3)

For use with the two-dimensional shallow-water equations, we can simplify these to

∇A =

(
1

acosϕ

∂A
∂λ

,
1
a

∂A
∂ϕ

)
, (21.4)

∇ ·V =
1

acosϕ

∂Vλ

∂λλ

+
1

acosϕ

∂

∂ϕ

(
Vϕ cosϕ

)
, (21.5)

k · (∇×V) =
1

acosϕ

[
∂Vϕ

∂λ
− ∂

∂ϕ
(Vλ cosϕ)

]
. (21.6)

Here a is the radius of the spherical planet.

In a spherical coordinate system, the lines of constant longitude converge at the poles,
so longitude is multivalued at the poles. The components of the wind vector (and all other
vectors) are discontinuous at the poles, although the wind vector itself doesn’t even know
that there is a pole. For example, consider a jet directed over the North Pole, represented
by the shaded arrow in Fig. 21.1. Measured at points along the prime meridian, the wind
consists entirely of a positive v component. Measured along the international date line,
however, the wind consists entirely of a negative v component. A discontinuity occurs
at the pole, where “north” and “south” have no meaning. Similarly, the u component of
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the wind is positive measured near the pole along longitude 90◦, and is negative measured
along longitude 270◦.

Such ambiguity does not occur in a Cartesian coordinate system centered on the pole.
At each point along a great circle that includes the pole, the components measured in such
a Cartesian coordinate system are well defined and vary continuously. But a Cartesian
coordinate system centered on the pole is not very useful far away from the pole.

Figure 21.1: For the wind vector shown in the sketch, points along the prime meridian have a
strong northward component. There is a discontinuity at the pole, and points along international
date line have a strong southward component. Points near 90◦ longitude have a strong positive
zonal component, while points near 270◦ longitude have a strong negative zonal component.

21.2.2 The shallow water equations in spherical coordinates

In spherical coordinates, the shallow water equations can be written as

∂u
∂ t

+
u

acosϕ

∂u
∂λ

+
v
a

∂u
∂ϕ
−
(

f +
u
a

tanϕ

)
v+

g
acosϕ

∂

∂λ
(h+hS) = 0, (21.7)

∂v
∂ t

+
u

acosϕ

∂v
∂λ

+
v
a

∂v
∂ϕ

+
(

f +
u
a

tanϕ

)
u+

g
a

∂

∂ϕ
(h+hS) = 0, (21.8)

∂h
∂ t

+
u

acosϕ

∂h
∂λ

+
v
a

∂h
∂ϕ

+
h

acosϕ

[
∂u
∂λ

+
∂

∂ϕ
(vcosϕ)

]
= 0. (21.9)
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Here h is the depth of the fluid, and hS is the height of the bottom topography.

21.2.3 The “pole problem”

One eighth of a uniform latitude-longitude grid is shown in Fig. 21.2. The zonal rows of
grid points nearest the two poles consist of “pizza slices” which come together at a point
at each pole. The other zonal rows consist of grid points which are roughly trapezoidal in
shape. There are other ways to deal with the polar regions, e.g., by defining local Cartesian
coordinates at the poles.

Figure 21.2: One octant of the latitude-longitude grid used by Arakawa and Lamb (1981). In the
example shown, there are 72 grid points around a latitude circle and 44 latitude bands from pole
to pole. The longitudinal grid spacing is globally uniform, and in this example is 5◦. The latitudinal
grid spacing is globally uniform except for “pizza slices” ringing each pole, which are 1.5 times as
“tall” as the other grid cells. The reason for this is explained by Arakawa and Lamb (1981). In the
example shown here, the latitudinal grid spacing is 4◦ except that the pizza slices are 6◦ tall.

The scales of meteorological action do not vary dramatically from place to place. This
suggests that average distance between neighboring grid points should not depend on lo-
cation, and also that the distances between grid points in the zonal direction should not
be substantially different from the distances in the meridional direction. Unfortunately,
latitude-longitude grids lack these two desirable properties.

In addition, the convergence of the meridians at the poles demands a short time step
in order to satisfy the Courant-Friedrichs-Lewy (CFL) requirement for computational sta-
bility, as discussed in chapters 5 (for advection) and 14 (for wave propagation). The short
time step is a practical problem, so we often talk about “the pole problem.” There are
actually two pole problems: one for advection, and another for wave propagation. Semi-
Lagrangian advection schemes can eliminate the pole problem for advection. Semi-implicit
time-differencing schemes can eliminate the pole problem for wave propagation.
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Spectral models can also avoid the pole problem for wave propagation, and in addi-
tion spectral models make it easy to implement semi-implicit time differencing for wave
propagation. Further discussion is given in chapter 22.

To derive the stability criterion for wave propagation in the shallow water equations on
the sphere, following Arakawa and Lamb (1977), we begin by linearizing (21.7), (21.8),
and (21.9) about a state of rest, as follows:

∂u
∂ t

+
g

acosϕ

∂h
∂λ

= 0, (21.10)

∂v
∂ t

+
g
a

∂h
∂ϕ

= 0, (21.11)

∂h
∂ t

+
H

acosϕ

[
∂u
∂λ

+
∂

∂ϕ
(vcosϕ)

]
= 0. (21.12)

Here we have neglected rotation and bottom topography, for simplicity, and H denotes
the mean depth of the fluid. We spatially discretize (21.10) - (21.12) using the C-grid, as
follows:

du j+ 1
2 ,k

dt
+

g
(
h j+1,k−h j,k

)
acosϕ∆λ

= 0, (21.13)

dv j,k+ 1
2

dt
+

g
(
h j,k+1−h j,k

)
a∆ϕ

= 0, (21.14)

dh j,k

dt
+H

{(u j+ 1
2 ,k
−u j− 1

2 ,k

acosϕ j∆λ

)
+

[
(vcosϕ) j,k+ 1

2
− (vcosϕ) j,k− 1

2

acosϕ j∆ϕ

]}
= 0. (21.15)

Here j is the zonal index, and k is the meridional index, and the time derivatives have been
left in continuous form. We look for solutions of the form
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u j+ 1
2 ,k

= Re
{

ûk exp
[

im
(

j+
1
2

)
∆λ + iσt

]}
, (21.16)

v j,k+ 1
2
= Re

{
v̂k+ 1

2
exp [i(m j∆λ +σt)]

}
, (21.17)

h j,k = Re
{

ĥk exp [i(m j∆λ +σt)]
}
. (21.18)

Note that the zonal wave number, m, is defined with respect to longitude rather than dis-
tance, and that the “hat” variables depend on latitude. By substitution of (21.16) - (21.18)
into (21.13) - (21.15), we obtain

σ ûk +
m

acosϕ j

sin(m∆λ/2)
m∆λ/2

g
[
Sk (m)ĥk

]
= 0, (21.19)

iσ v̂k+ 1
2
+g

(
ĥk+1− ĥk

a∆ϕ

)
= 0, (21.20)

iσ ĥk +H

{
im

acosϕk

sin(m∆λ/2)
m∆λ/2

Sk (m)ûk +

[
(v̂cosϕ)k+ 1

2
− (v̂cosϕ)k− 1

2

acosϕk∆ϕ

]}
= 0,

(21.21)

where Sk (m) is an artificially inserted “smoothing parameter” that depends on wave num-
ber and latitude. The smoothing parameter has been inserted into the term of (21.19)
corresponding to the zonal pressure gradient force, and also into the term of (21.21) corre-
sponding to the zonal mass flux divergence. These are the key terms for zonally propagating
gravity waves. Later in this discussion, Sk (m) will be set to values less than one, in order
to achieve computational stability with a “large” time step near the pole. For now, just
consider it to be equal to one.
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By eliminating ûk and v̂k+ 1
2

in (21.19) - (21.21), we can obtain the “meridional structure

equation” for ĥk:

c2
[

m
acosϕk

sin(m∆λ/2)
m∆λ/2

Sk (m)

]2

ĥk+
c2

(a∆ϕ)2

[(
ĥk− ĥk−1

) cosϕk− 1
2

cosϕk
−
(
ĥk+1− ĥk

) cosϕk+ 1
2

cosϕk

]
=σ

2ĥk.

(21.22)

Here c2≡ gH is the square of the phase speed of a pure gravity wave. For the shortest zonal
wavelengths, with m∆λ ∼= π , the first term on the left-hand side of (21.22) dominates the
second, and we obtain

σ ∼= |c|
[

m
acosϕk

sin(m∆λ/2)
m∆λ/2

Sk (m)

]

=
2 |c|Sk (m)sin

(
m∆λ

2

)
acosϕk∆λ

.

(21.23)

Although we have not used a time-differencing scheme here, we know that for a condi-
tionally stable scheme the condition for linear computational stability takes the form

σ∆t < ε. (21.24)

Using (21.23), this criterion can be written as

|c|∆t
acosϕk∆λ

[
2Sk (m)sin

(
m∆λ

2

)]
< ε, (21.25)

where ε is a constant of order one. In view of (21.23) and (21.24), the CFL criterion
will place more stringent conditions on ∆t as acosϕk∆λ decreases, i.e., near the poles. In
addition, the criterion becomes more stringent as m increases, for a given latitude. The
worst case is sin

(
m∆λ

2

)
= 1, for which (21.25) reduces to

|c|∆t
acosϕk∆λ

2Sk (m)< ε. (21.26)
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This shows that, as expected, the time step required for stability depends on latitude. For
the grid shown in Fig. 21.2, with a longitudinal grid spacing of ∆λ = 5◦ and a latitudinal
grid spacing of ∆ϕ = 4◦ (the values used to draw the figure), the northernmost row of grid
points where the zonal component of velocity is defined is at latitude 86◦N. The zonal
distance between grid points there is ∆x ∼= 39 km, which is less than one-tenth the zonal
grid spacing at the Equator. Recall that the fast, external gravity wave has a phase speed
of approximately 300 m s−1. Substituting into (21.26), we find that with that resolution
and Sk (m) = 1, the largest permissible time step near the pole is about 70 seconds. This is
about one tenth of the largest permissible time step at the Equator.

21.2.4 Polar filters

It would be nice if the CFL criterion were the same at all latitudes, permitting time steps
near the pole as large as those near the Equator. In order to make this possible, models
that use latitude-longitude grids typically employ “polar filters” that prevent computational
instability, so that a longer time step can be used.

The simplest method is to use a Fourier filter to remove the high-wave number compo-
nents of the prognostic fields themselves, near the poles. This can prevent a model from
blowing up, but it leads to drastic violations of mass conservation (and many other conser-
vation principles). The cure is almost as bad as the disease.

A better approach is to longitudinally smooth the longitudinal pressure gradient in the
zonal momentum equation and the longitudinal contribution to the mass flux divergence
in the continuity equation. This has the effect of reducing the zonal phase speeds of the
gravity waves sufficiently so that the CFL criterion is not violated. The smoothing param-
eter Sk (m) serves this function. To implement the smoothing parameter, we compute the
Fourier coefficients of the zonal pressure gradient and the zonal mass flux divergence, mul-
tiply the coefficients by numbers less than or equal to one, and then do the inverse transform
to construct the smoothed tendencies on the grid.

It remains to choose the form of Sk (m). We want to make the CFL criterion independent
of latitude. Inspection of (21.23) shows that this can be accomplished by choosing the
smoothing parameter Sk (m) so that

Sk (m)sin
(

m∆λ

2

)
acosϕk∆λ

=
1
d∗

, (21.27)

where d∗ is a suitably chosen length, comparable to the zonal grid spacing at the Equator.
When Sk (m) satisfies (21.27), the stability criterion (21.23) reduces to
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σ =
2 |c|
d∗

, (21.28)

and the CFL condition reduces to

|c|∆t
d∗

<
ε

2
, (21.29)

so that the time step required is independent of latitude, as desired. If we choose

d∗ ≡ a∆ϕ, (21.30)

i.e., the distance between grid points in the meridional direction, then, referring back to
(21.27), we see that Sk (m) must satisfy

Sk (m) =

(
∆λ

∆ϕ

)
cosϕk

sin
(

m∆λ

2

) . (21.31)

Of course, at low latitudes (21.31) can give values of Sk (m) which are greater than one;
these should be replaced by one, so that we actually use

Sk (s) = Min


(

∆λ

∆ϕ

)
cosϕk

sin
(

m∆λ

2

) , 1

 . (21.32)

A plot of (21.32) is given in Fig. 21.3, for the case of the shortest zonal mode. The plot
shows that some smoothing is needed all the way down into the subtropics.

Polar filters are a partial solution to the pole problem for wave propagation. They work,
but they are not ideal.
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Figure 21.3: A plot of the smoothing parameter Sk (m) as given by (21.32), for the “worst case”
of the shortest zonal mode. The dashed vertical lines demarcate the belt of latitude centered on
the Equator for which no smoothing is needed. In making the plot, it has been assumed that
∆λ = (5/4)∆ϕ, which is true for the grid shown in Fig. 21.2.

21.3 The Kurihara grid

Many authors have sought alternatives to the latitude-longitude grid, hoping to make the
grid spacing more uniform, still within the “latitude-longitude” framework.

For example, Kurihara (1965) proposed a grid in which the number of grid points along
a latitude circle varies with latitude. By placing fewer points at higher latitudes, he was
able to more homogeneously cover the sphere. The grid is constructed by evenly placing
N + 1 grid points along the longitude meridian, from the North Pole to the Equator. The
point at the North Pole is given the label j = 1, the next latitude circle south is given the
label j = 2, and so on until the Equator is labeled j = N +1. Along latitude circle j there
are 4( j−1) equally spaced grid points, except at each pole, where there is a single point.
One octant of the sphere is shown in Fig. 21.4; compare with Fig. 21.2. For a given N, the
total number of grid points on the sphere is 4N2 + 2. The Southern Hemisphere grid is a
mirror image of the Northern Hemisphere grid.

