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Introduction

The atmosphere contains sound waves, and the linearized equations that describe the 
evolution of the atmosphere contain solutions corresponding to sound waves. These solutions are 
derived below.

Since sound waves have no meteorological significance, it is useful to have a system of 
equations that has no sound-wave solutions, but  is still applicable to the study of turbulence and 
cumulus convection as well as large-scale motions. The familiar quasi-static approximation 
filters vertically propagating sound waves, while allowing the Lamb wave (which is a 
horizontally propagating sound wave), but seriously distorts the small-scale motions. The 
distortion arises because, for these motions, the perturbation pressure force is not hydrostatically 
balanced by the perturbation density field. 

The anelastic approximation was invented by Ogura and Phillips (1962) in order to filter 
sound waves without assuming hydrostatic balance. The Boussinesq equations are a simplified 
subset of the anelastic equations, valid only for relatively shallow motions. Although the original 
anelastic and Boussinesq equations are very useful, they have important weaknesses. Improved 
alternatives are available now (Arakawa and Konor, 2009).

The exact equations

The basic equations in height coordinates, without rotation and friction, are

DVh

Dt
= − 1

ρ
∇z p ,

(1)

Dw
Dt

= −
1
ρ
∂p
∂z

− g ,

(2)

∂ρ
∂t

⎛
⎝⎜

⎞
⎠⎟ z

+∇z ⋅ ρVh( ) + ∂
∂z

ρw( ) = 0 ,

(3)
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θ ≡

Dθ
Dt

=
Q
Π

.

(4)

Here D / Dt  is the Lagrangian time derivative, Vh  is the horizontal velocity, ρ  is density, p is 

pressure, w is the vertical velocity, z is height, g is the acceleration of gravity, θ  is the potential 
temperature, Q is the heating rate per unit mass, and Π  is the Exner function, which satisfies 

cpΤ = Πθ ,

(5)

where cp  is the heat capacity of air at constant pressure, and T is temperature. We can also write

Π = cp
p
p0

⎛
⎝⎜

⎞
⎠⎟

κ

,

(6)

where

κ ≡
R
cp

,

(7)

and R  is the specific gas constant. Finally, we can include the prognostic equation for an 
arbitrary scalar, which is 

∂ρA
∂t

⎛
⎝⎜

⎞
⎠⎟ z

+∇z ⋅ ρVhA( ) + ∂
∂z

ρwA( ) = ρSA ,

(8)

where SA  is the source of A  per unit mass.

We will need the ideal gas law, which is

p = ρRΤ .
(9)

The following relationships can be derived using the ideal gas law:

p = p0
ρRθ
p0

⎛
⎝⎜

⎞
⎠⎟

1
1−κ

,

(10)
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Π = cp
ρRθ
p0

⎛
⎝⎜

⎞
⎠⎟

κ
1−κ

,

(11)

Acoustic-waves

Consider one-dimensional, small-amplitude motions, with no mean flow, no rotation, no 
stratification, no friction, and no heating. We adopt the following linearized system of equations:

∂u
∂t

= −
1
ρ0

∂
∂x

δ p( ) ,

(12)

λ ∂
∂t

δρ( ) + ∂
∂x

ρ0u( ) = 0 ,

(13)

∂
∂t

δθ
θ0

⎛
⎝⎜

⎞
⎠⎟
= 0

(14)

δθ
θ0

=
δΤ
Τ 0

−κ δ p
p0

,

(15)

δ p
p0

=
δρ
p0

+
δΤ
Τ 0

,

(16)

where λ , which appears in (13), is normally equal to one but will be set equal to zero to obtain 
the anelastic system. We can eliminate unknowns so as to obtain a single wave equation in the 
single unknown δ p :

∂2

∂t 2
δ p( ) − cs

λ
∂2

∂x2
δ p( ) = 0 .

(17)

Here we have used

cs
2 ≡ γ RΤ ,

(18)

where
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γ ≡ 1
1−κ

≅ 1.4 .

