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Empirical Orthogonal Functions

 

Lorenz (1956) invented empirical orthogonal functions (EOFs) because he saw
that they could be of use in statistical forecasting; EOFs were also invented,
independently, by statisticians. Amazingly, Lorenz never published his EOF study in a
journal. The goal of his study was to find a way to extract a compact or simplified but
“optimal” representation of data with both space and time dependence, e.g. a time-
sequence of sea-level pressure maps. His approach was to expand the data in terms of
optimally defined functions of space, each of which is associated with a time-dependent
“amplitude.” 

Consider  variables , which might represent the pressures at  stations as

functions of time. Let these be observed at times, . Expand as
follows:

. (11.1)

Here the  are unknown time-independent basis functions, which will be the EOFs, and

the are unknown time-dependent coefficients or amplitudes. The total number of

’s is the same as the total number of stations, because the spatial information is
contained in the ’s. If the sum in (11.1) is taken over all of the ’s, then we recover the
input field, with no loss of information. 

Suppose, however, that we truncate the series:

, (11.2)

where , and is the error associated with the truncation. We would like to

choose  and  in such a way that
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(11.3)

is minimized for a given . Lorenz (1956) shows that  is minimized if we choose
 and  so that

(11.4)

and

, (11.5)

where . In (5), denotes a time average, and denotes a departure
from the time average. The meaning of (11.4) is that the EOFs are orthogonal in space.
The meaning of (11.5) is that the amplitudes of the EOFs are orthogonal in time. 

It is this orthogonality in both space and time that makes the EOFs an “optimal”
representation of the data. The fact that  is minimized demonstrates this, but there is
another way to see it. Suppose that we have chosen a first or “lowest-order” basis
function to represent the spatial structure of our data, and that we now wish to make the
best possible choice of a second basis function. Clearly the worst possible choice would
be to make the second basis function the same as the first, because in that case the second
function would contribute no additional information beyond what was already available
in the first. This suggests that the second basis function should be “as different as
possible” from the first; more precisely, the second function should be spatially
uncorrelated with the first, and this is equivalent to the requirement of spatial
orthogonality. Extending this reasoning, it is clear that a set of  basis functions should
be chosen so that each is spatially orthogonal to each of the others. Similarly, the time-
dependent amplitudes of the EOFs should be temporally orthogonal, to ensure that each
new coefficient (with its EOF) contribute as much new information as possible. 

A method to solve for  and  is as follows. First, we introduce some

matrix notation. Let , , , and  be matrices of  rows and  columns whose

elements are , , , and , respectively. Let  be a square

matrix of order  whose elements are Ykj. Then (11.1) can be rewritten as

, (11.6)

and (11.4) and (11.5) become
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, (11.7)

, (11.8)

where  denotes the transpose,  is the identity matrix, and  is a matrix whose
nondiagonal elements vanish, and whose diagonal elements are , as given by (11.5).
It should be clear that (11.6)-(11.8) are merely restatements of (11.1), (11.4), and (11.5),
respectively, using matrix notation.

From (11.6), we see that 

(11.9)

Define

(11.10)

so that the elements of  are proportional to the covariances of the . From (11.6),
we have

(11.11)

so, using (11.7) and (11.8),

(11.12)

or, using (11.10),

(11.13)

From (11.7) and (11.13) we can solve for  and , since  is known from (11.10). This
is a standard “eigenvalue-eigenvector” problem. Once  is known, we can use (11.9) to
find .

The ’s do not have to be confined to one level, and they can even encompass
more than one physical variable, e.g. both the temperature at 500 mb and the surface
pressure. In such a case, the ’s are called “extended EOFs.”
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