We can measure the homogeneity of the grid by examining the ratio of the zonal dis-
tance, acosϕ j∆λ j, and the meridional distance a∆ϕ , for a grid point at latitude ϕ j. Here,
∆ϕ ≡ π

2
1
N and ∆λ j ≡ 1

j−1 . At j = N +1, the Equator, the ratio is one, and near the pole the
ratio approaches π/2∼= 1.57.

Kurihara built a model using this grid, based on the shallow water equations. He tested
it in a simulation of the Rossby-Haurwitz wave, with zonal wave number 4 as the initial
condition. This set of initial conditions was also used by Phillips (1959a), and later in the
suite of seven test cases for shallow water models proposed by Williamson et al. (1992).
The model was run with a variety of time-stepping schemes and with varying amounts of
viscosity. Each simulation covered 16 simulated days, with N = 20. The Rossby-Haurwitz
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Figure 21.4: Kurihara grid on one octant of the sphere. Compare with Fig. 21.2.

wave should move from west to east, without distortion. In several of Kurihara’s runs,
however, the wave degenerated to higher wave numbers.

Conceptually similar “skipped” grids were discussed by James Purser (1988), and by
Halem and Russell (1973) as described by Herman and Johnson (1978) and Shukla and
Sud (1981).

21.4 Grids Based on Map Projections

An early approach to numerically solving the shallow water equations on the sphere was to
project the sphere onto a plane, and solve the equations on a regular grid using a coordinate
system defined in the plane. The surface of a sphere and that of a plane are not topologically
equivalent, however. Distances and areas can be badly distorted near the singular points of
the projections. Nevertheless, we can use a projection to map the piece of the sphere away
from the singular points. An approach to map the entire sphere is the composite mesh
method, discussed later.

We can derive the equations of motion in various map projections if we first express
them in a general orthogonal coordinate system (x,y). Here x and y do not necessarily have
the dimensions of length; for example, they could be angles. Define the metric coefficients
αx and αy so that the distance increment satisfies

dl2 = αx
2dx2 +αy

2dy2. (21.33)
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The metric coordinates convert coordinate increments (whatever their dimensions might
be) into true distances. In the (x,y) coordinate system, the horizontal velocity components
are given by

U = αx
dx
dt

, (21.34)

V = αy
dy
dt

. (21.35)

Williamson (1969) gives the equations of motion for the general velocity components:

DU
Dt
−
[

f +
1

αxαy

(
V

∂αy

∂x
−U

∂αx

∂y

)]
V +

g
αx

∂

∂x
(h+hS) = 0, (21.36)

DV
Dt

+

[
f +

1
αxαy

(
V

∂αy

∂x
−U

∂αx

∂y

)]
U +

g
αy

∂

∂y
(h+hS) = 0. (21.37)

The Lagrangian time derivative is given by

D
Dt

( ) =
∂

∂ t
( )+

U
αx

∂

∂x
( )+

V
αy

∂

∂y
( ) . (21.38)

The continuity equation can be written as

Dh
Dt

+
h

αxαy

[
∂

∂x
(αyU)+

∂

∂y
(αxV )

]
= 0. (21.39)

As an example, with spherical coordinates we have

x = λ and y = ϕ, (21.40)
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and the corresponding metric coefficients are

αx = acosϕ and αy = a. (21.41)

Then, by (21.34) and (21.35), we have

U = u≡ acosϕ
Dλ

Dt
and V = v≡ a

Dϕ

Dt
. (21.42)

Substituting (21.41) and (21.42) into (21.36), (21.37) and (21.39) gives (21.7), (21.8) and
(21.9), which are the shallow water equations in spherical coordinates.

The Polar Stereographic and Mercator projections are sometimes used in modeling the
atmospheric circulation. Both are examples of conformal projections, that is, they preserve
angles, but not distances. Also, in both of these projections the metric coefficients are
independent of direction at a given point, i.e., αx = αy. The effects of these projections on
the outlines of the continents are shown in Fig. 21.5.

Figure 21.5: Map projections of the continents: a.) Mercator projection, in which the surface of
the sphere is projected onto a cylinder that has its axis aligned with the poles, and the poles are
stetched out into lines. b.) North polar stereographic projection, in which a hemisphere is projected
onto a plane centered at the pole.

The polar stereographic projection is still used in a few models. It can be visualized in
terms of a plane tangent to the Earth at the North Pole. A line drawn from the South Pole
that intersects the Earth will also intersect the plane. This line establishes a one-to-one
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correspondence between all points on the plane and all points on the sphere except for the
South Pole itself. In the plane, we can define a Cartesian coordinate system (X ,Y ), where
the positive X axis is in the direction of the image of λ = 0 (the Greenwich meridian), and
the positive Y axis is in the direction of the image of λ = π/2. Obviously, similar mappings
can be obtained by placing the plane tangent to the sphere at points other than the North
Pole. Haltiner and Williams (1980) give the equations relating the projection coordinates
(X ,Y ) and the spherical coordinates (λ ,ϕ):

X =
2acosϕ cosλ

1+ sinϕ
, (21.43)

Y =
2acosϕ sinλ

1+ sinϕ
. (21.44)

Note that there is a problem at the South Pole, where the denominators of (21.43) and
(21.44) go to zero. From (21.43) and (21.44) we find that

 dX

dY

=

(
2a

1+ sinϕ

) −cosϕ sinλ −cosλ

cosϕ cosλ −sinλ

 dλ

dϕ

 . (21.45)

The metrics of the polar stereographic map projection can be determined as follows:
Substituting x = λ , y = ϕ , and the metrics for spherical coordinates into (21.33) gives

dl2 = (acosϕ)2dλ
2 +a2dϕ

2. (21.46)

Solving the linear system (21.45) for dϕ , and dλ , and substituting the results into (21.46),
we obtain

dl2 =

(
1+ sinϕ

2

)2

dX2 +

(
1+ sinϕ

2

)2

dY 2. (21.47)

Comparing (21.47) with (21.33), we see that metric coefficients for the polar stereographic
projection are given by
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αx = αy =
1+ sinϕ

2
. (21.48)

We define the map factor, m(ϕ), as the inverse of the metric coefficient, so that, for
example, m(ϕ) = 2/(1+ sinϕ). Using (21.36), (21.37), and (21.39), we can write the
shallow water equations in north polar stereographic coordinates:

dU
dt
−
(

f +
UY −V X

2a2

)
V +gm(ϕ)

∂

∂X
(h+hS) = 0, (21.49)

dV
dt

+

(
f +

UY −V X
2a2

)
U +gm(ϕ)

∂

∂Y
(h+hS) = 0, (21.50)

dh
dt

+m2 (ϕ)h
{

∂

∂X

[
U

m(ϕ)

]
+

∂

∂Y

[
V

m(ϕ)

]}
= 0. (21.51)

The total derivative is given by (21.38).

21.5 Composite grids

As discussed above, a finite region of the plane will only map onto a piece of the sphere,
and vice versa. One technique to map the entire sphere is to partition it, for example, into
hemispheres, and project the pieces separately. Each set of projected equations then gets
its boundary conditions from the solutions of the other projected equations.

For example, Phillips (1957) divided the sphere into three regions: a tropical belt, and
extratropical caps to the north and south of the tropical belt. On each region, the shallow
water equations are mapped to a new coordinate system. He used a Mercator coordinate
system in the tropics, a polar stereographic coordinate system fixed to the sphere at the
North Pole for the northern extratropical cap, and similarly, a polar stereographic coordi-
nate system fixed to the sphere at the South Pole for the southern extratropical cap. When
a computational stencil required data from outside the region covered by its coordinate
system, that piece of information was obtained by interpolation within the neighboring co-
ordinate system. The model proved to be unstable at the boundaries between the coordinate
systems.
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Figure 21.6: Composite grid method grid. Two such grids are used to cover the sphere. Points
labeled with are the boundary conditions for the points labeled with +. Values at the points are
obtained by interpolation from the other grid. The big circle is the image of the Equator. Points
labeled * are not used.

Browning et al. (1989) proposed a composite-mesh model in which the Northern and
Southern Hemispheres are mapped to the plane with a polar stereographic projection. The
equations used for the northern projection are just (21.49), (21.50), and (21.51). The equa-
tions for the southern projection are the same as those for the northern, except for a few
sign differences. This model is different from Phillips’ in that the regions interior to the
coordinate systems overlap a little bit as shown in Fig. 21.6. Values for dependent variables
at grid points not covered by the current coordinate system are obtained by interpolation
in the other coordinate system. The overlapping of the coordinate systems made Brown-
ing’s model more stable than Phillips’ model, in which the coordinate systems were simply
“bolted together” at a certain latitude. Browning’s model is also easier to write computer
code for because the equations are only expressed in the polar stereographic coordinate
systems.

Composite grids are rarely used today, although the idea does occasionally resurface,
as in the Yin-Yang grid, which is briefly described later in this chapter.

21.6 Unstructured spherical grids

This is just for your amusement: One idea for constructing a mesh of grid points that ho-
mogeneously covers a sphere is to model the equilibrium distribution of a set of electrons
confined to the surface of the sphere. Because each electron is repelled by every other
electron, we hypothesize that the electrons will position themselves so as to maximize the
distance between closest neighbors, and thus distribute themselves as evenly as possible
over the sphere. We can then associate a grid point with each electron. It seems advan-
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tageous to constrain the grid so that it is symmetric across the Equator. An Equator can
be defined by restricting the movement of a subset of the electrons to a great circle. The
remaining electrons can be paired so that each has a mirror image in the opposite hemi-
sphere. We can also fix an electron at each of the poles. Experience shows that unless
the positions of some of the electrons are fixed, their positions will to wander indefinitely.
Fig. 21.7 shows a grid constructed using this “wandering electron” algorithm. Most cells
have six walls, but some have five or seven walls. While this approach does more or less
homogeneously cover the sphere, it is not very satisfactory.

Figure 21.7: Wandering electron grid. White cells have five edges, blue cells have six edges, and
red cells have seven edges.

Fig. (21.8) shows five alternative discretizations of the sphere. The left-most panel
shows the latitude-longitude grid. The second and third panels show triangular and hexagonal-
pentagonal grids, respectively, both generated by starting from the icosahedron.

The fourth panel shows a “cubed sphere” grid, generated from the sphere (e.g., Ronchi
et al. (1996); Nair et al. (2005); Putman and Lin (2007);Lauritzen and Nair (2008); Ullrich
et al. (2009)). The cells of the cubed sphere grid are quadrilaterals.

The last panel shows the “Ying-Yang” grid proposed by Kageyama and Sato (2004), and
Kageyama (2005). The grid is composed of two “sleeves” that overlap like the two leather
patches that are stitched together to cover the outside of a baseball. The sleeves overlap
slightly, and an interpolation is used to patch them together, something like the methods,
discussed earlier, that can be used to patch together two polar-stereographic grids. Over-
lapping grids of this type are sometimes called “overset grids.” There have been attempts
to use grids based on octahedrons (e.g., McGregor (1996); Purser and Rančcić (1998)). A
spiraling “Fibonacci grid” has also been suggested (Swinbank and James Purser, 2006).

Grids based on icosahedra offer an attractive framework for simulation of the global
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Mesoscale & Microscale Meteorology Division / ESSL / NCAR

MPAS

Future Weather/Climate Atmospheric Dynamic Core

Consideration of alternative spatial discretizations:

Priority Requirements:

Lat-Lon Icosahedral-triangles Icosahedral-hexagons Cubed Sphere Yin-Yang

•  Efficient on existing and proposed supercomputer architectures

•  Scales well on massively parallel computers

•  Well suited for cloud (nonhydrostatic) to global scales

•  Capability for local grid refinement and regional domains

•  Conserves at least mass and scalar quantities

Problems with lat-lon coordinate for global models

• Pole singularities require special filtering

• Polar filters do not scale well on massively parallel computers

• Highly anisotropic grid cells at high latitudes

Figure 21.8: Various ways of discretizing the sphere. This figure was made by Bill Skamarock of
NCAR.

circulation of the atmosphere. Their advantages include almost uniform and quasi-isotropic
resolution over the sphere. Such grids are termed “geodesic,” because they resemble the
geodesic domes designed by Buckminster Fuller. Williamson (1968) and Sadourny et al.
(1968) simultaneously introduced a new approach to more homogeneously discretize the
sphere. They constructed grids using spherical triangles which are equilateral and nearly
equal in area. Because the grid points are not regularly spaced and do not lie in orthogonal
rows and columns, alternative finite-difference schemes are used to discretize the equations.
Initial tests using the grid proved encouraging, and further studies were carried out. These
were reported by Sadourny et al. (1968), Sadourny and Morel (1969), Sadourny (1969),
Williamson (1970), and Masuda and Ohnishi (1986).

The grids are constructed from an icosahedron (20 faces and 12 vertices), which is
one of the five Platonic solids. A conceptually simple scheme for constructing a spherical
geodesic grid is to divide the edges of the icosahedral faces into equal lengths, create new
smaller equilateral triangles in the plane, and then project onto the sphere. See Fig. 21.9.
One can construct a more homogeneous grid by partitioning the spherical equilateral trian-
gles instead. Williamson (1968) and Sadourny et al. (1968) use slightly different techniques
to construct their grids. However, both begin by partitioning the spherical icosahedral trian-
gle. On these geodesic grids, all but twelve of the cells are hexagons. The remaining twelve
are pentagons. They are associated with the twelve vertices of the original icosahedron.