(19)

The solutions of (17) are

δ p = P exp ik x ± cS
λ
t⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

,

(20)

and 
cS
λ

 is seen to be the signal velocity (the speed of sound). 

For λ = 0 , we get

∂2

∂x2
δ p( ) = 0 ,

(21)

which has the solutions δ p = A + Bx . In this case, the effective “signal velocity” is infinite. 

There are no wave solutions.

This analysis shows that if we can justify  neglect of the density-tendency term in the 
continuity  equation, we can filter out all sound waves -- including both horizontally and 
vertically propagating waves. The next section presents a scale analysis designed to determine 
under what conditions such an approximation can be justified. The scale analysis is also used to 
introduce some additional simplifying approximations. 

Scale analysis

Consider a hydrostatically balanced reference state for which the thermodynamic state 
variables may be functions of height z , but are independent of time and the horizontal 
coordinates. We denote this reference state by subscript 0, and departures from it by δ ( ) , i.e.

( ) ≡ ( )0 + δ ( ) .
(22)

The reference state need not  necessarily be identical to the “initial” state, or to a “basic” state 
upon which perturbations will be be imposed. Nevertheless, we assume that the actual range of 
variation of the thermodynamic variables is no greater, in order of magnitude, than the departure 
from the reference state, and that for each of the thermodynamic variables, this departure from 
the reference state is fractionally small.

For our scale analysis, we need thermodynamic scale heights, defined as follows:
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Hρ ≡
1
ρ0

dρ0

dz

−1

~ 10 km ,

(23)

Hp ≡
1
p0

dp0

dz

−1

≡
RΤ 0

g
~ 8 km ,

(24)

Hθ ≡
1
θ0

dθ0

dz

−1

~ 70 km ,

(25)

HΤ ≡ 1
Τ 0

dΤ 0

dz

−1

~ 40 km .

(26)

The numerical values given in (23) - (26) are for typical tropospheric soundings. For the 
idealized special case of an isothermal atmosphere, it can be shown that the scales heights for 

density  and pressure are equal and given by  RΤ 0

g
, while the scale height for temperature is (of 

course) infinite.

We first analyze the continuity equation, which can be written as

∂
∂t

δ p( ) + ρ0 1+
δρ
p0

⎛
⎝⎜

⎞
⎠⎟

∇z ⋅Vh +
∂w
∂z

⎛
⎝⎜

⎞
⎠⎟ +Vh ⋅∇z δ p( ) +w ∂

∂z
δ p( ) +w ∂ρ0

∂z
= 0 .

(27)

We have used our assumption that  ρ0  is horizontally homogeneous. Below we assume that 

δρ / ρ0 <<1 . We proceed by comparing ρ0
∂w
∂z

 with each of the remaining terms. First, note that
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∂
∂t

δp( )

ρ0
∂w
∂z

~
δp / τ
w ρ0 / D

=
δp
ρ0

D
w τ

=
g δp / ρ0( )
g
D

⎛
⎝
⎜

⎞
⎠
⎟τ 2

w
τ

.

(28)

where D  is the depth of the motions, and τ  is the time scale of interest. Since we are interested 
in boundary-layer eddies, we will choose in the range 100 s to 1000 s. If we were interested in 
sound waves, we would choose τ  on the order of 10-3 s. Since

w
τ
~ g

δ p
ρ0

,

(29)

we can neglect 
∂
∂t

δρ( )  if

τ 2 >> D / g ≤ 30 seconds( )2 .
(30)

For large boundary-layer eddies and cumulus clouds, the term can safely be neglected. The 
continuity equation then becomes diagnostic, i.e., its time derivative term drops out.

Next, we analyze the ∂ρ0 / ∂z  term of the continuity equation:

w ∂ρ0
∂z

ρ0
∂w
∂z

~ D
H ρ

.

(31)

For D / H ρ ~ 1 , the two terms are the same size. For motions that are shallow in the sense that 

D / H ρ << 1 , we can neglect ρ0
∂w
∂z

. Here we allow the possibility that D / H ρ ~ 1 .

