Alternative Forms of the Hydrostatic Equation

David Randall

The hydrostatic equation can be written in many different ways. Here are some of the possibilities:

$$\frac{\partial p}{\partial z} = -\rho g$$

$$\frac{\partial \phi}{\partial p} = -\alpha$$
(1)

$$\frac{\partial \phi}{\partial \sigma} = -\pi \alpha \tag{2}$$

$$\frac{\partial \Pi}{\partial z} = -\frac{g}{c_p \theta} \tag{3}$$

$$\frac{\partial \phi}{\partial \Pi} = -\theta$$

$$\frac{\partial p}{\partial \theta} = -\rho_{\theta} g \tag{5}$$

$$\frac{\partial s}{\partial \theta} = \Pi$$
 (6)

$$\frac{\partial \phi}{\partial \theta} = \alpha \rho_{\theta} g \tag{7}$$

$$\frac{\partial s}{\partial \eta} = T \tag{8}$$

(9)

The notation is as follows:

z is height

p is pressure

 ρ is density

g is the acceleration of gravity

 $\phi \equiv gz$ is the geopotential

 $\alpha = \frac{1}{\rho}$ is the specific volume

 $\sigma = \frac{p - p_T}{p_S - p_T}$ is the terrain-following sigma coordinate, where p_T and p_S are the pressures at the model top and the surface, respectively

 $\pi \equiv p_S - p_T$

 $\Pi \equiv c_p \left(\frac{p}{p_0}\right)^{\kappa}$ is the Exner function, where c_p is the specific heat of air at constant pressure, p_0 is a constant reference pressure, $\kappa \equiv \frac{R}{c_p}$, and R is the specific gas constant for air

 $\theta = \frac{c_p T}{\Pi}$ is the potential temperature, and T is temperature,

 $s \equiv \Pi \theta + \phi = c_p T + \phi$ is the dry static energy,

 $\rho_{\theta} \equiv \rho \frac{\partial z}{\partial \theta} \cong -\frac{1}{g} \frac{\partial p}{\partial \theta}$ is the isentropic pseudo-density, and

 $\eta \equiv c_p \ln \left(\frac{\theta}{\theta_0} \right)$ is the entropy, where θ_0 is a constant reference value of the potential temperature.