Williamson (1968) chose the non-divergent shallow water equations to test the new
grid. He solved the two-dimensional non-divergent vorticity equation

∂ζ

∂ t
= J (η ,ψ) , (21.52)

where ζ is relative vorticity, η = ζ + f is absolute vorticity and ψ is the stream function,
such that

ζ = ∇
2
ψ. (21.53)
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Icosahedron Bisect each edge
and connect the dots

Pop out onto
the unit sphere

And so on, until we reach our target resolution...

Figure 21.9: A spherical geodesic grid is generated recursively by starting from an icosahedron.

For arbitrary functions α and β , it follows from the form J (α,β ) = k ·∇× (α∇β ) that the
Jacobian satisfies

J (α,β ) = lim
A→0

{
1
A

∮
S

α
∂β

∂ s
ds
}
, (21.54)

where A is a small area, i.e., the area of a grid cell, and m measures distance along the
curve bounding A, i.e., the perimeter of the grid cell. Integrating (21.52) over the area A,
and using (21.54), we get

d
dt

∫
A

ζ dA =
∮

S
η

∂ψ

∂ s
ds. (21.55)

This can be discretized with reference to Fig. 21.10. We approximate the line integral
along the polygon defined by the path P1,P2,... P5,P1. Let ζ0 be the relative vorticity
defined at the point P0, and let ηi be the absolute vorticity defined at the point Pi. We can
approximate (21.55) by
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dζ0

dt
=

1
A

K

∑
i=1

(
ψi+1−ψi−1

∆s

)(
η0 +ηi

2

)
∆s. (21.56)

We must also discretize the Laplacian. Consider the smaller, inner polygon in Fig.
21.10. Its walls are formed from the perpendicular bisectors of the line segments P0Pi. We
can use Gauss’s Theorem to write

∫
a

ζ dA =−
∮

s′
(∇ψ) ·nds′, (21.57)

where a is the area of the small polygon, s′ is its boundary, and n is the outward-normal
unit vector on the boundary. Eq. (21.57) is approximated by

aζ0 =
K

∑
i=1

li
|P0Pi|

(ψi−ψ0), (21.58)

where |P0Pi| is the distance from P0 to Pi, and li is the length of wall i. Eq. (21.58) can be
solved for ψi by relaxation, using the methods discussed in Chapter 12.

P0 

P1 

P2 

P3 

P4 
P5 

l1 l2 

l3 

l4 
l5 

Figure 21.10: Configuration of grid triangles for the case of a pentagon.

Williamson showed that his scheme conserves kinetic energy and enstrophy, as the
exact equations do. When applied to regular grid on a plane, the scheme is second-order
accurate. Williamson performed a numerical experiment, using a Rossby-Haurwitz wave
as the initial condition. A run of 12 simulated days produced good results. Sadourny et al.
(1968) discussed a nondivergent model very similar to Williamson’s. Also, Sadourny and
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Morel (1969) developed a geodesic-grid model based on the free-surface shallow water
equations.

Masuda and Ohnishi (1986) developed an elegant spherical shallow water model, based
on the Z-grid (see Chapter 14). Like Williamson, Masuda chose the Rossby-Haurwitz wave
with wave number 4 as his initial condition. Heikes and Randall (1995a,b) and Heikes et al.
(2013) extended Masuda’s work by introducing a multi-grid method to compute the stream
function and velocity potential from the vorticity and divergence, respectively. Heikes
and Randall (1995b) also showed that the grid can be “optimized,” to permit consistent
finite-difference approximations to the divergence, Jacobian, and Laplacian operators that
are used in the construction of the model. They tested their model using certain standard
test cases for shallow water on the sphere Williamson et al. (1992), and obtained good
results. Ringler et al. (2000) constructed a full-physics global atmospheric model using
this approach.

21.7 Summary

In order to construct a numerical model on the sphere, it is necessary to map the sphere onto
a computational domain. There are various ways of doing this. The most straightforward is
to use latitude-longitude coordinates, but this leads to the pole problem. The pole problem
can be dealt with by using filters, but these approaches suffer from some problems of their
own. Semi-implicit differencing could be used to avoid the need for filtering.

Another approach is to use a regular grid on the sphere. A perfectly regular grid is
mathematically impossible, but geodesic grids come close.

A third approach, discussed in the next chapter, is to use the spectral method, with
spherical harmonics as the basis functions.

21.8 Problems

1. Suppose that you are running a model in which the phase speed of the fastest gravity
wave is 300 m s −1. Design a filter that makes it possible run the model with a 10 km
grid spacing and a time step of 1000 s. Plot the coefficients of the filter as a function
of wave number.
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Chapter 22

Spectral Methods

22.1 Introduction

Spectral models represent the horizontal structure of a field by using “functional expan-
sions,” rather than finite differences. An elementary example of a functional expansion is
a Fourier series. In the first part of this chapter we will actually use Fourier series to ex-
plain some of the basic concepts of spectral models. In practice, most spectral models use
spherical harmonic expansions on the global domain. For reasons that will be explained
below, most spectral models also make use of grid-point representations, and go back and
forth between “wave-number space” (the functional expansion) and “physical space” (the
grid-point representation) as the model runs.

Consider a function q(x, t) with one spatial dimension, x, and also time dependence.
We assume that q(x, t) is real and integrable. If the domain is periodic, with period L, we
can express the spatial structure of q(x, t) exactly by a Fourier series expansion:

q(x, t) =
∞

∑
k=−∞

q̂k (t)eikx. (22.1)

The complex coefficients q̂k (t) can be computed using

q̂k (t) =
1
L

x+L/2∫
x−L/2

q
(
x′, t
)

e−ikx′dx′. (22.2)

Recall that the proof of (22.1) and (22.2) involves use of the orthogonality condition
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1
L

x+L/2∫
x−L/2

e−ikx′eilx′dx′ = δk,l, (22.3)

where

δk, l ≡

 1, k = l

0, k 6= l
(22.4)

is the Kronecker delta. Eqs. (22.1) and (22.2) are a “transform pair.” They can be used to
go back and forth between physical space and wave-number space.

From (22.1), we see that the x-derivative of q satisfies

∂q
∂x

(x, t) =
∞

∑
k=−∞

ikq̂k (t)eikx. (22.5)

Inspection of (22.5) shows that ∂q
∂x does not receive a contribution from q̂0; the reason for

this should be clear.

A spectral model uses equations similar to (22.1), (22.2), and (22.5), but with a finite
set of wave numbers, and with x defined on a finite mesh:

q
(
x j, t
)∼= n

∑
k=−n

q̂k (t)eikx j , (22.6)

q̂k (t) =
1
M

M

∑
j=1

q
(
x j, t
)

e−ikx j ,−n≤ k ≤ n, (22.7)

∂q
∂x

(
x j, t
)∼= n

∑
k=−n

ikq̂k (t)eikx j . (22.8)
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The sums in (22.6) and (22.8) are truncated, in that they do not include wave numbers
outside the range ±n. The value of n is chosen by the modeler. Note that we have used
“approximately equal signs” in (22.6) and (22.8), but not in (22.7). The sum that appears
in (22.7) is over a grid with M points.

There should be some relationship between M and n, because M measures the amount
of information available on the grid, and n measures the amount of information available
in the spectral coefficients. Apart from the effects of round-off error, the transform (22.6)
is exactly reversible by the inverse transform (22.7), provided that M is large enough, i.e.,
provided that there are enough points on the grid. So how many points do we need? To see
the answer, substitute (22.6) into (22.7) to obtain

q̂k (t) =
1
M

M

∑
j=1

{[
n

∑
l=−n

q̂l (t)eilx j

]
e−ikx j

}
for −n≤ k ≤ n. (22.9)

This is, of course, a rather circular substitution, but the result serves to clarify some basic
ideas. If expanded, each term on the right-hand side of (22.9) involves the product of two
wave numbers, l and k, each of which lies in the range−n to n. The range for wave number
l is explicitly spelled out in the inner sum on the right-hand side of (22.9); the range for
wave number k is understood because, as indicated, we wish to evaluate the left-hand side
of (22.9) for k in the range −n to n. Because each term on the right-hand side of (22.9)
involves the product of two Fourier modes with wave numbers in the range −n to n, each
term includes wave numbers up to ±2n. We therefore need 2n+ 1 complex coefficients,
i.e., 2n+ 1 values of the q̂k (t). In general, this is the equivalent of 4n+ 2 real numbers,
suggesting that we need M ≥ 4n+2 in order to represent the real-valued function q

(
x j, t
)

on a grid.

The required value of M is actually much smaller, however, for the following reason.
Because q is assumed to be real, it turns out that

q̂−k = q̂∗k , (22.10)

where the ∗ denotes the conjugate. This helps because q̂−k and q̂∗k together involve only
two real numbers, rather than four. To see why (22.10) is true, consider the combined
contributions of the +k and −k coefficients to the sum in (22.6). Define Tk

(
x j, t
)

by
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Tk
(
x j, t
)
≡ q̂k (t)eikx j + q̂−k (t)e−ikx j

≡ Rkeiθ eikx j +R−keiµe−ikx j

= Rkei(θ+kx j) +R−kei(µ−kx j).

(22.11)

Here Rkeiθ ≡ q̂k (t) and R−keiµ ≡ q̂−k (t), where Rk and R−k are real and non-negative.
With this definition, we can rewrite (22.6) as

q
(
x j, t
)∼= n

∑
k=0

Tk
(
x j, t
)
. (22.12)

Our assumption that q
(
x j, t
)

is real, combined with the linear independence of distinct
Fourier modes, implies that the imaginary part of Tk

(
x j
)

must be zero, for all x j. With the
use of Euler’s formula, it follows that

Rk sin
(
θ + kx j

)
+R−k sin

(
µ− kx j

)
= 0 for all x j. (22.13)

The only way to satisfy (22.13) for all x j is to set,

Rk = R−k (22.14)

and

θ + kx j =−
(
µ− kx j

)
=−µ + kx j. (22.15)

From (22.15), we see that θ =−µ . Eq. (22.10) follows from (22.14) and (22.15).

As menionted above, because q̂k and q̂−k are complex conjugates of each other, they
involve only two distinct real numbers. If you know q̂k you can immediately write down
q̂−k. In addition, it follows from (22.10) that q̂0 is real. Therefore, the 2n+ 1 complex
values of q̂k actually embody the equivalent of only 2n+1 distinct real numbers, rather than
4n+ 2 real numbers. The Fourier representation up to wave number n is thus equivalent
to a representation of the real function q(x, t) using 2n+ 1 equally spaced grid points, in
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the sense that the information content is the same. We conclude that, in order to use a grid
of M points to represent the amplitudes and phases of all waves up to k = ±n, we need
M ≥ 2n+1; we can use a grid with more than 2n+1 points, but not fewer. If M = 2n+1,
the transform pair (22.6) - (22.7) is perfectly reversible.

As a simple example, a Fourier representation of q, including just wave numbers zero
and one, is equivalent to a grid-point representation of q using 3 grid points. The real values
of q assigned at the three grid points suffice to compute the coefficient of wave number zero
(i.e., the mean value of q) and the phase and amplitude (or “sine and cosine coefficients”)
of wave number one.

Substituting (22.7) into (22.8) gives

∂q
∂x

(
x j, t
)∼= n

∑
k=−n

[
ik
M

M

∑
l=1

q(xl, t)e−kxl

]
eikx j . (22.16)

Reversing the order of summation leads to

∂q
∂x

(
x j, t
)∼= M

∑
l=1

α
l
jq(xl, t) , (22.17)

where we define

α
l
j ≡

n

∑
k=−n

ik
M

eik(x j−xl). (22.18)

The point of this little exercise is that (22.17) can be interpreted as a finite-difference ap-
proximation. It is a member of the family of approximations discussed many times in this
course, but it is special in that it involves all grid points in the domain. From this point of
view, spectral models can be regarded as a class of finite-difference models.

XXX Add a discussion of Gibbs’ phenomenon.

22.2 Solving linear equations with the spectral method

Now consider the one-dimensional advection equation with a constant current, c:

∂q
∂ t

=−c
∂q
∂x

. (22.19)
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Substituting (22.6) and (22.8) into (22.19) gives

n

∑
k=−n

dq̂k

dt
eikx =−c

n

∑
k=−n

ikq̂keikx. (22.20)

By linear independence, we obtain

dq̂k

dt
=−ikcq̂k for −n≤ k ≤ n. (22.21)

Note that dq̂0
dt will be equal to zero; the interpretation of this should be clear. We can use

(22.21) to predict q̂k (t). When we need to know q
(
x j, t
)
, we can get it from (22.6).

Compare (22.21) with

dq̂k

dt
=−ikc

[
sin(k∆x)

k∆x

]
q̂k, (22.22)

which, as discussed in earlier chapters, is obtained by using centered second-order space
differencing. The spectral method gives the exact advection speed for each Fourier mode,
while the finite-difference method gives a slower value, especially for high wave num-
bers. Similarly, spectral methods give the exact phase speeds for linear waves propagating
through a uniform medium, while finite-difference methods generally underestimate the
phase speeds.

Keep in mind, however, that the spectral solution is not really exact, because only a
finite number of modes are kept. In addition, the spectral method does not give the exact
answer, even for individual Fourier modes, when the advection speed (or the phase speed)
is spatially variable.