Now consider the horizontal advection of δρ :
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Vh ⋅∇zδρ

ρ0
∂w
∂z

~
V δρ / L
ρ0 w /D

=
δρ
ρ0

V
w
D
L
.

.

(32)

Here L  is a horizontal length scale. From (32), we conclude that Vh ⋅∇z δρ( )  can be neglected if 

V
w
D
L
≤ 1.

(33)

This condition will be met if the aspect ratio D / L  is sufficiently small. 

Finally, we note that since

w ∂
∂z

δρ( )

ρ0
∂w
∂z

~ δρ
ρ0

<<1 ,

(34)

the vertical advection of δρ  is negligible.

Generally speaking, the remaining terms have to be kept. In summary, we have

∇z ⋅ ρ0Vh( ) + ∂
∂z

ρ0w( ) = 0  for D /H ρ ~1 ,

(35)

and

∇z ⋅Vh +
∂w
∂z

= 0  for D /H ρ <<1 .

(36)

Now consider the horizontal pressure gradient force. Since p0  and ρ0  are assumed to be 

horizontally homogeneous, we can write

− 1
ρ
∇z p = − 1

ρ
∇z δ p( ) ≅ − 1

ρ0
∇z δ p( ) = −∇z

δ p
ρ0

⎛
⎝⎜

⎞
⎠⎟

.

(37)
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The vertical pressure gradient force requires somewhat more analysis. Recall that the reference 
state is assumed to be in hydrostatic balance, i.e.,

dp0
dz

= −ρ0g .

(38)

We can then write

−1
ρ
∂p
δz

− g = −1
ρ0 +δρ( )

∂
∂z

p0 +δp( ) − g

= −1
ρ0 +δρ( )

∂
∂z

δp( ) + ρ0
ρ0 +δρ

−1
⎛

⎝
⎜

⎞

⎠
⎟g

≅ −1
ρ0

∂
∂z

δp( ) − δρ
ρ0
g

= − ∂
∂z

δp
ρ0

⎛

⎝
⎜

⎞

⎠
⎟−

δp
p0

1
ρ0

∂ρ0
∂z

⎛

⎝
⎜

⎞

⎠
⎟−

δρ
ρ0
g

(39)

In the last line of (39), the basic state density appears inside the vertical derivative. Eq. (39) can 
be simplified as follows. From the definition of potential temperature,

θ ≡Τ p0
p

⎛
⎝⎜

⎞
⎠⎟

κ

,

(40)

and the ideal gas law, we can show that

1
ρ0

∂ρ0
∂z

= 1
γ
1
p0

∂p0
∂z

− 1
θ0

∂θ0
∂z

,

(41)

and

δρ
ρ0

= 1
γ
δ p
p0

− δθ
θ0

,

(42)

where

γ ≡ cp / cv ,

(43)

which is equivalent to (19). Substituting from (41) and (42) into (39), we find that
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−1
ρ

∂p
δ z

− g ≅ − ∂
∂z

δ p
ρ0

⎛
⎝⎜

⎞
⎠⎟
+ δ p
ρ0

1
θ0

∂θ0
∂z

− 1
γ
1
p0

∂p0
∂z

⎛
⎝⎜

⎞
⎠⎟
+ δθ

θ0
− 1
γ
δ p
p0

⎛
⎝⎜

⎞
⎠⎟
g

= − ∂
∂z

δ p
ρ0

⎛
⎝⎜

⎞
⎠⎟
+ δ p
ρ0

1
θ0

∂θ0
∂z

⎛
⎝⎜

⎞
⎠⎟
+ gδθ

θ0
,

(44)

where we have used (38) to obtain the final equality. 

