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1 Definition of virtual temperature

For dry air, the equation of state is

pd = ρdRdT. (1)

Similarly, water vapor obeys its own equation of state and has its own gas constant:

e = ρvRvT. (2)

Here Rd and Rv are the mixing ratios of water vapor and dry air, respectively. The gas
constant for dry air is approximately 287 J kg−1 K−1, and the gas constant for water
vapor is approximately 462 J kg−1 K−1.

The total pressure is

p = pd + e (3)

and the total density is

ρ = ρd +ρv +ρl (4)

From (1) - (4), we see that

p = (ρdRd +ρvRv)T (5)

We define the virtual temperature as satisfying the ideal gas law with the total pressure
and the total density, and the gas constant for dry air:

p≡ ρRdTv. (6)

Substituting on both sides of (6), we obtain

(ρd +ρv +ρl)RdTv =(ρdRd +ρvRv)T

=

(
ρd +ρv

Rv

Rd

)
RdT ,

(7)
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where

Rd

Rv

∼= 0.622 (8)

This leads to

Tv = T

(
1+q Rv

Rd

1+q+ l

)
, (9)

where

q≡ ρv

ρd
(10)

is the mixing ratio of water vapor, and

l ≡ ρl

ρd
(11)

is the mixing ratio of liquid water. The quantity Tv is called the virtual temperature, or
sometimes the density temperature.

Eq. (9) can be approximated by

Tv ∼= T (1+δq− l), (12)

where

δ ≡ Rv−Rd

Rd

∼= 0.608. (13)

2 Buoyancy fluctuations and fluxes on isobaric surfaces

The following discussion is based on ideas developed by Lilly (1968). The virtual dry
static energy is

2



Virtual Temperature and Virtual Temperature Fluxes
Revised April 13, 2020 at 6:28pm

sv ≡ cpTv +gz. (14)

We use the moist static energy

h≡ cpT +gz+Lq, (15)

which is approximately conserved under both moist and dry adiabatic processes, even
when precipitation is occurring. The total water mixing ratio, q+ l, is also approximately
conserved under both moist and dry adiabatic processes, although it is of course affected
by precipitation.

Consider fluctuations at constant pressure, denoted by primes. We can write

h′ = cpT ′+Lq′, (16)

Here we neglect height fluctuations on the isobaric surfaces. From (12) and (14), we see
that

sv
′ ∼=cpTv

′

∼=cpT ′+ cpT̄
(
δq′− l′

)
=cpT ′+ ε

(
δLq′−Ll′

)
,

(17)

where for convenience we define the nondimensional ratio

ε ≡
cpT̄

L
∼= 0.1. (18)

Eq. (17) can be manipulated as follows:

sv
′ ∼=
(
cpT ′+Lq′

)
− (1−δε)Lq′− εLl′

=h′− (1−δε)L
(
q′+ l′

)
+[1− (1+δ )ε]Ll′ .

(19)

The coefficients (1−δε) and [1− (1+δ )ε] are both positive and nondimensional.

An expression for the virtual dry static energy flux, Fsv, can be obtained by mul-
tiplying (19) by w′. and then averaging. (We neglect the contributions that arise from
fluctuations of the leading factor of ρ .) The result is
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Fsv = Fh− (1−δε)LFq+l +[1− (1+δ )ε]LFl. (20)

Eq. (20) is valid regardless of the cloud amount. It was used by Randall (1987). Accord-
ing to (20), for given values of Fh and Fq+l , the buoyancy flux increases as the liquid water
flux increases.