Another strength of spectral methods is that they make it very easy to solve boundary
value problems. As an example, consider

∇
2q = f (x,y) , (22.23)

as a problem to determine q for given f (x,y). In one dimension, (22.23) becomes
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d2q
dx2 = f (x) . (22.24)

We assume periodic boundary conditions and compute the Fourier coefficients of both q
and f , using (22.7). Then (22.24) can be written as

n

∑
k=−n

(
−k2) q̂keikx =

n

∑
k=−n

f̂keikx, (22.25)

Invoking linear independence to equate coefficients of eikx, we find that

q̂k =
− f̂k

k2 for −n≤ k ≤ n (unless k = 0). (22.26)

Eq. (22.26) can be used to obtain q̂k, for k = 1,n. Then q(x) can be constructed using
(22.6). This completes the solution of (22.24), apart from the application of an additional
“boundary condition” to determine q̂0. The solution is exact for the modes that are in-
cluded; it is approximate because not all modes are included.

One issue with spectral models involves the representation of topography. In many
models, e.g., those that use the sigma coordinate, it is necessary to take horizontal deriva-
tives of the terrain height in order to evaluate the horizontal pressure gradient force. The
terrain heights have to be expanded to compute spectral coefficients, and of course the ex-
pansion is truncated at some finite wave number. With bumpy continents and flat oceans,
as schematically shown in Fig. 22.1, truncation leads to “bumpy” oceans. Various ap-
proaches have been suggested to alleviate this problem (Hoskins (1980); Navarra et al.
(1994); Bouteloup (1995); Holzer (1996); Lindberg and Broccoli (1996)).

Figure 22.1: The Earth is bumpy.
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22.3 Solving nonlinear equations with the spectral method

Now consider a nonlinear problem, such as momentum advection, i.e.,

∂u
∂ t

=−u
∂u
∂x

, (22.27)

again with a periodic domain. Fourier expansion gives

n

∑
k=−n

dûk

dt
eikx =−

(
n

∑
l=−n

ûleilx

)(
n

∑
m=−n

imûmeimx

)
. (22.28)

Our goal is to predict ûk (t) for k in the range −n to n. Wave numbers outside that range
are excluded by the definition of our chosen truncation. The right-hand-side of (22.28)
involves products of the form eilxeimx, where l and m are each in the range −n to n. These
products can generate “new” wave numbers, some of which lie outside the range −n to n.
Those that lie outside this range are simply neglected, i.e., they are not included when we
evaluate the left-hand side of (22.28).

For a given Fourier mode, (22.28) implies that

dûk

dt
=−

{
α

∑
l=−α

α

∑
m=−α

im
[
ûl ûmei(l+m)x

]}
e−ikx, for −n≤ k ≤ n. (22.29)

In (22.29), the quantity in curly braces involves sums over wave numbers and is therefore
defined at grid points. The summations on the right-hand side of (22.29) are over the range
±α .

In order to get the exact value of dûk
dt for all k in the range −n to n, we must choose α

large enough so that we pick up all possible combinations of l and m that lie in the range
−n to n. See Fig. 22.2. The circled Xs in the figure denote excluded triangular regions.
The number of points in each triangular region is

1+2+3 . . .+(n−1) =
n(n−1)

2
. (22.30)

The number of points retained is therefore given by
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Figure 22.2: Cartoon “table” of l +m, showing which (l,m) pairs can contribute to wave numbers
k in the range −n to n in Eq. (22.29). The pairs in the triangular regions marked by X ’s do not
contribute.

(2n+1)2−2
[

n(n−1)
2

]
=
(
4n2 +4n+1

)
−
(
n2−n

)
= 3n2 +5n+1.

(22.31)

This is the number of terms that must be evaluated inside the square brackets in (22.29).
The number of terms is thus of order n2, i.e., it grows very rapidly as n increases. As a
result, the amount of computation grows rapidly as n increases, and of course the problem
is “twice as hard” in two dimensions. At first, this poor scaling with problem size appeared
to make spectral methods prohibitively expensive for nonlinear (i.e., realistic) problems.
Note that the same issue would arise in a linear problem with spatially variable coefficients.

A way around this practical difficulty was proposed by Orszag, and independently by
Eliassen et al., both in 1970. They suggested a “transform method” in which (22.6) and
(22.8) are used to evaluate both u and ∂u

∂x on a grid. We then compute the product u∂u
∂x on

the grid, and transform the result back into wavenumber space.

We can obtain an exact result exact up to wave number n by making the number of grid
points used large enough to allow the exact representation, for wave numbers in the range
−n to n, of quadratic nonlinearities like u∂u

∂x . Of course, here “exact” means “exact up to
wave number n.” Because the solution is exact for wave numbers up to n, there is no error
for those wave numbers, and in particular, there is no aliasing error. Therefore, a model of
this type is not subject to aliasing instability arising from quadratic terms like u∂u

∂x . Aliasing
can still arise, however, from “cubic” or higher-order nonlinearities.
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To investigate the transform method, we proceed as follows. By analogy with (22.7),
we can write

̂(
u

∂u
∂x

)
k
=

1
M

M

∑
j=1

{[
u
(
x j
) ∂u

∂x

(
x j
)]

e−ikx j

}
,−n≤ k ≤ n. (22.32)

Here we are computing the spectral coefficients of the product u∂u
∂x , by starting from

u
(
x j
)

∂u
∂x

(
x j
)
, which is the grid-point representation of the same quantity. Using (22.6)

and (22.8), we can express u
(
x j
)

and ∂u
∂x

(
x j
)

in terms of Fourier series:

̂(
u

∂u
∂x

)
k
=

1
M

M

∑
j=1

[(
n

∑
l=−n

ûleilx j

)(
n

∑
m=−n

imûmeimx j

)
e−ikx j

]
,−n≤ k ≤ n. (22.33)

It is important to note that, in (22.33), the derivative, i.e., ∂u
∂x , has been computed using the

spectral method, rather than a grid-point method. The grid is being used to allow efficient
implementation of the spectral method.

Eq. (22.33) is analogous to (22.9). When expanded, each term on the right-hand side
of (22.33) involves the product of three Fourier modes (k, l, and m), and therefore includes
zonal wave numbers up to ±3n. We need 3n+1 complex coefficients to encompass wave
numbers up to ±3n. Because u∂u

∂x is real, those 3n+1 complex coefficients actually corre-
spond to 3n+1 independent real numbers. Therefore, we need

M ≥ 3n+1 (22.34)

grid points to represent u∂u
∂x exactly, up to wave number n. This is about 50% more than

the 2n+1 grid points needed to represent u itself exactly up to wave number n. This larger
grid is sometimes called a “non-aliasing” grid.

In practice, the transform method to solve (22.27) works as follows:

1. Initialize the spectral coefficients ûk, for −n ≤ k ≤ n. Of course, this would nor-
mally be done by using measurements of u to initialize u on a grid, and then using a
transform to obtain the spectral coefficients.

2. Evaluate both u and ∂u
∂x on a grid with M points, where M ≥ 3n+ 1. Here ∂u

∂x is
computed using the spectral method, i.e., Eq. (22.8), and the result obtained is used
to compute grid-point values of ∂u

∂x .
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3. Form the product u∂u
∂x on the grid.

4. Using (22.33), transform u∂u
∂x back into wave-number space, for −n ≤ k ≤ n. This

gives the coefficients
̂(
u∂u

∂x

)
k
.

5. Predict new values of the ûk, using dûk
dt =−

̂(
u∂u

∂x

)
k
.

6. Return to Step 2, and repeat this cycle as many times as desired.

Note that the grid-point representation of u contains more information (3n+1 real values)
than the spectral representation (2n+ 1 real values). For this one-dimensional example
the ratio is approximately 3/2. The additional information embodied in the grid-point rep-
resentation is thrown away in Step 4 above, when we transform from the grid back into
wave-number space. Therefore, the additional information is not “remembered” from one
time step to the next. In effect, we throw away about 1/3 of the information that is repre-
sented on the grid. This is the price that we pay to avoid errors (for wave numbers up to
±n) in the evaluation of quadratic nonlinearities.

As described above, the transform method uses a grid to evaluate quadratic nonlineari-
ties. The same grid is used to implement complicated and often highly nonlinear physical
parameterizations. The transform method was revolutionary; it made spectral models a
practical possibility.

22.4 Spectral methods on the sphere

Spectral methods on the sphere were first advocated by Silberman (1954). A function F
that is defined on the sphere can be represented by

F (λ ,ϕ) =
∞

∑
m=−∞

∞

∑
n=|m|

Fm
n Y m

n (λ ,ϕ), (22.35)

where the

Y m
n (λ ,ϕ) = eimλ Pm

n (sinϕ) (22.36)

are spherical harmonics, and the Pm
n (sinϕ) are the associated Legendre functions of the

first kind, which satisfy
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Pm
n (sinϕ) =

(2n)!
2nn!(n−m)!

(
1− x2)m

2

[
xn−m− (n−m)(n−m−1)

2(2n−1)
xn−m−2

+
(n−m)(n−m−1)(n−m−2)(n−m−3)

2 ·4(2n−1)(2n−3)
xn−m−4− . . .

]
.

(22.37)

Here m is the zonal wave number and n−m is the “meridional nodal number.” As dis-
cussed in the Appendix on spherical harmonics, it has to be true that n≥ m. The spherical
harmonics Yn

m are the eigenfunctions of the Laplacian on the sphere:

∇
2Y m

n =
−n(n+1)

a2 Y m
n . (22.38)

Here a is the radius of the sphere. See the Appendix for further explanation.

We can approximate F by a truncated sum:

F̄ =
M

∑
m=−M

N(m)

∑
n=|m|

Fm
n Y m

n . (22.39)

Here the overbar indicates that F̄ is an approximation to F . Recall that m is the zonal wave
number. In (22.39), the sum over m from −M to M ensures that F̄ is real. The choice of
N(m) is discussed below. For smooth F , F̄ converges to F very quickly, in the sense that
the root-mean-square error decreases quickly towards zero.

Why should we expand our variables in terms of the eigenfunctions of the Laplacian on
the sphere? The Fourier representation discussed earlier is also based on the eigenfunctions
of the Laplacian, in just one dimension, i.e., sines and cosines. There are infinitely many
differential operators. What is so special about the Laplacian? A justification is that:

• The Laplacian can be defined without reference to any coordinate system;

• The Laplacian consumes scalars and returns scalars, unlike, for example, the gradi-
ent, the curl, or the divergence;

• The Laplacian is isotropic, i.e., it does not favor any particular direction on the
sphere;

• The Laplacian is simple.
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How should we choose N(m)? This is called the problem of truncation. The two best-
known possibilities are rhomboidal truncation and triangular truncation. In both cases, we
can choose the value of M, i.e., the highest zonal wave number to be included in the model,
and the value of N follows.

Rhomboidal truncation: N = M+ |m| , and (22.40)

Triangular truncation: N = M. (22.41)

Figure 22.3: Rhomboidal and triangular truncation, both illustrated for the case M = 4. From Jarraud
and Simmons (1983). In both cases, n≥ m. For a given value of M, rhomboidal truncation includes
more spherical harmonics than triangular truncation.

Rhomboidal and triangular truncation are illustrated in Fig. 22.3. With rhomboidal trun-
cation, the value of N (the maximum value of n to be included in the sum) increases with
the value of m, in such a way that the highest meridional nodal number is the same for all
values of m. In the case of triangular truncation, the “two-dimensional wave number” N is
a the same for all of the spherical harmonics that are included in the model, so the highest
meridional nodal number is smaller for the larger values of m.

The figure also shows that, for a given value of M, rhomboidal truncation includes
more spectral coefficients than triangular truncation. The numbers of complex coefficients
needed are

(M+1)2 +M2 +M for rhomboidal truncation, (22.42)
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and

(M+1)2 for triangular truncation. (22.43)

You can count the x’s in Fig. 22.3 to persuade yourself that these formulas are correct.

Finally, the figure shows that, with both types of truncation, choosing the value of M is
enough to determine which spectral coefficients are included. It is conventional to designate
the resolution of a spectral model by designating the type of truncation by “R” or “T,” and
appending the value of M, as in “T106.” The equivalent grid-point resolution is discussed
later in this chapter.

Triangular truncation has the beautiful property that it is not tied to a coordinate system,
in the following sense: In order to actually perform a spherical harmonic transform, it is
necessary to adopt a spherical coordinate system (λ ,ϕ). There are, of course, infinitely
many such systems, which differ in the orientations of their poles. There is no reason,
in principle, that the coordinates have to be chosen in the conventional way, in which the
poles of the coordinate system coincide with the Earth’s poles of rotation. The choice of a
particular spherical coordinate system is, therefore, somewhat arbitrary. Suppose that we
are given an analytical function on the sphere. We choose two different spherical coordinate
systems (tilted with respect to one another in an arbitrary way), perform a triangularly
truncated expansion in both, and then transform the results back to physical space. It can
be shown that the two results will be identical, i.e.,

F̄ (λ1,ϕ1) = F̄ (λ2,ϕ2) , (22.44)

where the subscripts indicate alternative spherical coordinate systems. This means that the
arbitrary orientations of the spherical coordinate systems used have no effect whatsoever
on the results obtained. The coordinate system used “disappears” at the end. Triangular
truncation is very widely used today, in part because of this nice property, which is not
shared by rhomboidal truncation.

