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Ball (1960) was the first to propose a model in which the interior of the planetary 
boundary layer (PBL) is well-mixed in the conservative variables, while the PBL top is marked 
by discontinuties in these same variables. Geisler and Kraus (1969) were the first to extend the 
idea by treating momentum (not a conservative variable) in the same framework, so that the 
PBL could be said to move as a “slab.” There is now a huge literature on mixed layer models, 
and in almost every paper the emphasis is on the question of what determines the time rate of 
change of the PBL depth. Actually, many of the papers are devoted to the ocean mixed layer, 
which is a kind of upside-down PBL. More generally, any model in which the PBL depth is an 
explicit  parameter and the vertical structure of the PBL is described with just a few degrees of 
freedom can be called a “bulk” PBL model. 

We begin our study of bulk models by deriving the equations that govern the vertically-
averaged properties of the PBL. Let  A be an arbitrary  intensive scalar, satisfying the “flux-form” 
conservation equation 

∂

∂t
ρA( ) +∇ ⋅ ρVA( ) + ∂

∂z
ρwA( ) = − ∂FA

∂z
+ SA ,

(1)

where FA ≡ ρ ′w ′A  is the upward turbulent flux of A , bars are omitted on the mean quantities, 

and SA  is a source or sink of A , per unit volume. The corresponding continuity equation is

∂ρ
∂t

+∇ ⋅ ρV( ) + ∂

∂z
ρw( ) = 0 ,

(2)
which can also be written as

∂ρ
∂t
+V ⋅ ∇ρ +w ∂ρ

∂z
= −ρ ∇ ⋅V + ∂w

∂z








 .

(3)
By use of (2), we can rewrite (1) in the “advective form:”
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ρ
∂A
∂t

+ V ⋅∇A + w ∂A
∂z






= −

∂FA
∂z

+ SA .

(4)
Integrating (1) from just below to just above the PBL top, and using Leibniz’ rule, we get

∂

∂t
ρAdz

zB −ε

zB +ε

∫








 − Δ ρA( )∂zB

∂t
+ ∇ ⋅ ρVAdz

zB −ε

zB +ε

∫








 − Δ ρVA( ) ⋅ ΔzB +Δ ρwA( ) = − FA( )B+ + SA dz

zB −ε

zB +ε

∫ ,

(5)
where the indicated terms drop  out as the domain of integration shrinks to zero and/or because all 
of the turbulence variables go to zero above the PBL top. Here we have used the notation 
Δ( ) ≡ ( )z= zB +ε − ( )z= zB −ε ≡ ( )B+ − ( )B , and henceforth subscripts B+ and B denote levels just 

above and just below the PBL top, respectively. For A ≡ 1 , (5) reduces to mass conservation in 
the form

ρB+
∂zB
∂t

+VB+ ⋅ ∇zB −wB+








 = ρB

∂zB
∂t

+VB ⋅ ∇zB −wB








 ≡ E −MB ,

(6)
where E − MB  is the total mass flux across the PBL top. In essence, (6) simply says that  the 

mass flux is continuous across the PBL top, i.e., no mass is created or destroyed between levels B 
and B+. We interpret MB  as the mass flux due to a loss of PBL mass into cumulus clouds, and E 

as the mass flux due to the turbulent entrainment of free atmospheric air into the PBL. See Fig. 1 
for a sketch illustrating the physical system under consideration. 

Figure 1: Sketch of a column of PBL air, with arrows 
indicating the lateral fluxes due to the horizontal 
winds, and the top-flux due to entrainment and the 
cumulus mass flux.
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With the use of (6), we can rewrite (5) as

−ΔA E − MB( ) = FA( )B + SA dz
zB −ε

zB +ε

∫ ,

(7)

Here we have assumed that FA( )B+ = 0 . For SA ≡ 0 , (7) simply  says that the total flux of A must 

be continuous across the PBL top. Notice that for ΔA ≠ 0 , a mass flux across the PBL top is 
generally  associated with a turbulent flux of A at level B. This flux serves to change the A of 
entering particles from AB+  to AB . For example, dry entrained air is moistened by an upward 

moisture flux which converges “discontinuously” at level B. Lilly (1968) was the first to derive 
(7) using the approach followed here. 