Still following Lilly (1968), we consider two cases. First, if there is no cloud, then
LFl = 0, and (20) immediately reduces to

Fsv = (Fsv)clr ≡ Fh− (1−δε)LFq+l for clear air. (21)

What we are going to do now is find a formula similar to (21) that holds in an “overcast,”
where the fractional cloudiness is 100%. If the air is saturated everywhere, we can write

γcpT ′ ∼= Lq′ in a uniform cloud, (22)

where

γ ≡ L
cp

(
∂q∗

∂T

)
p
. (23)

From (22), we get

γh′ = (1+ γ)Lq′ in a uniform cloud, (24)

or

Lq′ =
(

γ

1+ γ

)
h′ in a uniform cloud, (25)

It follows that

Ll′ = L
(
q′+ l′

)
−
(

γ

1+ γ

)
h′ in a uniform cloud,, (26)

which leads to
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LFl = (LFl)cld ≡ LFq+l−
(

γ

1+ γ

)
Fh in a uniform cloud. (27)

Substituting (27) into (20), and collecting terms, we find that for the fully cloudy case

Fsv = (Fsv)cld ≡ βFh− εLFq+l in a uniform cloud, (28)

where for convenience we define

β ≡ 1+(1+δ )γε

1+ γ
(29)

The notations (LFl)cld and (Fsv)cld , defined in (27) and (28) respectively, will be used
below.

3 Buoyancy reversal

The fluxes just below the PBL top satisfy

(Fh)B =−E∆h+∆R, (30)

(Fh)B =−E∆h+∆R, (31)

(
Fq+l

)
B =−E∆(q+ l) , (32)

and

(Fsv)B =−E [β∆h− εL∆(q+ l)]+β∆R in a uniform cloud. (33)

We want to rewrite (33) in the form

(Fsv)B =−E [∆sv− (∆sv)crit ]+β∆R in a uniform cloud (34)
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Here (∆sv)crit is defined as the value of ∆sv such that entrainment has no effect on (Fsv)B.
For ∆sv > (∆sv)crit entrainment reduces (Fsv)B, which is what entrainment normally does
in a clear boundary layer. But for ∆sv < (∆sv)crit entrainment increases (Fsv)B. This
means that for ∆sv < (∆sv)crit entrainment drives convection! If the convection promotes
additional entrainment, then the entrainment rate could amplify unstably.

We could use (34) for a cloud-free boundary layer, if we set (∆sv)crit = 0 and ∆R = 0.
We can say that (∆sv)crit = 0 for clear boundary layers.

To find an expression for (∆sv)crit that can be used for boundary layers that are uni-
formly cloudy just below the inversion, we use (17) to write

∆sv ∼=∆s+δεL∆q− εL∆l

=∆s+δεL∆q− εL∆(q+ l)+ εL∆q

=∆s+(1+δ )εL∆q− εL∆(q+ l)

=∆h− [1− (1+δ )ε]L∆q− εL∆(q+ l) .

(35)

Eq. (35) is valid whether or not a cloud is present. For the special case of a uniform cloud,
the water vapor jump can be written as

L∆q =L(qB+−qB)

=L(qB+−q∗B)

=L(q∗B+−q∗B)−L(q∗B+−qB+)

=γ∆s−L(q∗B+−qB+) for a uniform cloud.

(36)

From (36), we see that

(1+ γ)L∆q = γ∆h−L(q∗B+−qB+) for a uniform cloud, (37)

or

L∆q =
γ∆h−L(q∗B+−qB+)

(1+ γ)
for a uniform cloud. (38)

Substituting (38) back into (35), we find that

6



Virtual Temperature and Virtual Temperature Fluxes
Revised April 13, 2020 at 6:28pm

L∆q =L(qB+−qB)

=L(qB+−q∗B)

=L(q∗B+−q∗B)−L(q∗B+−qB+)

=γ∆s−L(q∗B+−qB+) for a uniform cloud.

(39)

Eq. (39) can be rearranged to

β∆h− εL∆(q+ l) = ∆sv−
[

1− (1+δ )ε

1+ γ

]
L(q∗B+−qB+) for a uniform cloud. (40)

for a uniform cloud.

Comparing (33), (34), and (39), we see that

(∆sv)crit =

[
1− (1+δ )ε

1+ γ

]
L(q∗B+−qB+)for a uniform cloud. (41)

This result, derived by Randall (1980), shows that (∆sv)crit is a measure of the relative
humidity of the air above cloud top. When the air is drier, (∆sv)crit is larger. The drier the
entrained air is, the more liquid can be evaporated into it, and the stronger the evaporative
cooling can be.

4 The buoyancy of mixed parcels

Add content here.