As shown in Fig. 22.4, triangular truncation represents the observed kinetic energy
spectrum more efficiently than does rhomboidal truncation (Baer (1972)). The thick lines
in the figure show the observed kinetic energy percentage that comes from each component.
The thin, straight, diagonal lines show the modes kept with triangular truncation. With
rhomboidal truncation the thin lines would be horizontal, and more modes would be kept,
but they would not add much useful information.
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22.5 Spherical harmonic transforms

In order to use (22.39) we need a “spherical harmonic transform,” analogous to a Fourier
transform. From (22.36), we see that a spherical harmonic transform is equivalent to the
combination of a Fourier transform and a Legendre transform. The Legendre transform is
formulated using a classical method called “Gaussian quadrature.” The idea is as follows.
Suppose that we are given a function f (x) defined on the interval −1≤ x≤ 1, and we wish
to evaluate

I =
1∫
−1

f (x)dx, (22.45)

by a numerical method. If f (x) is defined at a finite number of points, denoted by x j, then

I ∼=
N

∑
i=1

f (xi)wi, (22.46)

where the wi are “weights.”

Consider the special case in which f (x) is itself a weighted sum of Legendre polynomi-
als, as in a Legendre transform. We want the transform to be “exact,” within the round-off
error of the machine, so that we can recover f (x) without error. Gauss showed that for
such a case (22.44) gives the exact value of I, provided that the xi are chosen to be the
roots of the highest Legendre polynomial used, i.e., the latitudes where the highest Leg-
endre polynomial passes through zero. In other words, we can use (22.44) to evaluate the
integral (22.43) exactly, provided that we choose the latitudes so that they are the roots of
the highest Legendre polynomial used. These latitudes can be found by a variety of iter-
ative methods, and of course this only has to be done once, before the model is run. The
Gaussian quadrature algorithm is used to perform the Legendre transform.

With the transform method described earlier, the number of grid points needed to avoid
errors in the evalution of quadratic nonlinearities exceeds the number of degrees of freedom
in the spectral representation. The number of grid points around a latitude circle must be
≥ 3M +1. The number of latitude circles must be ≥ (3M+1)

2 for triangular truncation, and

so the total number of grid points needed is ≥ (3M+1)2

2 . Referring back to (22.46), we see
that, for large M, the grid representation uses about 2.25 times as many equivalent real
numbers as the triangularly truncated spectral representation. A similar conclusion holds
for rhomboidal truncation. The physics is often computed on a “nonaliasing grid,” but
doing so is wasteful.
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Figure 22.4: Percentage of total kinetic energy in each spectral component. From Jarraud and
Simmons (1983), based on Baer (1972).

22.6 How it works

In summary, the spectral transform method as applied to global models works as follows:

First, we choose a spectral truncation, e.g., T42. Then we identify the number of grid
points needed in the longitudinal and latitudinal directions, perhaps with a view to avoiding
aliasing due to quadratic nonlinearities. Next, we identify the highest degree Legendre
polynomial needed with the chosen spectral truncation, and find the latitudes where the
roots of that polynomial occur. These are called the “Gaussian latitudes.” At this point, we
can set up our “Gaussian grid.”

The horizontal derivatives are evaluated in the spectral domain, essentially through
“multiplication by wave number.” When we transform from the spectral domain to the
grid, we combine an inverse fast Fourier transform with an inverse Legendre transform.
The nonlinear terms and the model physics are computed on the grid. Then we use the
Legendre and Fourier transforms to return to the spectral domain. The basic logic of this
procedure is the very similar to that described earlier for the simple one-dimensional case.

We have a fast Fourier transform, but no one has yet discovered a “fast Legendre trans-
form,” although some recent work points towards one. Lacking a fast Legendre transform,
the operation count for a spectral model is of O

(
N3), where N is the number of spheri-

cal harmonics used. Finite-difference methods are, in effect, of O
(
N2). This means that

spectral models become increasingly expensive, relative to grid-point models, at high res-
olution. Further comments are given later in this chapter.
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22.7 Semi-implicit time differencing

As we have already discussed in Chapters 5 and 8, gravity waves limit the time step that
can be used in a primitive-equation (or shallow water) model. A way to get around this is
to use semi-implicit time differencing, in which the “gravity wave terms” of the equations
are treated implicitly, while the other terms are treated explicitly. This can be accomplished
much more easily in a spectral model than in a finite-difference model.

A detailed discussion of this approach will not be given here, but the basic ideas are
as follows. The relevant terms are the pressure-gradient terms of the horizontal equations
of motion, and the mass convergence term of the continuity equation. These are the same
terms that we focused on in the discussion of the pole problem, in Chapter 16. The terms
involve horizontal derivatives of the “height field” and the winds, respectively. Typically
the Coriolis terms are also included, so that the waves in question are inertia-gravity waves.

Consider a finite-difference model. If we implicitly difference the gravity-wave terms,
the resulting equations will involve the “n+ 1” time-level values of the heights and the
winds at multiple grid points in the horizontal. This means that we must solve simulta-
neously for the “new” values of the heights and winds. Such problems can be solved, of
course, but they can be computationally expensive. For this reason, most finite-difference
models do not use semi-implicit time differencing.

In spectral models, on the other hand, we prognose the spectral coefficients of the
heights and winds, and so we can apply the gradient and divergence operators simply by
multiplying by wave number (roughly speaking). This is a “local” operation in wave-
number space, so it is not necessary to solve a system of simultaneous equations.

The use of semi-implicit time differencing allows spectral models to take time steps
several times longer than those of (explicit) grid-point models. This is a major advantage
in terms of computational speed, which compensates, to some extent, for the expense of
the spectral transform.

22.8 Conservation properties and computational stability

Because the spectral transform method prevents aliasing for quadratic nonlinearities, but
not cubic nonlinearities, spectral models are formulated so that the highest nonlinearities
that appear in the equations (other than in the physical parameterizations) are quadratic.
This means that the equations must be written in advective form, rather than flux form. As
a result, spectral models do not exactly conserve anything - not even mass - for a general,
divergent flow.

It can be shown, however, that in the limit of two-dimensional non-divergent flow,
spectral models do conserve kinetic energy and enstrophy. Because of this property, they
are well behaved computationally. Nevertheless, all spectral models need some artificial
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diffusive damping to avoid computational instability. In contrast, it is possible to formulate
finite-difference models that are very highly conservative and can run indefinitely with no
artificial damping at all.

22.9 The “equivalent grid resolution” of spectral models

Laprise (1992) distinguishes four possible ways to answer the following very natural ques-
tion: “What is the equivalent grid-spacing of a spectral model?”

1. One might argue that the effective grid spacing of a spectral model is the average
distance between latitudes on the Gaussian grid. With triangular truncation, this
is the same as the spacing between longitudes at the Equator, which is L1 =

2πa
3M+1 .

Given the radius of the Earth, and using units of thousands of kilometers, this is
equivalent to 13.5/M. For a T31 model (with M = 31), we get L1 ∼= 425 km. An
objection to this measure is that, as discussed above, much of the information on the
Gaussian grid is thrown away when we transform back into spectral space.

2. A second possible measure of resolution is half the wavelength of the shortest re-
solved zonal wave at the Equator, which is L2 = πa

M , or about 20/M in units of
thousands of kilometers. For a T31 model, L2 ∼= 650 km.

3. A third method is based on the idea that the spectral coefficients, which are the prog-
nostic variables of the spectral model, can be thought of as a certain number of real
variables per unit area, distributed over the Earth. A triangularly truncated model
has the equivalent of (M+1)2 real coefficients. The corresponding resolution is then

L3 =

√
4πa2

(M+1)2 =
2
√

πa
M+1 , which works out to about 725 km for a T31 model.

4. A fourth measure of resolution is based on the equivalent total wave number associ-
ated with the Laplacian operator, for the highest mode. The square of this total wave
number is K2 = M(M+1)

2a2 . Suppose that we equate this to the square of the equiva-
lent total wave number on a square grid, i.e. K2 = kx

2 + ky
2, and let kx = ky = k for

simplicity. One half of the corresponding wavelength is L4 = π

k =
√

2πa
M , which is

equivalent to 28.3/M in units of thousands of kilometers. For a T31 model this gives
about 900 km.

These four measures of spectral resolution range over more than a factor of two. The
measure that makes a spectral model “look good” is L1, and so it is not surprising that
spectral modelers almost always use it when specifying the equivalent grid spacing of their
models.
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22.10 Physical parameterizations

Because most physical parameterizations are highly nonlinear, spectral models evaluate
such things as convective heating rates, turbulent exchanges with the Earth’s surface, and
radiative transfer on their Gaussian grids. The tendencies due to these parameterizations are
then applied to the prognostic variables, which are promptly transformed into wave-number
space.

Recall that when this transform is done, the spectral representation contains less in-
formation than is present on the grid, due to the spectral truncation used to avoid aliasing
due to quadratic nonlinearities. This means that if the fields were immediately transformed
back onto the grid (without any changes due, e.g., to advection), the physics would not
“see” the fields that it had just finished with. Instead, it would see spectrally truncated
versions of these fields.

For example, suppose that the physics package includes a convective adjustment that
is supposed to modify the soundings of convectively unstable columns so as to remove
the convective instability. Suppose further that on a certain time step this parameterization
has done its work, removing all instability as seen on the Gaussian grid. After spectral
truncation, some convective instability may re-appear, even though “physically” nothing
has happened!

In effect, the spectral truncation that is inserted between the grid domain and the spec-
tral domain prevents the physical parameterizations from doing their work properly. This
is a problem for all spectral models. It is not an issue when the physics is evaluated on a
“linear” grid that has the same number of degrees of freedom as the spectral representation.

22.11 Moisture advection

The mixing ratio of water vapor is non-negative. In Chapter 5, we discussed the possibility
of spurious negative mixing ratios caused by dispersion errors in finite-difference schemes,
and we also discussed the families of finite-difference advection schemes that are “sign-
preserving” and do not suffer from this problem.

Spectral models have a very strong tendency to produce negative water vapor mixing
ratios (e.g., Williamson and Rasch (1994)). In the global mean, the rate at which “negative
water” is produced can be a significant fraction of the globally averaged precipitation rate.
Negative water vapor mixing ratios can occur not only locally on individual time steps, but
even in zonal averages that have been time-averaged over a month.

Because of this very serious problem, many spectral models are now using monotone
semi-Lagrangian methods for advection (e.g. Williamson and Olson (1994)). This means
that they are only “partly spectral.”
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22.12 Linear grids

When non-spectral methods are used to evaluate the nonlinear advection terms, the motiva-
tion for using the high-resolution, non-aliasing grid disappears. Such models can then use
a coarser “linear grid,” with the same number of grid points as the number of independent
real coefficients in the spectral representation. The physics is of course evaluated on the
same linear grid. Linear grids lead greatly reduce the computational cost of a model.

22.13 Reduced linear grids

The cost of the spherical-harmonic transforms can be reduced by decreasing the numbers
of grid points around latitude circles, near the poles (Hortal and Simmons (1991)). Recall
from an earlier chapter that a similar idea was tried with grid point methods. The approach
works with spectral methods because with high resolution the spectral coefficients corre-
sponding to the largest values of m are very close to zero near on the poles.

22.14 Summary

In summary, the spectral method has both strengths and weaknesses:

Strengths:

• Especially with triangular truncation, it eliminates the “pole problem” associated
with wave propagation, although it does not elimiinate the pole problem for zonal
advection.

• It gives the exact phase speeds for linear waves and advection by a constant current
such as solid-body rotation.

• It converges very rapidly, in the sense that it can give good results with just a few
modes.

• Semi-implicit time-differencing schemes are easily implemented in spectral models.

Weaknesses:

• Spectral models do not exactly conserve anything - not even mass.

• Partly because of failure to conserve the mass-weighted total energy, artificial damp-
ing is needed to maintain computational stability.

• Spectral models have bumpy oceans.

• Because of truncation in the transform method, physical parameterizations do not
always have the intended effect.

• Moisture advection does not work well in the spectral domain.

428



Revised Monday 23rd August, 2021 at 15:57

• At high resolution, spectral methods are computationally expensive compared to grid
point models.

22.15 Problems

1. Write subroutines to compute Fourier transforms and inverse transforms, for arbi-
trary complex q

(
x j
)
. The number of waves to be included in the transform, and the

number of grid points to be used in the inverse transform, should be set through the
argument lists of subroutines. Let

q
(
x j
)
= 14cos

(
k0x j

)
+6icos

(
k1x j

)
+5, (22.47)

where

k0 =
2π

L0
and L0 =

X
4
,

k1 =
2π

L1
and L1 =

X
8
.

(22.48)

Here X is the size of the periodic domain. Compute the Fourier coefficients starting
from values of x j on a grid of M points, for M = 3, M = 9, M = 17, and M = 101.
Discuss your results.

2. Consider a periodic step function, defined by

H (x) =−1when the integer part of x is odd,

H (x) = +1when the integer part of x is even.
(22.49)

With this definition, H (x) is discontinuous at integer points on the real line, and
infinitely differentiable elsewhere. Sample H (x) on the domain −1 ≤ x ≤ 1, using
M evenly spaced points, for M = 11, M = 101, and M = 1001, and feel free to go to
larger values if you like. Plot the results for−1≤ x≤ 1, for each value of M. Discuss
in terms of the Gibbs phenomenon.

3. For the transform method with a one-dimensional problem, many grid points would
be needed to give the exact answer up to wave number n for the case of cubic non-
linearities?
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4. You are given the values of u at 21 points, as listed below:

1,2,4,5,4,3,4,7,8,5,3,1,−1,−3,−4,−3,−4,−2,−1,−1,0

The points are 1000 km apart, and the domain is periodic. In the following sub-
problems, use n = 10.

