Alternative Forms of the Hydrostatic Equation

David Randall

The hydrostatic equation can be written in many different ways. Here are some of the possibilities:

$$
\begin{gathered}
\frac{\partial p}{\partial z}=-\rho g \\
\frac{\partial \phi}{\partial p}=-\alpha \\
\frac{\partial \phi}{\partial \sigma}=-\pi \alpha \\
\frac{\partial \Pi}{\partial z}=-\frac{g}{c_{p} \theta} \\
\frac{\partial \phi}{\partial \Pi}=-\theta \\
\frac{\partial p}{\partial \theta}=-\rho_{\theta} g \\
\frac{\partial s}{\partial \theta}=\Pi \\
\frac{\partial \phi}{\partial \theta}=\alpha \rho_{\theta} g \\
\frac{\partial s}{\partial \eta}=T
\end{gathered}
$$

The notation is as follows:
z is height
p is pressure
ρ is density
g is the acceleration of gravity
$\phi \equiv g z$ is the geopotential
$\alpha \equiv \frac{1}{\rho}$ is the specific volume
$\sigma \equiv \frac{p-p_{T}}{p_{S}-p_{T}}$ is the terrain-following sigma coordinate, where p_{T} and p_{S} are the pressures at the model top and the surface, respectively
$\pi \equiv p_{S}-p_{T}$
$\Pi \equiv c_{p}\left(\frac{p}{p_{0}}\right)^{\kappa}$ is the Exner function, where c_{p} is the specific heat of air at constant pressure, p_{0} is a constant reference pressure, $\kappa \equiv \frac{R}{c_{p}}$, and R is the specific gas constant for air
$\theta \equiv \frac{c_{p} T}{\Pi}$ is the potential temperature, and T is temperature,
$s \equiv \Pi \theta+\phi=c_{p} T+\phi$ is the dry static energy,
$\rho_{\theta} \equiv \rho \frac{\partial z}{\partial \theta} \cong-\frac{1}{g} \frac{\partial p}{\partial \theta}$ is the isentropic pseudo-density, and
$\eta \equiv c_{p} \ln \left(\frac{\theta}{\theta_{0}}\right)$ is the entropy, where θ_{0} is a constant reference value of the potential temperature.