5 Buoyancy fluxes in partly cloudy layers

Eq. (20) can be used to determine the buoyancy flux in partly cloudy layers. The following
discussion is taken from Randall (1987), but with some changes in notation. We use a
mass flux approach for all fluxes, i.e.,

Fψ = Mc (ψu−ψd) (42)
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where ψ is a generic intensive variable,

Mc ≡ ρσ (1−σ)(wu−wd) , (43)

ψ = σψu +(1−σ)ψd , (44)

and σ is the fractional area covered by rising motion. From (44), we see that

ψu = ψ +(1−σ)(ψu−ψd) (45)

and .

ψd = ψ−σ (ψu−ψd) . (46)

Eqs. (45) and (46) play an important role in the analysis below.

In order to use (20), we have to determine the flux of liquid water. The liquid water
mixing ratio in the updraft is given by

lu =Max{(q+ l)u− (q∗)u,0}

=Max
{[

(q+ l)u− (q+ l)
]
+
[
(q+ l)−q∗

]
+
[
q∗− (q∗)u

]
,0
}
,

(47)

where q∗ is the saturation mixing ratio at temperature T . The second line of (47) shows
that, for a given mean state, the liquid water in the updraft depends on three things:

• the total water difference between the updraft and the mean state, (q+ l)u−(q+ l),

• the relative humidity of the mean state itself, as measured by (q+ l)−q∗, and

• the difference in saturation mixing ratio between the mean state and the updraft, as
measured by q∗− (q∗)u.

The difference in saturation mixing ratios can be written as

8



Virtual Temperature and Virtual Temperature Fluxes
Revised April 13, 2020 at 6:28pm

L
[
q∗− (q∗)u

]
=

(
γ

1+ γ

)[
h∗− (h∗)u

]
=

(
γ

1+ γ

)[(
h∗−h

)
−
(
hu−h

)]
.

(48)

Here we have replaced h∗u by hu, which is only correct when the updraft is saturated.
Substituting (48) into (47), we obtain

Llu = Max
{

Ll̃ +L
[
(q+ l)u− (q+ l)

]
−
(

γ

1+ γ

)(
hu−h

)
,0
}

, (49)

where

Ll̃ ≡ L
[
(q+ l)−q∗

]
−
(

γ

1+ γ

)(
h∗−h

)
(50)

is a property of the mean state. Finally, we use (45) to rewrite (49) as

Llu = Max
{

Ll̃ +(1−σ)L [(q+ l)u− (q+ l)d ]−
(

γ

1+ γ

)
(1−σ)(hu−hd) ,0

}
(51)

In a similar way, we can show that

Lld = Max
{

Ll̃−σL [(q+ l)u− (q+ l)d ]+

(
γ

1+ γ

)
σ (hu−hd) ,0

}
. (52)

To interpret the meaning of Ll̃, consider some particular cases. Inspection of (50)
shows that

Ll = Ll̃ when both updraft and downdraft are saturated. (53)

This means that when both the updraft and downdraft are saturated l̃ is simply equal to
the mean liquid water mixing ratio. A similar conclusion can be drawn directly from (50):
When the mean state is saturated, we have (q+ l)− q∗ = l and h∗− h = 0, so that again
(50) reduces to Ll = Ll̃. If only the updraft is saturated, it is possible (even likely) for l̃
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to be negative. In that case, l̃ can be interpreted as the amount of liquid water that would
have to be isobarically evaporated into the mean state in order to bring it to saturation. In
general, l̃ is a measure of the relative humidity of the mean state.

We now see that Eq. (51) expresses the liquid water content of the updraft in terms of
a measure of the relative humidity of the mean state, namely l̃, and the updraft-downdraft
differences in q+ l and h, weighted by 1−σ . If the updraft-downdraft differences are set
to zero, then (51) reduces to lu = l̃ ≡ l.

Similar comments apply to (52).