(a) List the spectral coefficients of u and ∂u
∂x .

(b) Work out the numerical values of the finite-difference coefficients that appear
in Eq. (22.17).

(c) Show a plot that compares ∂u
∂x obtained using the spectral method with the cor-

responding result based on second-order centered finite-differences.

(d) Compute −u∂u
∂x with both the direct method (22.28) and the transform method.

Do the two methods agree?
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Chapter 23

Finite-Element Methods

An explanation of finite-element methods.

a+b = c. (23.1)

Figure 23.1: A figure about finite-element methods.

Our goal is

(2n+1)2−2
[

n(n−1)
2

]
=
(
4n2 +4n+1

)
−
(
n2−n

)
= 3n2 +5n+1.

(23.2)

Last bit of text.

23.1 Problems

1. Write subroutines to compute Fourier Let

a = b+ c. (23.3)
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2. Consider a periodic step function, defined by
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Chapter 24

Concluding discussion

The end
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Appendix A

A Demonstration that the Fourth-Order Runge-Kutta
Scheme Really Does Have Fourth-Order Accuracy

We wish to obtain an approximate numerical solution of the ordinary differential equation

dq
dt

= f (q, t) . (A.1)

Here, as indicated, the function f depends on both q and t, but q itself depends only on t.

As discussed earlier, the fourth-order Runge-Kutta scheme is given by

qn+1−qn

∆t
=

1
6
(k1,+2k2 +2k3 + k4) , (A.2)

where

k1 = f (qn,n∆t) ,

k2 = f
[

qn +
k1∆t

2
,

(
n+

1
2

)
∆t
]
,

k3 = f
[

qn +
k2∆t

2
,

(
n+

1
2

)
∆t
]
,

k4 = f [qn + k3∆t,(n+1)∆t] .

(A.3)
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To demonstrate that A.2 has fourth-order accuracy, we substitute the exact solution into
A.2 - A.3, and rearrange the result, to obtain

qn+1−qn

∆t
− 1

6
(k1,+2k2 +2k3 + k4) = ε (A.4)

where ε is the discretization error of the scheme.

Taylor-series expansion allows us to write

qn+1−qn

∆t
=

dq
dt

+
1
2!

(∆t)
d2q
dt2 +

1
3!
(∆t)2 d3q

dt3 +
1
4!
(∆t)3 d4q

dt4 +O
[
(∆t)4

]
. (A.5)

Each term on the right-hand side of of A.5 can be expressed in terms of f (q, t) and its
derivatives, as follows. The total time rate of change of an arbitrary function A(q, t) that
depends on both q and t is given by

dA
dt
≡ ∂A

∂ t
dt
dt

+
∂A
∂q

dq
dt

=
∂A
∂ t

+ f
∂A
∂q

≡ δ (A) .

(A.6)

Here a partial derivative with respect to t is taken while holding q constant, and vice versa.
As a special case of A.6,

δ f ≡ ∂ f
∂ t

+ f
∂ f
∂q

. (A.7)

We can now write

dq
dt

= f , (A.8)
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d2q
dt2 = δ f , (A.9)

and

d3q
dt3 = δ (δ f )

=

[
∂

∂q

(
∂ f
∂q

)
dq
dt

+
∂

∂ t

(
∂ f
∂q

)]
f +
(

∂ f
∂q

)
(δ f )+

∂

∂q

(
∂ f
∂ t

)
dq
dt

+
∂ 2 f
∂ t2

=

[
∂

∂q

(
∂ f
∂q

)
f +

∂

∂ t

(
∂ f
∂q

)]
f +
(

∂ f
∂q

)
(δ f )+

∂

∂q

(
∂ f
∂ t

)
f +

∂ 2 f
∂ t2

=

[
∂

∂q

(
∂ f
∂q

)
f +

∂

∂q

(
∂ f
∂ t

)]
f +
(

∂ f
∂q

)
(δ f )+

∂

∂q

(
∂ f
∂ t

)
f +

∂ 2 f
∂ t2

=
∂

∂q

(
∂ f
∂q

)
f 2 +2 f

∂

∂q

(
∂ f
∂ t

)
+

(
∂ f
∂q

)
(δ f )+

∂ 2 f
∂ t2

= f 2
(

∂ 2 f
∂q2

)
+2 f

∂

∂q

(
∂ f
∂ t

)
+

∂ 2 f
∂ t2 +

(
∂ f
∂q

)
(δ f )

=

(
f

∂

∂q
+

∂

∂ t

)2

f +
(

∂ f
∂q

)
(δ f ) ,

(A.10)

so that

d3q
dt3 =

(
δ

2 f
)
+ fq (δ f ) . (A.11)

Here we have used the notation fq ≡ ∂ f
∂q . Finally, d4q

dt4 is given by
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d4q
dt4 = δ

[(
δ

2 f
)
+ fq (δ f )

]
=

[
f

∂

∂q

(
δ

2 f
)
+

∂

∂ t

(
δ

2 f
)]

+

[
f

∂

∂q

(
fq
)
+

∂

∂ t

(
fq
)]

(δ f )+ fq

[
f

∂

∂q
(δ f )+

∂

∂ t
(δ f )

]
.

(A.12)

This is a bit messy. To break the analysis of A.12 into steps, we first manipulate the first
term in square brackets, separately. Expanding, we find that

f
∂

∂q

(
δ

2 f
)
+

∂

∂ t

(
δ

2 f
)

= f
∂

∂q

[
f 2
(

∂ 2 f
∂q2

)
+2 f

∂

∂q

(
∂ f
∂ t

)
+

∂ 2 f
∂ t2

]
+

∂

∂ t

[
f 2
(

∂ 2 f
∂q2

)
+2 f

∂

∂q

(
∂ f
∂ t

)
+

∂ 2 f
∂ t2

]

= f
[

2 f
∂ f
∂q

(
∂ 2 f
∂q2

)
+ f 2

(
∂ 3 f
∂q3

)
+2

∂ f
∂q

(
∂ 2 f
∂q∂ t

)
+2 f

(
∂ 3 f

∂q2∂ t

)
+

(
∂ 3 f

∂ t2∂q

)]

+2 f
∂ f
∂ t

(
∂ 2 f
∂q2

)
+ f 2

(
∂ 3 f

∂q2∂ t

)
+2
(

∂ f
∂ t

)(
∂ 2 f
∂q∂ t

)
+2 f

(
∂ 3 f

∂ t2∂q

)
+

∂ 3 f
∂ t3

(A.13)

The terms can be collected and grouped as follows:

f
∂

∂q

(
δ

2 f
)
+

∂

∂ t

(
δ

2 f
)
=

[
f 3
(

∂ 3 f
∂q3

)
+3 f 2

(
∂ 3 f

∂q2∂ t

)
+3 f

(
∂ 3 f

∂ t2∂q

)
+

∂ 3 f
∂ t3

]

+ f
[

2 f
∂ f
∂q

(
∂ 2 f
∂q2

)
+2

∂ f
∂q

(
∂ 2 f
∂q∂ t

)]
+2 f

∂ f
∂ t

(
∂ 2 f
∂q2

)
+2
(

∂ f
∂ t

)(
∂ 2 f
∂q∂ t

)
= δ

3 f +2(δ f )
(
δ fq
)
.

(A.14)

Substituting into A.2, we find that
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d4q
dt4 =

[
f

∂

∂q

(
δ

2 f
)
+

∂

∂ t

(
δ

2 f
)]

+

[
f

∂

∂q
( fq)+

∂

∂ t
( fq)

]
(δ f )+ fq

[
f

∂

∂q
(δ f )+

∂

∂ t
(δ f )

]

=
[(

δ
3 f
)
+2(δ f )(δ fq)

]
+(δ fq)(δ f )+ fq

{
f

∂

∂q

[
f ( fq)+

∂ f
∂ t

]
+

∂

∂ t

[
f ( fq)+

∂ f
∂ t

]}

=
(
δ

3 f
)
+3(δ f )(δ fq)+ fq

[(
f

∂ f
∂q

)
( fq)+ f

(
f

∂ fq

∂q

)
+ f

∂

∂q

(
∂ f
∂ t

)
+

(
∂ f
∂ t

)
( fq)+ f

∂ fq

∂ t
+

∂ 2 f
∂ t2

]

=
(
δ

3 f
)
+3(δ fq)(δ f )+( fq)

2
(

f
∂ f
∂q

+
∂ f
∂ t

)
+ fq

[
f
(

f
∂ fq

∂q

)
+ f

∂

∂q

(
∂ f
∂ t

)
+ f

∂ fq

∂ t
+

∂ 2 f
∂ t2

]

=
(
δ

3 f
)
+3(δ fq)(δ f )+( fq)

2 (δ f )+ fq

[
f
(

f
∂ fq

∂q

)
+2 f

∂ fq

∂ t
+

∂ 2 f
∂ t2

]
,

(A.15)

which can be written as

d4q
dt4 =

(
δ

3 f
)
+3
(
δ fq
)
(δ f )+

(
fq
)2
(δ f )+ fq

(
δ

2 f
)
. (A.16)

Next, we express k1 - k4 in terms of f (q, t) and its derivatives. We write

k1 = f , (A.17)

and

k2 = f
[

qn + k1
∆t
2
,

(
n+

1
2

)
∆t
]

= f +
[(

∆t
2

)(
f

∂

∂q
+

∂

∂ t

)]
f

+
1
2!

[(
∆t
2

)(
f

∂

∂q
+

∂

∂ t

)]2

f +
1
3!

[(
∆t
2

)(
f

∂

∂q
+

∂

∂ t

)]3

f +O
[
(∆t)4

]
,

(A.18)

which is equivalent to
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k2 = f +
(

∆t
2

)
δ f +

1
2!

(
∆t
2

)2

δ
2 f +

1
3!

(
∆t
2

)3

δ
3 f +O

[
(∆t)4

]
(A.19)

Here we have used a two-dimensional Taylor’s series expansion, because we have two
independent variables, namely q and t. Similarly,

k3 = f
[

qn + k2
∆t
2
,

(
n+

1
2

)
∆t
]

= f +
[

∆t
2

(
k2

∂

∂q
+

∂

∂ t

)]
f +

1
2!

[
∆t
2

(
k2

∂

∂q
+

∂

∂ t

)]2

f

+
1
3!

[
∆t
2

(
k2

∂

∂q
+

∂

∂ t

)]3

f +O
[
(∆t)4

]
.

(A.20)

From A.6 and A.20, we see that

k2
∂

∂q
+

∂

∂ t
= δ +

[(
∆t
2

)
δ f +

1
2!

(
∆t
2

)2

δ
2 f +

1
3!

(
∆t
2

)3

δ
3 f

]
∂

∂q
+O

[
(∆t)4

]
. (A.21)

Substituting A.9 into A.10, we obtain

k3 = f +
(

∆t
2

){
δ f +

[(
∆t
2

)
δ f +

1
2!

(
∆t
2

)2 (
δ

2 f
)] ∂ f

∂q

}

+
1
2!

(
∆t
2

)2[
δ f +

(
∆t
2

)
δ f

∂

∂q

]2

f +
1
3!

(
∆t
2

)3 (
δ

3 f
)
+O

[
(∆t)4

]
.

(A.22)

Expand, and combine terms:
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k3 = f +
(

∆t
2

){
δ f +

[(
∆t
2

)
δ f +

1
2!

(
∆t
2

)2 (
δ

2 f
)]

fq

}

+
1
2!

(
∆t
2

)2{
∆t (δ f )

(
δ fq
)
+
(
δ

2 f
)
+O

[
(∆t)2

]}
+

1
3!

(
∆t
2

)3 (
δ

3 f
)
+O

[
(∆t)4

]
= f +

(
∆t
2

){
δ f +

[(
∆t
2

)
δ f +

1
2!

(
∆t
2

)2 (
δ

2 f
)]

fq

}

+
1
2!

(
∆t
2

)2 [
∆t (δ f )

(
δ fq
)
+
(
δ

2 f
)]

+
1
3!

(
∆t
2

)3 (
δ

3 f
)
+O

[
(∆t)4

]
.

(A.23)

Here we have included only the terms of k2 that contribute up to O
[
(∆t)3

]
; the remaining

terms have been tossed onto the O
[
(∆t)4

]
pile at the end of A.23. Collecting powers of ∆t,

we conclude that

k3 = f +∆t
(

δ f
2

)
+

(∆t)2

2!

[
(δ f ) fq

2
+

δ 2 f
4

]

+
(∆t)3

3!

[
3
(
δ 2 f

)
fq

8
+

3(δ f )
(
δ fq
)

4
+

(
δ 3 f

)
8

]
+O

[
(∆t)4

] . (A.24)

It remains to assemble k4. We start with the two-dimensional Taylor series expansion:

k4 = f [qn + k3∆t,(n+1)∆t]

= f +∆t
(

k3
∂

∂q
+

∂

∂ t

)
f +

1
2!

[
∆t
(

k3
∂

∂q
+

∂

∂ t

)]2

f +
1
3!

[
∆t
(

k3
∂

∂q
+

∂

∂ t

)]3

f +O
[
(∆t)4

]
.

(A.25)

Next, use A.6 and A.14 to write

440



Revised Monday 23rd August, 2021 at 15:57

k3
∂

∂q
+

∂

∂ t
=

δ +

{
∆t
(

δ f
2

)
+

(∆t)2

2!

[
(δ f ) fq

2
+

δ 2 f
4

]
+

(∆t)3

3!

[
3
(
δ 2 f

)
fq

8
+

3(δ f )
(
δ fq
)

4
+

(
δ 3 f

)
8

]}
∂

∂q
+O

[
(∆t)4

]
.