We now argue that, under some conditions, the δp
ρ0

1
θ0

∂θ0
∂z

⎛

⎝
⎜

⎞

⎠
⎟  term of (44) can be 

neglected. Defining the Brunt-Vaisalla frequency, N, by

N 2 ≡ g
θ0

∂θ0
∂z

= g
Hθ

,

(45)

we can write

δp
ρ0

1
θ0

∂θ0
∂z

⎛

⎝
⎜

⎞

⎠
⎟

∂
∂z

δp
ρ0

⎛

⎝
⎜

⎞

⎠
⎟

~

δp
ρ0

N 2

g
δp
ρ0

1
D

= N 2D
g

= N 2

γRΤ
RΤ
g

⎛

⎝
⎜

⎞

⎠
⎟γD

= N 2

cS / Hp( )2
γD
Hp

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ,

(46)

where cS  is the isentropic sound speed, introduced earlier. From (46) we see that, provided that 

γ D / H ρ  is no greater than order 1, we can neglect  the δp
ρ0

1
θ0

∂θ0
∂z

⎛

⎝
⎜

⎞

⎠
⎟  term of (44) when the 

frequency of sound waves with vertical wavelength Hρ  greatly exceeds the frequency of pure 

gravity waves. A typical value of Hρ  is 5 km or greater. Our conclusion is that
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−
1
ρ
∂p
∂z

− g ≅ −
∂
∂z

δ p
ρ0

⎛
⎝⎜

⎞
⎠⎟
+ gδθ

θ0
.

(47)

This is the origin of the familiar “buoyancy” term of the equation of vertical motion. 

We now turn to the first law of thermodynamics, which can be written as

Dθ
Dt

= θQ
cpΤ

,

(48)

where Q is the heating rate per unit  mass. Using our assumptions that δθ /θ0 << 1  and 

δΤ /Τ 0 << 1 , we can immediately rewrite (48) as

∂
∂t

+Vh ⋅∇z
⎛
⎝⎜

⎞
⎠⎟
δθ
θ0

+ w
θ0

∂θ0
∂z

= Q
cpΤ 0

.

(49)

For shallow motions, a further simplification is possible whenever

1
ρ0

∂
∂z

δ p( ) ≤ g δρ
ρ0

.

(50)

This does not mean that the perturbations are in hydrostatic balance, but only that they  are close 
to balance. This assumption is particularly appropriate whenever the buoyancy  force plays a key 
role in the fluid motions, as in convection and gravity waves. Rewriting (50) as

δ p
p0

≤
Dρ0g
p0

δρ
ρ0

,

(51)

and recognizing that

ρ0g
p0

= − 1
p0
dp0
dz

≡ − 1
Hp

,

(52)

we see that
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δ p
p0

≤
DH
Hp

~ δ p
ρ0

.

(53)

For shallow convection, i.e., D / Hp << 1 , we can neglect δ p / p0  in comparison with δρ / ρ0 . 

Then from the state equation and the definition of θ  we obtain

−δ p
ρ0

≅ δΤ
Τ 0

≅ δθ
θ0

.

(54)

From (47), the vertical pressure gradient force becomes

− 1
ρ
∂p
∂z

− g ≅ − ∂
∂z

δ p
ρ0

⎛
⎝⎜

⎞
⎠⎟
+ gδΤ

Τ 0

,

(55)

and the first law of thermodynamics becomes

∂
∂t

+ VH ⋅∇⎛
⎝⎜

⎞
⎠⎟

δΤ
Τ 0

⎛
⎝⎜

⎞
⎠⎟
+
w
Τ 0

dΤ 0

dz
+
g
cp

⎛

⎝⎜
⎞

⎠⎟
≅

Q
cpΤ 0

,

(56)

where we have invoked the hydrostaticity  of the reference state to write the vertical advection 
term in terms of Τ 0  rather than θ0 .

For simplicity, we have not considered the virtual temperature effect in the preceding 
analysis. It can be included simply by replacing θ  by θv  and T by Τ v  in the respective buoyancy 

terms of the anelastic and Boussinesq equations of motion.

Summary of the anelastic and Boussinesq systems

The anelastic system of equations is collected below.