According to (51), lu increases as σ decreases, for a given mean state and given
updraft-downdraft differences in q+ l and h. Why should that be true? From (45), we see
that for a generic variable

ψu−ψ =−
(

1−σ

σ

)
(ψd−ψ) . (54)

This means that as σ decreases towards zero, the updraft properties become increasingly
different from those of the mean, and of course the downdraft properties become closer
to those of the mean. For a given mean state and given updraft-downdraft differences in h
and q+ l, the wettest possible updraft is obtained in the limit as σ → 0.

Now define

L(Fl)u ≡McLlu ≥ 0, (55)

and

L(Fl)d ≡−McLld ≤ 0. (56)

With these definitions, the total liquid water flux can be expressed as

LFl =McL(lu− ld)

=L(Fl)u +L(Fl)d .
(57)

Using (51), we can now write
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L(Fl)u =McLlu

=McMax
{

Ll̃ +(1−σ)L [(q+ l)u− (q+ l)d ]− (1−σ)

(
γ

1+ γ

)
(hu−hd) ,0

}
=Max

{
McLl̃ +(1−σ)L(Fl)cld ,0

}
.

(58)

Here we have used the notation defined in (27). Similarly, we find that

L(Fl)d ≡−McLld

=−McMax
{

Ll̃−σL [(q+ l)u− (q+ l)d ]+

(
γ

1+ γ

)
σ (hu−hd) ,0

}
=−Max

{
McLl̃−σ(LFl)cld ,0

}
.

(59)

Suppose now that the updraft contains liquid water but the downdraft does not. In
that case, the total liquid water flux satisfies

L(Fl) = McLl̃ +(1−σ)(LFl)cld for partly cloudy layers. (60)

Recall that (LFl)cld is the liquid water flux in a uniformly cloudy layer. It is therefore
surprising to see that is weighted, in (56), by 1−σ , which is the fraction of the area that
is not cloudy.

Substituting (60) into (20), we obtain a similarly strange result:

Fsv =Fh− (1−δε)LFq+l +[1− (1+δ )ε]
[
McLl̃ +(1−σ)(LFl)cld

]
=σ

[
Fh− (1−δε)LFq+l

]
+(1−σ)

{
Fh− (1−δε)LFq+l +[1− (1+δ )ε] (LFl)cld

}
+[1− (1+δ )ε]McLl̃ ,

(61)

or

Fsv = σ(Fsv)clr +(1−σ)(Fsv)cld +[1− (1+δ )ε]McLl̃ in partly cloudy layers. (62)
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According to (62), the total buoyancy flux in a partly cloudy layer involves a weighted
sum of and , as might be expected (e.g., Sommeria and Deardorff 1977), but the weights
are “backward,” in that (Fsv)clr is weighted by the cloud fraction, and (Fsv)cld is weighted
by one minus the cloud fraction. When I first derived (62), I thought that I had made an
algebra mistake. The tern involving l̃ is expected to be negative in most cases.

12



Virtual Temperature and Virtual Temperature Fluxes
Revised April 13, 2020 at 6:28pm

Acknowledgments

Kelley Branson helped me to convert this document to LaTeX.

References and Bibliography

Chen, J.-M., 1991: Turbulence-scale condensation parameterization. Journal of the atmo-
spheric sciences, 48 (12), 1510–1512.

Emanuel, K. A., 1994: Atmospheric convection. Oxford University Press on Demand.

Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quar-
terly Journal of the Royal Meteorological Society, 94 (401), 292–309.

Mellor, G. L., 1977: The gaussian cloud model relations. Journal of the Atmospheric
Sciences, 34 (2), 356–358.

Randall, D. A., 1980: Conditional instability of the first kind upside-down. Journal of the
Atmospheric Sciences, 37 (1), 125–130.

Randall, D. A., 1987: Turbulent fluxes of liquid water and buoyancy in partly cloudy
layers. Journal of the Atmospheric Sciences, 44 (5), 850–858.

Sommeria, G., and J. Deardorff, 1977: Subgrid-scale condensation in models of non-
precipitating clouds. Journal of the Atmospheric Sciences, 34 (2), 344–355.

13


	Definition of virtual temperature
	Buoyancy fluctuations and fluxes on isobaric surfaces
	Buoyancy reversal
	The buoyancy of mixed parcels
	Buoyancy fluxes in partly cloudy layers