(A.26)

Substituting A.26 into A.25, we obtain

k4 = f +∆t

{
δ f +∆t

(
δ f
2

)
fq +

(∆t)2

2!

[
(δ f ) fq

2
+

δ 2 f
4

]
fq

}

+
(∆t)2

2!

[
δ +∆t

(
δ f
2

)
∂

∂q

]2

f +
(∆t)3

3!
(
δ

3 f
)
+O

[
(∆t)4

]

= f +∆t

{
δ f +∆t

(
δ f
2

)
fq +

(∆t)2

2!

[
(δ f ) fq

2
+

δ 2 f
4

]
fq

}

+
(∆t)2

2!

{[(
δ

2 f
)
+∆t (δ f )(δ fq)

]
+O

[
(∆t)2

]}
+

(∆t)3

3!
(
δ

3 f
)
+O

[
(∆t)4

]
= f +∆t

{
δ f +∆t

(
δ f
2

)
fq +

(∆t)2

2!

[
(δ f ) fq

2
+

δ 2 f
4

]
fq

}

+
(∆t)2

2!
[(

δ
2 f
)
+∆t (δ f )(δ fq)

]
+

(∆t)3

3!
(
δ

3 f
)
+O

[
(∆t)4

]
.

(A.27)

As before, we have written only terms that contribute up to O
[
(∆t)3

]
. Now collect powers

of ∆t:

k4 = f +(∆t)δ f +
(∆t)2

2!
[
(δ f ) fq +

(
δ

2 f
)]

+
(∆t)3

3!

[
3(δ f )

(
fq
)2

2
+

3
(
δ 2 f

)
fq

4
+3(δ f )

(
δ fq
)
+
(
δ

3 f
)]

+O
[
(∆t)4

]
.

(A.28)
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The final step is to substitute the various boxed relations above into A.4. Everything
cancels out, and we are left with ε = O

[
(∆t)4

]
. This completes the proof.
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Appendix B

Vectors, Coordinates, and Coordinate Transformations

B.1 Physical laws and coordinate systems

For the present discussion, we define a “coordinate system” as a tool for describing po-
sitions in space. Coordinate systems are human inventions, and therefore are not part of
physics, although they can be used in a discussion of physics. For obvious reasons, spheri-
cal coordinates are particularly useful in geophysics.

Any physical law should be expressible in a form that is invariant with respect to our
choice of coordinate systems; we certainly do not expect that the laws of physics change
when we switch from spherical coordinates to cartesian coordinates! It follows that we
should be able to express physical laws without making reference to any coordinate system.
Nevertheless, it is useful to understand how physical laws can be expressed in different
coordinate systems, and in particular how various quantities “transform” as we change
from one coordinate system to another.

B.2 Scalars, vectors, and tensors

Tensors can be defined without reference to any particular coordinate system. A tensor is
simply “out there,” and has a meaning that is the same whether we happen to be working
in spherical coordinates, or Cartesian coordinates, or whatever. Tensors are, therefore, just
what we need to formulate physical laws.

The simplest kind of tensor, called a “tensor of rank 0,” is a scalar, which is represented
by a single number – essentially a magnitude with no direction. An example of a scalar is
temperature. Not all quantities that are represented by a single number are scalars, because
not all of them are defined without reference to any particular coordinate system. An ex-
ample of a (single) number that is not a scalar is the longitudinal component of the wind,
which is defined with respect to a particular coordinate system, i.e., spherical coordinates.

A scalar is expressed in exactly the same way regardless of what coordinate system
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may be in use to describe non-scalars in a problem. For example, if someone tells you
the temperature in Fort Collins, you don’t have to ask whether they are using spherical
coordinates or some other coordinate system, because it makes no difference at all.

Vectors are “tensors of rank 1;” a vector can be represented by a magnitude and one
direction. An example is the wind vector. In atmospheric science, vectors are normally
either three-dimensional or two-dimensional, but in principle they have any number of
dimensions. A scalar can be considered to be a vector in a one-dimensional space.

A vector can be expressed in a particular coordinate system by an ordered list of num-
bers, which are called the “components” of the vector. The components have meaning only
with respect to the particular coordinate system. More or less by definition, the number of
components needed to describe a vector is equal to the number of dimensions in which the
vector is “embedded.”

We can define “unit vectors” that point in each of the coordinate directions. A vector
can then be written as the vector sum of each of the unit vectors times the “component”
associated with the unit vector. In general, the directions in which the unit vectors point
depend on position.

Unit vectors are always non-dimensional; here we are using the word “dimension” to
refer to physical quantities, such as length, time, and mass. Because the unit vectors are
non-dimensional, all components of a vector must have the same dimensions as the vector
itself.

Spatial coordinates may or may not have the dimensions of length. In the familiar
Cartesian coordinate system, the three coordinates, (x,y,z), each have dimensions of length.
In spherical coordinates, (λ ,ϕ,r), where λ is longitude, ϕ is latitude, and r is distance
from the origin, the first two coordinates are non-dimensional angles, while the third has
the dimension of length.

When we change from one coordinate system to another, an arbitrary vector V trans-
forms according to

V′ = MV. (B.1)

Here V is the representation of the vector in the first coordinate system (i.e., V is the list
of the components of the vector in the first coordinate system), V′ is the representation the
vector in the second coordinate system, and M is a “rotation matrix” that maps V onto V′.
The rotation matrix used to transform a vector from one coordinate system to another is a
property of the two coordinate systems in question; it is the same for all vectors, but it does
depend on the particular coordinate systems involved, so it is not a tensor.
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The transformation rule (B.1) is actually part of the definition of a vector, i.e., a vector
must, by definition, transform from one coordinate system to another via a rule of the form
(B.1) . It follows that not all ordered lists of numbers are vectors. For example, the list

(mass of the moon, distance from Fort Collins to Denver)

is not a vector.

Now let V be the a vector representing the three-dimensional velocity of a particle in
the atmosphere. The Cartesian and spherical representations of are

V = ẋi+ ẏj+ żk (B.2)

V = λ̇ r cosϕeλ + rϕ̇eϕ + ṙer (B.3)

Here a “dot” denotes a Lagrangian time derivative, i.e., a time derivative following a mov-
ing particle, i, j, and k are unit vectors in the cartesian coordinate system, and eλ , eϕ , and
er are unit vectors in the spherical coordinate system. Eqs. (B.2) and (B.3) both describe
the same vector, V, i.e., the meaning of V is independent of the coordinate system that is
chosen to represent it.

Vectors are considered to be tensors of rank one, and scalars are tensors of rank zero.
The number of directions associated with a tensor is called the “rank” of the tensor. In prin-
ciple, the rank can be arbitrarily large, but in atmospheric science we rarely meet tensors
with ranks higher than two.

A tensor of rank 2 that is important in atmospheric science is the flux of momentum.
The momentum flux, also called a “stress,” and equivalent to a force per unit area, has a
magnitude and “two directions.” One of the directions is associated with the force vector
itself, and the other is associated with the normal vector to the unit area in question. The
momentum flux tensor can be written as ρV⊗V, where ρ is the density of the air, V is the
wind vector, and ⊗ is the dyadic or outer product.

Like a vector, a tensor of rank 2 can be expressed in a particular coordinate system, i.e.,
we can define the “components” of the tensor with respect to a particular coordinate system.
The components of a tensor of rank 2 can be arranged in the form of a two-dimensional
matrix, in contrast to the components of a (column or row) vector, which form an ordered
one-dimensional list. When we change from one coordinate system to another, a tensor of
rank 2 transforms according to
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T′ = MTM−1 (B.4)

where T is the representation of a rank-2 tensor in the first coordinate system, T′ is the rep-
resentation of the same tensor in the second coordinate system, M is the matrix introduced
in Eq. (1) above, and M−1 is its inverse.

B.3 Differential operators

Several familiar differential operators can be defined without reference to any coordinate
system. These operators are more fundamental than, for example, ∂/∂x, where x is a par-
ticular spatial coordinate. The coordinate-independent operators that we need most often
for atmospheric science (and for most other branches of physics too) are:

• the gradient, denoted by ∇A, where A is an arbitrary scalar;

• the divergence, denoted by ∇ ·V, where V is an arbitrary vector;

• the curl, denoted by ∇×V, and

• the Laplacian, given by ∇2A = ∇ · (∇A) .

Note that the gradient and curl are vectors, while the divergence is a scalar. The gradi-
ent operator accepts scalars as “input,” while the divergence and curl operators consume
vectors.

In discussions of two-dimensional motion, it is often convenient to introduce an addi-
tional operator called the Jacobian, denoted by

J (α,β )≡ k · (∇α×∇β )

= k ·∇× (α∇β )

=−k ·∇× (β∇α) .

(B.5)

Here the gradient operators are understood to produce vectors in the two-dimensional
space, α and β are arbitrary scalars, and k is a unit vector perpendicular to the two-
dimensional surface. The second and third lines of (B.5) can be derived with the use of
vector identities found in a table later in this QuickStudy.

A definition of the gradient operator that does not make reference to any coordinate
system is:
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∇A≡ lim
V→0

 1
V

∮
S

nAdS

 , (B.6)

where S is the surface bounding a volume V , and n is the outward normal on S. Here the
terms “volume” and “bounding surface” are used in the following generalized sense: In a
three-dimensional space, “volume” is literally a volume, and “bounding surface” is literally
a surface. In a two-dimensional space, “volume” means an area, and “bounding surface”
means the curve bounding the area. In a one-dimensional space, “volume” means a curve,
and “bounding surface” means the end points of the curve. The limit in (B.6) is one in
which the volume and the area of its bounding surface shrink to zero.

As an example, consider a Cartesian coordinate system on a plane, with unit vectors
and in the and directions, respectively. Consider a “box” of width ∆x and height ∆y, as
shown in Figure B.1. We can write

∇A≡ lim
(∆x,∆y)→0

{
1

∆x∆y

[
A
(

x0 +
∆x
2
,y0

)
∆yi+A

(
x0,y0 +

∆y
2

)
∆xj

−A
(

x0−
∆x
2
,y0

)
∆yi−A

(
x0,y0−

∆y
2

)
∆xj
]}

=
∂A
∂x

i+
∂A
∂y

j .

(B.7)

This is the answer that we expect.

Definitions of the divergence and curl operators that do not make reference to any co-
ordinate system are:

∇ ·Q≡ lim
V→0

 1
V

∮
S

n ·QdS

 (B.8)

∇×Q≡ lim
V→0

 1
V

∮
S

n×QdS

 (B.9)
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As an example, consider a Cartesian coordinate system x, y( )  on a plane, with unit  vectors 

i  and j  in the x  and y  directions, respectively. Consider a “box” of width Δx  and height Δy , 

as shown in Figure 1. We can write 

∇A ≡ lim
Δx,Δy( )→0

1
ΔxΔy

⎧
⎨
⎩

A x0 +
Δx
2
, y0

⎛
⎝
⎜

⎞
⎠
⎟Δyi+ A x0 , y0 +

Δy
2

⎛
⎝
⎜

⎞
⎠
⎟Δxj

⎡
⎣⎢

−A x0 −
Δx
2
, y0

⎛
⎝
⎜

⎞
⎠
⎟Δyi − A x0 , y0 −

Δy
2

⎛
⎝
⎜

⎞
⎠
⎟Δxj

⎤
⎦⎥
⎫
⎬
⎭

= ∂A
∂x
i+ ∂A

∂y
j .

(11)

This is the answer that we expect. 

Definitions of the divergence and curl operators that do not make reference to any 
coordinate system are:

 
∇⋅Q ≡ lim

S→0

1
V

n ⋅QdS
S
!∫

⎡

⎣
⎢

⎤

⎦
⎥ ,

(12)

 
∇×Q ≡ lim

S→0

1
V

n×QdS
S
!∫

⎡

⎣
⎢

⎤

⎦
⎥ .

(13)

Figure 1: Diagram illustrating a rectangular box in a planar two-dimensional space, with center at 
x0 , y0( ) , width Δx , and height Δy .

Δx

Δy
x, y( ) = x0 , y0( )

x

y
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Figure B.1: A rectangular box in a planar two-dimensional space, with center at (x0,y0), width ∆x,
and height ∆y.

It is possible to work through exercises similar to (B.7) for these operators too. You might
want to try it yourself, to see if you understand.

Finally, the Jacobian on a two-dimensional surface can be defined by

J (A,B) = lim
C→0

[∮
C

A∇B · tdl
]
, (B.10)

where t is a unit vector that is tangent to the bounding curve C.

B.4 Vector identities

Many useful identities relate the divergence, curl, and gradient operators. Most of the
following identities can be found in any mathematics reference manual, e.g., Beyer (1984).
As before, let α and β be arbitrary scalars, let V, A, B, and C be arbitrary vectors, and let
T be an arbitrary tensor of rank 2. Then:

∇× (∇α) = 0 (B.11)

∇ · (∇×V) = 0 (B.12)
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A×B =−B×A (B.13)

∇ · (αV) = α (∇ ·V)+V ·∇α (B.14)

∇ · (A×B) = (∇×A) ·B− (∇×B) ·A (B.15)

∇× (αV) = ∇α×V+α (∇×V) (B.16)

A · (B×C) = (A×B) ·C = B · (C×A) (B.17)

A× (B×C) = B(C ·A)−C(A ·B) (B.18)

∇× (A×B) = A(∇ ·B)−B(∇ ·A)− (A ·∇)B+(B ·∇)A (B.19)

∇(A ·B) = (A ·∇)B+(B ·∇)A+A× (∇×B)+B× (∇×A) (B.20)

J (α,β )≡ k · (∇α×∇β ) = k ·∇× (α∇β )

=−k ·∇× (β∇α)

=−k · (∇β ×∇α)

(B.21)
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∇
2V≡ (∇ ·∇)V = ∇(∇ ·V)−∇× (∇×V) (B.22)

∇ · (A⊗B) = (A ·∇)B+(B ·∇)A (B.23)

∇ · (αT) = (∇α) ·T+α (∇ ·T) (B.24)

In (B.23), ⊗ denotes the outer or dyadic product of two vectors, which yields a tensor of
rank 2.