Continuity:

∇z ⋅ ρ0Vh( ) + ∂
∂z

ρ0w( ) = 0

(57)
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Equation of motion:

∂V
∂t

+ 2Ω+∇×V( )×V +∇Κ = −∇ δ p
ρ0

⎛
⎝⎜

⎞
⎠⎟
+ gkδθv

θv0

− F
ρ0

(58)

First Law of Thermodynamics:

D
Dt

δθ
θ0

⎛
⎝⎜

⎞
⎠⎟
+ w
θ0

∂θ0
∂z

= Q
cpΤ 0

(59)

Here V  is the three-dimensional velocity  vector, Ω  is the angular velocity of the Earth’s 

rotation, Κ ≡
1
2
V 2  is the kinetic energy per unit mass, and F  is the frictional force, per unit 

mass. These equations are valid provided that the following conditions are met:

• All thermodynamic variables depart only slightly from their reference distributions.

• The time-scale of the motions is a few minutes or longer [see (30)].

• The aspect ratio of the motions is not too large [see (33)].

• The frequency of the motions is much less than the frequency of sound waves [see (46)]. 
This condition overlaps somewhat with the second condition above.

If, in addition to the conditions required for application of the anelastic approximation, 
the depth of the motions is much less than Hp , and if the motions are strongly  influenced by the 

buoyancy  force (see (51)), we can further simplify  to obtain the Boussinesq equations, which are 
collected below.

Continuity:

∇z ⋅Vh +
∂w
∂z

= 0

(60)

Equation of Motion:

∂V
∂t

+ 2Ω+∇×V( )×V +∇Κ = −∇ δ p
ρ0

⎛
⎝⎜

⎞
⎠⎟
+ gkδΤ v

Τ v

− F
ρ0

(61)
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First Law of Thermodynamics:

D
Dt

δΤ
Τ 0

⎛
⎝⎜

⎞
⎠⎟
+ w
Τ 0

dΤ 0

dz
+ g
cp

⎛

⎝⎜
⎞

⎠⎟
= Q
cpΤ 0

(62)

The anelastic pressure equation

One of the benefits of the anelastic system is the relatively simple diagnostic form of the 
anelastic continuity equation, which lacks a time derivative term. With the full system of 
equations (before simplification by  the scale analysis), we must predict two of the three 
independent thermodynamic state variables, e.g., ρ  and θ , as in (27) and (49). The third 

thermodynamic variable, p, is then determined by the equation of state. 

In the anelastic system, on the other hand, only  one thermodynamic variable, θ , is 
predicted. The other two, ρ  and p, are determined diagnostically  by the equation of state, and by 

our requirement that the three-dimensional mass flux be nondivergent, i.e., by the anelastic 
continuity equation.

For comparison, note that the quasi-static system, in which the equation of vertical 
motion is replaced by the hydrostatic equation, also has just one prognostic thermodynamic 
equation, and two diagnostic thermodynamic equations, one of which is the hydrostatic equation.

To derive the equation governing the pressure, we first use the continuity equation, (57), 
to write the equation of motion, (58), as

∂
∂t

ρ0V( ) + A = −ρ0∇
δ p
ρ0

⎛
⎝⎜

⎞
⎠⎟

,

(63)

where, for convenience, we define

A ≡ − ρ0 2Ω+∇×V( )×V +∇Κ⎡⎣ ⎤⎦+V ∇ ⋅ ρ0V( )⎡⎣ ⎤⎦{ }− 2Ω×ρ0V + gk δθv

θv0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−F .

(64)

Taking the divergence of (65), and using (58), we obtain

∇⋅ ρ0∇
δ p
ρ0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = −∇⋅A ,

(65)
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which is the anelastic pressure equation. The physical meaning of (65) is simply that the 
pressure field must be whatever it takes to keep the three-dimensional mass flux non-divergent. 
The pressure field does “air traffic control.” Eq. (65) has the form of a Poisson equation, which 
must be solved over the whole three-dimensional domain, using appropriate boundary 
conditions. 

The fact that  the pressure is determined diagnostically in this way means that the pressure 
plays only a passive role in the dynamics of the motions we are considering. The distribution of 
the pressure at a given instant is completely determined by the distributions of the other 
variables; the past history of the pressure itself is irrelevant.

