Vertical Coordinate Transformations

David Randall

Consider two vertical coordinates, denoted by z and ζ, respectively. Although the " z " symbol suggests height, no such implication is intended here; z and ζ can be any variables at all, so long as they vary monotonically with height.

Suppose that we have a rule telling how to compute ζ for a given value of z, and vice versa. For example, we might define $\zeta \equiv z-z_{S}(x, y, t)$, where $z_{S}(x, y, t)$ is the distribution of z along the Earth's surface.

Consider the variation of an arbitrary dependent variable, A, with the independent

Figure 1: Sketch used to derive the rule relating derivatives on surfaces of constant z to those on surfaces of constant ζ.
variable x, as sketched in Fig. 1. Our goal is to relate $\left(\frac{\partial A}{\partial x}\right)_{\zeta}$ to $\left(\frac{\partial A}{\partial x}\right)_{z}$. With reference to Fig. 1, we can write

$$
\begin{align*}
\frac{A_{2}-A_{1}}{x_{2}-x_{1}} & =\frac{A_{3}-A_{1}}{x_{3}-x_{1}}-\left(\frac{A_{3}-A_{2}}{x_{3}-x_{1}}\right) \\
& =\frac{A_{3}-A_{1}}{x_{3}-x_{1}}-\left(\frac{z_{3}-z_{2}}{x_{3}-x_{1}}\right)\left(\frac{A_{3}-A_{2}}{z_{3}-z_{2}}\right) \\
& =\frac{A_{3}-A_{1}}{x_{3}-x_{1}}-\left(\frac{z_{3}-z_{1}}{x_{3}-x_{1}}\right)\left(\frac{A_{3}-A_{2}}{z_{3}-z_{2}}\right) . \tag{1}
\end{align*}
$$

Taking the limit as the increments become small, we obtain

$$
\begin{equation*}
\left(\frac{\partial A}{\partial x}\right)_{z}=\left(\frac{\partial A}{\partial x}\right)_{\zeta}-\left(\frac{\partial z}{\partial x}\right)_{\zeta}\left(\frac{\partial A}{\partial z}\right)_{x} \tag{2}
\end{equation*}
$$

Naturally, the derivation above works in exactly the same way if the independent variable is time, rather than a horizontal coordinate.

Starting from (2), we can show that the horizontal gradient satisfies

$$
\nabla_{z} A=\nabla_{\zeta} A-\nabla_{\zeta} z\left(\frac{\partial A}{\partial z}\right)_{x} .
$$

(3)

Analogous identities apply with other operators. For example, for an arbitrary horizontal vector \mathbf{V}, we can write

$$
\nabla_{z} \times \mathbf{V}=\nabla_{\zeta} \times \mathbf{V}-\nabla_{\zeta} z \times\left(\frac{\partial \mathbf{V}}{\partial z}\right)_{x, y}
$$

(4)
and

$$
\nabla_{z} \cdot \mathbf{V}=\nabla_{\zeta} \cdot \mathbf{V}-\nabla_{\zeta} z \cdot\left(\frac{\partial \mathbf{V}}{\partial z}\right)_{x, y}
$$

(5)

In the example suggested earlier, with $\zeta \equiv z-z_{S}(x, y, t)$, Eq. (3) reduces to

$$
\nabla_{z} A=\nabla_{\zeta} A-\left(\nabla z_{\zeta}\right)\left(\frac{\partial A}{\partial z}\right)_{x}
$$

(6)

As a second example, let z be pressure and ζ be height, and let A be the geopotential, denoted by ϕ. Then (3) becomes

$$
\begin{aligned}
\nabla_{p} \phi & =\nabla_{z} \phi-\nabla_{z} p \frac{\partial \phi}{\partial p} \\
& =-\nabla_{z} p \frac{\partial \phi}{\partial p} \\
& \cong \alpha \nabla_{z} p
\end{aligned}
$$

(7)

The third line follows in the hydrostatic limit, where $\alpha=R T / p$ is the specific volume. As a third example, again using hydrostatics, we can write

$$
\begin{align*}
\nabla_{p} \phi & =\nabla_{\theta} \phi-\frac{\partial \phi}{\partial p} \nabla_{\theta} p \\
& \cong \nabla_{\theta} \phi+\alpha \nabla_{\theta} p \\
& =\nabla_{\theta} \phi+\frac{R T}{p} \nabla_{\theta} p . \tag{8}
\end{align*}
$$

By logarithmic differentiation of

$$
T=\theta\left(\frac{p}{p_{0}}\right)^{R / c_{p}}
$$

(9)
we obtain

$$
\begin{equation*}
\frac{\nabla_{\theta} p}{p}=\frac{c_{p}}{R} \frac{\nabla_{\theta} T}{T} . \tag{10}
\end{equation*}
$$

Use of (10) in (8) gives

$$
\begin{equation*}
\nabla_{p} \phi=\nabla_{\theta}\left(c_{p} T+\phi\right) . \tag{11}
\end{equation*}
$$

Check the sign in (4)

In Cartesian coordinates (x, y), the curl of a horizontal vector (u, v) is given by

$$
\begin{equation*}
\mathbf{k} \cdot \nabla_{z} \times \mathbf{V}=\left(\frac{\partial v}{\partial x}\right)_{z}-\left(\frac{\partial u}{\partial y}\right)_{z} \tag{12}
\end{equation*}
$$

Using (2), we can rewrite (11) as

$$
\begin{align*}
\mathbf{k} \cdot \nabla_{z} \times \mathbf{V} & =\left[\left(\frac{\partial v}{\partial x}\right)_{\zeta}-\left(\frac{\partial v}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{\zeta}\right]_{\zeta}-\left[\left(\frac{\partial u}{\partial y}\right)_{\zeta}-\left(\frac{\partial u}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial y}\right)_{\zeta}\right] \\
& =\left[\left(\frac{\partial v}{\partial x}\right)_{\zeta}-\left(\frac{\partial u}{\partial y}\right)_{\zeta}\right]-\left[\left(\frac{\partial v}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{\zeta}-\left(\frac{\partial u}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial y}\right)_{\zeta}\right] \\
& =\left(\mathbf{k} \cdot \nabla_{\zeta} \times \mathbf{V}\right)+\mathbf{k} \cdot\left[\left(\frac{\partial \mathbf{V}}{\partial z}\right)_{x, y} \times \nabla_{\zeta} z\right] . \tag{13}
\end{align*}
$$

We know that

$$
\begin{equation*}
\mathbf{k} \cdot\left[\left(\frac{\partial \mathbf{V}}{\partial z}\right)_{x, y} \times \nabla_{\zeta} z\right]=\left(\frac{\partial u}{\partial z}\right)_{x, y}\left(\frac{\partial z}{\partial y}\right)_{\zeta}-\left(\frac{\partial v}{\partial z}\right)_{x, y}\left(\frac{\partial z}{\partial x}\right)_{\zeta}, \tag{14}
\end{equation*}
$$

so we conclude that

$$
\begin{equation*}
\mathbf{k} \cdot \nabla_{z} \times \mathbf{V}=\left(\mathbf{k} \cdot \nabla_{\zeta} \times \mathbf{V}\right)+\mathbf{k} \cdot\left[\left(\frac{\partial \mathbf{V}}{\partial z}\right)_{x, y} \times \nabla_{\zeta} z\right], \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla_{z} \times \mathbf{V}=\nabla_{\zeta} \times \mathbf{V}-\left[\nabla_{\zeta} z \times\left(\frac{\partial \mathbf{V}}{\partial z}\right)_{x, y}\right] \tag{16}
\end{equation*}
$$

This is consistent with (4).