A special case of (B.20) is

1
2

∇(V ·V) = (V ·∇)V+V× (∇×V) (B.25)

This identity is used to write the advection terms of the momentum equation in alternative
forms.

Identity (B.22) says that the Laplacian of a vector is the gradient of the divergence of
the vector, minus the curl of the curl of the vector. The first term involves only the divergent
part of the wind field, and the second term involves only the rotational part. Eq. (B.22) can
be used, for example, in a parameterization of momentum diffusion.

B.5 Spherical coordinates

B.5.1 Vector operators in spherical coordinates

The gradient, divergence, curl, Laplacian, and Jacobian operators can be expressed in
spherical coordinates as follows:

∇α =

(
1

r cosϕ

∂α

∂λ
,

1
r

∂α

∂ϕ
,

∂α

∂ r

)
(B.26)
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∇ ·V =
1

r cosϕ

∂Vλ

∂λ
+

1
r cosϕ

∂

∂ϕ

(
Vϕ cosϕ

)
+

1
r2

∂

∂ r

(
Vrr2) (B.27)

∇×V=

{
1
r

[
∂Vr

∂ϕ
− ∂

∂ r

(
rVϕ

)]
,

1
r

∂

∂ r
(rVλ )−

1
r cosϕ

∂Vr

∂λ
,

1
r cosϕ

[
∂Vϕ

∂λ
− ∂

∂ϕ
(Vλ cosϕ)

]}
(B.28)

∇
2
α =

1
r2 cosϕ

[
∂

∂λ

(
1

cosϕ

∂α

∂λ

)
+

∂

∂ϕ

(
r2 cosϕ

∂α

∂ r

)]
(B.29)

J (α,β ) =
1

r2 cosϕ

(
∂α

∂λ

∂β

∂ϕ
− ∂β

∂λ

∂α

∂ϕ

)
(B.30)

Here α is an arbitrary scalar, and V is an arbitrary vector.

B.5.2 Horizontal and vertical vectors in spherical coordinates

The unit vectors in spherical coordinates are denoted by eλ pointing towards the east, eϕ

pointing towards the north, and er pointing outward from the origin (in geophysics, outward
from the center of the Earth).

A useful result that is a special case of (B.19) is

er · [∇× (er×H)] = ∇ ·H, (B.31)

where er is the unit vector pointing upward, and H is an arbitrary horizontal vector. In
words, the curl of er×H is equal to the divergence of H. Similarly, a useful special case of
(B.15) is

∇ · (er×H) =−er · (∇×H) (B.32)

This means that the divergence of er×H is equal to minus the curl of H.
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If V is separated into a horizontal vector and a vertical vector, as in

V = Vh +Vrer, (B.33)

then (B.28)) can be written as

∇× (Vh +Vrer) = ∇r×Vh + er×
[

1
r

∂

∂ r
(rVh)−∇rVr

]
. (B.34)

In case V is the velocity, the first term on the right-hand side of (B.34) is the vertical
component of the vorticity, and the second term is the horizontal vorticity vector. Eq.
(B.34) shows that the curl of a purely vertical vector is minus er crossed with the horizontal
gradient of the magnitude of that vector. The three-dimensional curl of a purely horizontal
vector has both a vertical part, given by ∇r×Vh, and a horizontal part, given by er ×[

1
r

∂

∂ r (rVh)−∇rVr

]
. The two-dimensional curl of a horizontal vector has only a vertical

component, namely ∇r×Vh.

Finally, the 3D curl of the 3D curl of a 3D vector is given by

∇× [∇× (Vh +Vrer)] = ∇r×η+ er×
[

1
r

∂

∂ r
(rη)−∇rζ

]
, (B.35)

where

η≡ er×
[

1
r

∂

∂ r
(rVh)−∇rVr

]
, (B.36)

and

ζ ≡ er · (∇r×Vh) . (B.37)
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B.5.3 Derivation of the gradient operator in spherical coordinates

Consider how the two-dimensional version of (B.26) can be derived from (B.6). Figure B.2
illustrates the problem. Here we have replaced r by a, the radius of the Earth. The angle
θ depicted in the figure arises from the gradual rotation of eλ and eϕ , the unit vectors
associated with the spherical coordinates, as the longitude changes; the directions of eλ

and eϕ in the center of the area element, where ∇A is defined, are different from their
respective directions on either east-west wall of the area element. Inspection of Figure B.2
shows that θ satisfies

sinθ =
−1

2 [acos(ϕ +dϕ)−acosϕ]dλ

adϕ

→− 1
2

(
∂

∂ϕ
cosϕ

)
dλ

=
1
2

sinϕdλ .

(B.38)
Consider how the two-dimensional version of (32) can be derived from (10). Fig. 2 

illustrates the problem. Here we have replaced r by  a, the radius of the Earth. The angle θ  
depicted in the figure arises from the gradual rotation of eλ  and eϕ , the unit vectors associated 

with the spherical coordinates, as the longitude changes; the directions of eλ  and eϕ  in the 

center of the area element, where ∇A  is defined, are different from their respective directions on 

either east-west wall of the area element. Inspection of Fig. 2 shows that θ  satisfies

tanθ =
− 1
2
acos ϕ + dϕ( ) − acosϕ⎡⎣ ⎤⎦dλ

adϕ

→− 1
2

∂
∂ϕ
cosϕ

⎛

⎝
⎜

⎞

⎠
⎟dλ

= 1
2
sinϕdλ

≅ sinθ .
(38)

The angle θ  is of “differential” or infinitesimal size. Nevertheless, it  is needed in the derivation 
of (32). The line integral in (10) can be expressed as

Figure 2: A patch of the sphere, with longitudinal width 
acosϕdλ , and latitudinal height adϕ .

acosϕdλ

acos ϕ + dϕ( )dλ

adϕ
θ

eϕ

eλ

A1

A2

A3
A4
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Figure B.2: A patch of the sphere, with longitudinal width acosϕdλ , and latitudinal height adϕ.

The angle θ is of “differential” or infinitesimal size. Nevertheless, it is needed in the
derivation of (B.26). The line integral in (B.6) can be expressed as

453



Revised Monday 23rd August, 2021 at 15:57

1
Area

∮
Andl =

1
a2 cosϕdλdϕ

[
−eϕA1acosϕdλ + eλ A2 cosθadϕ + eϕA2 sinθadϕ

+ eϕA3acos(ϕ +dϕ)− eλ A4 cosθadϕ + eϕA4 sinθadϕ
]

=eλ

(A2−A4)cosθ

acosϕdλ

+eϕ

{
[A3 cos(ϕ +dϕ)−A1 cosϕ]dλ +(A2 +A4)sinθdϕ

acosϕdλdϕ

}
(B.39)

Note how the angle θ has entered here. Put cosθ → 1 and sinθ → 1
2 sinϕdλ to obtain

1
Area

∮
αndl =eλ

(A2−A4)

acosϕdλ
+ eϕ

{[
A3 cos(ϕ +dϕ)−A1 cosϕ

acosϕdϕ

]
+

(
A2 +A4

2

)
sinϕ

acosϕ

}
→eλ

1
acosϕ

∂A
∂λ

+ eϕ

[
1

acosϕ

∂

∂ϕ
(Acosϕ)+

Asinϕ

acosϕ

]
=eλ

1
acosϕ

∂A
∂λ

+ eϕ

1
a

∂A
∂ϕ

,

(B.40)

which agrees with the two-dimensional version of (B.26).

Similar (but more straightforward) derivations can be given for (B.27) - (B.30).

B.5.4 Applying vector operators to the unit vectors in spherical coordinates

Using (B.11) - (B.13), we can prove the following about the unit vectors in spherical coor-
dinates:

∇ · eλ = 0, (B.41)

∇ · eϕ =− tanϕ

r
, (B.42)
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∇ · er =
2
r
, (B.43)

∇× eλ =
eϕ

r
+

tanϕ

r
er, (B.44)

∇× eϕ =−eλ

r
, (B.45)

∇× er = 0. (B.46)

The following relations are useful when working with the momentum equation in spher-
ical coordinates:

(Vh ·∇)eλ =
usinϕ

r
eϕ −

ucosϕ

r
er , (B.47)

(Vh ·∇)eϕ =− usinϕ

r
eλ −

vsinϕ

r
er, (B.48)

(Vh ·∇)er =
Vh

r
. (B.49)

Here Vh is the horizontal wind vector.

B.6 Solid body rotation

As an example of the application of (B.28), the vertical component of the vorticity is
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ζ =
1

r cosϕ

[
∂v
∂λ
− ∂

∂ϕ
(ucosϕ)

]
(B.50)

For the case of pure solid body rotation of the atmosphere about the Earth’s axis of rotation,
we have

u = λ̇ r cosϕ and v = 0, (B.51)

where λ̇ is independent of ϕ . Substitution of (B.51) into (B.50) gives

ζ =
−1

r cosϕ

∂

∂ϕ

(
λ̇ rcos2

ϕ

)
=2λ̇ sinϕ .

(B.52)

This is the expected form of the vorticity associated with the vertical component of the
Earth’s rotation vector. In the conventional notation, λ̇ is replaced by Ω .

B.7 Formulas that are useful for two-dimensional flow

Consider the special case of two-dimensional flow. Two useful identities are

∇r× (er×∇rA) = er∇
2
r A, (B.53)

and

∇r · (er×∇rA) = 0. (B.54)

Also for two-dimensional flow, the Laplacian of a vector can be written in a very simple
way. Let ζ er ≡ ∇r×Vh and δ ≡ ∇r ·Vh. Then (B.22) reduces to

∇
2
r Vh = ∇rδ −∇r× (ζ er) (B.55)
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Using (B.28), we can write

∇r× (ζ er) =

{
1
r

∂ζ

∂ϕ
, − 1

r cosϕ

∂ζ

∂λ
, 0
}

=− er×∇rζ .

(B.56)

Then (B.55) becomes

∇
2
r Vh = ∇rδ + er×∇rζ . (B.57)

B.8 Basics of vertical coordinate transformations

Consider two vertical coordinates, denoted by “z” and “ẑ,” respectively. Although the sym-
bol z suggests height, no such implication is intended here; z and ẑ can be any variables
at all, so long as they vary monotonically with height (and with each other). For example,
z could be pressure and ẑ could be potential temperature. We assume that we have a rule
telling how to compute ẑ for a given value of z, and vice versa. For example, we could
define ẑ≡ z− zS (x,y), where zS (x,y) is the distribution of z along the Earth’s surface.

Now consider the variation of an arbitrary dependent variable, f , with the independent
variables x and z, as sketched in Figure B.3. Our goal is to relate

(
∂ f
∂x

)
ẑ

to
(

∂ f
∂x

)
z
. With

reference to Figure B.3, we can write

fB− fA

x2− x1
=

(
fC− fA

x2− x1

)
−
(

fC− fB

x2− x1

)
=

(
fC− fA

x2− x1

)
−
(

z2− z1

x2− x1

)(
fC− fB

z2− z1

)
.

(B.58)

Taking the limit as the increments become small, we obtain

(
∂ f
∂x

)
z
=

(
∂ f
∂x

)
ẑ
−
(

∂ z
∂x

)
ẑ

(
∂ f
∂ z

)
x
. (B.59)
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tant

Figure B.3: A sketch used in the derivation of (B.58).

Since we are using ẑ as our vertical coordinate, a better way to write (B.59) is

(
∂ f
∂x

)
z
=

(
∂ f
∂x

)
ẑ
−
(

∂ z
∂x

)
ẑ

∂ ẑ
∂ z

(
∂ f
∂ ẑ

)
x
. (B.60)

The quantity
∂ ẑ
∂ z

encodes the variations of ẑ with z. It plays the role of a “metric” factor

that converts from the dimensions of ẑ to the dimension of length, in the same way that the
metric factor acosϕ converts the nondimensional coordinate of longitude to a length.

Naturally, the derivation given above works in exactly the same way if x is time, rather
than a horizontal coordinate.

B.9 Some useful operators

Starting from (B.60), we can show that the horizontal gradient satisfies

∇z f = ∇ẑ f −∇ẑz
∂ ẑ
∂ z

(
∂ f
∂ ẑ

)
. (B.61)
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Analogous identities apply with other operators. For example, for an arbitrary horizontal
vector Vh, we can write

∇z×Vh = ∇ẑ×Vh−∇ẑz×
∂ ẑ
∂ z

∂Vh

∂ ẑ
. (B.62)

and

∇z ·Vh = ∇ẑ ·Vh−∇ẑz ·
∂ ẑ
∂ z

∂Vh

∂ ẑ
. (B.63)

B.10 Concluding summary

Scalars, vectors, and tensors have meanings without reference to any particular coordinate
system, although they can be expressed in coordinate systems.

This brief overview is intended mainly as a refresher for students who learned these
concepts once upon a time, but may have not thought about them for awhile. We have also
included many useful equations that are not readily available elsewhere, even on the Web.
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