Although the anelastic pressure equation simplifies things by  taking us from two 
prognostic equations and one diagnostic equation (for the thermodynamic variables) to one 
prognostic equation and two diagnostic equations, the Poisson equation for the pressure field is 
inconvenient.

Jung and Arakawa (2008) show that if the three-dimensional (vector) vorticity equation is 
used instead of the momentum equation, then the elliptic equation corresponding to (65) governs 
the vertical velocity, rather than the pressure. This is advantageous because the boundary 
conditions on the vertical velocity are relatively straightforward. 

A comparison with the quasi-static system

As mentioned in Section 1, the quasi-static approximation also filters vertically 
propagating sound waves, but it cannot be used to study PBL turbulence or cumulus convection 
because for these motions the perturbation pressure and the perturbation density are not quasi-
statically balanced. If we tried to use the quasi-static system, serious errors would be introduced. 

Some drawbacks

There are several problems with the anelastic and Boussinesq equations. The most 
fundamental weakness is that the equations have intrinsic errors on the order of a few percent for 
most motions, simply  as a consequence of the various approximations made. We must always 
ask whether these errors are acceptable.

There is no guarantee that the solutions obtained with the anelastic system will actually 
be consistent with the assumptions made in their derivation. For example, it would be possible to 
obtain solutions in which the departures of the thermodynamic variables from the reference state 
were not fractionally small.

Lilly (1996) points out that the Boussinesq system conserves volume rather than mass. 
Giving up exact mass conservation should be enough to make anyone nervous.

A less obvious problem is that the classical anelastic system “leaks” energy, i.e., it does 
not have a conservation of energy theorem. To show this, we first dot the equation of motion (58) 

! Revised Monday, May 6, 2013! 14

Quick Studies in Atmospheric Science
Copyright 2013 David A. Randall



with the momentum vector ρ0V , and use the continuity  equation (57) to obtain the kinetic 

energy equation:

δ ρ0Κ( )
δt

+∇ ⋅ V ρ0Κ + δ p( )⎡⎣ ⎤⎦ = gρ0w
δθ
θ0

,

(66)

For simplicity, we have neglected friction and the virtual temperature correction, which are 
irrelevant to the present discussion. By combining (58) and (60), we can derive

∂
∂t

P δθ
θ0

⎛

⎝
⎜

⎞

⎠
⎟+∇ ⋅ VP δθ

θ0

⎛

⎝
⎜

⎞

⎠
⎟ = gρ0w

δθ
θ0

− P w
θ0

∂θ0
∂z

,

(67)

where we have neglected heating, for simplicity, and where

P ≡ ρ0gz
(68)

is the potential energy per unit volume. Subtracting (68) from (67), we obtain.

∂
∂t

ρ0Κ − P δθ
θ0

⎛

⎝
⎜

⎞

⎠
⎟+∇ ⋅ V ρ0Κ − P δθ

θ0
−δp

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥= P

w
θ0

∂θ0
∂z

.

(69)

The term on the right-hand side of (69) is spurious; it is replaced by zero in a derivation that 
proceeds from the exact equations. It represents an infinite reservoir of energy associated with 
the stratification of the reference state. It can be forced to vanish by taking the reference state to 
be isentropic, but often this is unacceptable because it makes the departures from the reference 
state large.

Durran (1989), Lilly  (1996), Bannon (1996), and Arakawa and Konor (2009) discuss 
improved anelastic systems that do conserve energy.

A final drawback to the anelastic system is that  the anelastic pressure equation can only 
be solved through the imposition of boundary conditions that must sometimes be specified rather 
arbitrarily. Also, the numerical algorithms usually employed to solve the pressure equation are 
expensive and cumbersome.

Conclusions

The anelastic and Boussinesq equations have some useful properties, and they have been 
employed in many studies of PBL turbulence and cumulus convection. Their intrinsic errors, and 
particularly their failure to conserve total energy, make it  important to proceed with caution in 
any application.
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Improved anelastic systems have been developed, starting in the 1980s. In the future, 
some of these may be used in a new class of global atmospheric models. 
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