Now integrate (1) through the PBL depth, from the surface to level B, to obtain

∂

∂t
ρA( )dz

zS

zB

∫ − ρA( )B
∂zB
∂t

+

ρA( )S
∂zS
∂t

+∇ ⋅ ρVA( )dz
zS

zB

∫ − ρVA( )S ⋅∇zS

− ρVA( )B ⋅∇zB + ρwA( )B − ρwA( )S = FA( )S − FA( )B + SA dz
zS

zB −ε

∫

(8)
The condition that no mass crosses the Earth’s surface can be written as

ρS
∂zS
∂t

+VS ⋅ ∇zS −wS








 = 0 .

(9)
Use of (9) allows us to simplify (8) considerably, to 

∂

∂t
ρM AMδzM( ) +∇ ⋅ ρM VA( )M δzM − AB E −MB( ) = FA( )S − FA( )M + SA( )M δzM .

(10)
Here we define the depth of the PBL as

δ zM ≡ zB − zS .

(11)
and
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SA( )M δ zM ≡ SA dz
zS

zB −ε

∫ .

(12)
By combining (7) with (10), we obtain 

∂

∂t
ρM AMδzM( ) +∇ ⋅ ρM VA( )M δzM − AB+ E −MB( ) = FA( )S − SA( )M δzm + SA dz

zB −ε

zB +ε

∫ .

(13)
For A ≡ 1, (10) reduces to a statement of mass conservation for the whole PBL:

∂

∂t
ρMδzM( ) +∇ ⋅ ρV( )M δzM  = E − MB .

(14)
Again, refer to Fig. 1 for a sketch of the physical situation.

Now define a transformed vertical coordinate that follows the PBL top, given by

′z ≡ z − zB x, y,t( ) .
(15)

Using the methods described in the QuickStudy on vertical coordinate transformations, we can 
write

∂ρ
∂t





 z
=

∂ρ
∂t







′z

−
∂ρ
∂z

∂zB
∂t

,

(16)

∇ ⋅ ρV( ) = ∇ ′z ⋅ ρV( ) − ∂

∂z
ρV( )∇zB .

(17)
Substitution of (15) and (16) into (2) gives 

∂ρ
∂t







′z

+∇ ′z ⋅ ρV( ) + ∂ ρ ′w( )
∂z

= 0 ,

(18)
where we define

′w z( ) ≡ − ∂zB
∂t

+ V z( ) ⋅∇zB − w z( )





.

(19)
Note that ′w  is a function of height, and that
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ρB ′w zB( ) = ρB+ ′w zB+( ) = − E − MB( ) .
(20)

Similarly, Eq. (1) can be rewritten as 

∂ ρA( )
∂t










′z

+∇ ′z ⋅ ρVA( ) +
∂ ρ ′w A( )
∂ ′z

= −
∂FA
∂z

+ SA .

(21)
By combining (17) and (20), we obtain 

∂A
∂t







′z

+ V ⋅∇ ′z A + ′w
∂A
∂z

= −α
∂FA
∂z

+ SA .

(22)
Eq. (21) describes the time-rate-of-change of A  as seen on any surface of constant ′z . 

One such surface is the top of the boundary layer, so we can apply  (21) to determine the time rate 
of change of a quantity on the surface z = zB x, y,t( ) . Evaluating (21) at levels B+ and B, 

subtracting, and using (6), we find that

∂ ΔA( )
∂t

+ Δ V ⋅∇ ′z A( ) − E − MB( )Δ α
∂A
∂z






= aB

∂FA
∂z





 B
+ Δ αSA( ) .

(23)
This governs the time rates of change of the “jumps.” In writing (22), we have assumed that the 
turbulent flux divergence vanishes at level B+.

Consider the special case of the horizontal momentum equation, i.e., A→ V . Then we 
have αSA ≡ −α∇z p − fk ×V , where p is pressure and f is the Coriolis parameter. The gradient 

operator satisfies

−α∇z p = −α ∇ ′z p −
∂p
∂z
∇zB











=α ∇ ′z p + ρg∇zB( )
= −α∇ ′z p − g∇zB .

(24)
Here we have used hydrostatics. Applying (23) at levels B+ and B, and subtracting, we find that

−Δ α∇z p( ) = −Δα∇pB .

(25)
Then, corresponding to (22), we obtain
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∂ ΔV( )
∂t

+Δ V ⋅ ∇ ′z A( ) − E −MB( )∇ α
∂V
∂z









 =αB

∂Fv
∂z










B

− Δα∇pB − fk × ΔV .

(26)
For a steady state in which advection and friction are negligible, this reduces to

0 = −Δα∇pB − fk × ΔV ,
(27)

which we recognize as a form of the thermal wind equation, sometimes called Margules’ 
equation. 
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