## Fourier Series

## David Randall

Assume that $u(x, t)$ is real and integrable. If the domain is periodic, with period $L$, we can express $u(x, t)$ exactly by a Fourier series expansion:

$$
\begin{equation*}
u(x, t)=\sum_{k=-\infty}^{\infty} \hat{u}_{k}(t) e^{i k x} \tag{1}
\end{equation*}
$$

The complex coefficients $\hat{u}_{k}(t)$ can be evaluated using

$$
\hat{u}_{k}(t)=\frac{1}{L} \int_{x-L / 2}^{x+L / 2} u(x, t) e^{-i k x} d x .
$$

(2)

Recall that the proof of (1) and (2) involves use of the orthogonality condition

$$
\begin{equation*}
\frac{1}{L} \int_{x-L / 2}^{x+L / 2} e^{i k x} e^{i l x} d x=\delta_{k l} \tag{3}
\end{equation*}
$$

where

$$
\delta_{k l} \equiv\left\{\begin{array}{l}
1, k=l \\
0, k \neq l
\end{array}\right.
$$

(4)
is the Kronecker delta.
From (1), we see that the $x$-derivative of $u$ satisfies

$$
\begin{equation*}
\frac{\partial u}{\partial x}(x, t)=\sum_{k=-\infty}^{\infty} i k \hat{u}_{k}(t) e^{i k x} . \tag{5}
\end{equation*}
$$

Inspection of (5) shows that $\frac{\partial u}{\partial x}$ does not have a contribution from $\hat{u}_{0}$; the reason for this should be clear.

A numerical model uses equations similar to (1), (2), and (5), but with a finite set of wave numbers, and with $x$ defined on a finite mesh:

$$
\begin{gather*}
u\left(x_{j}, t\right) \cong \sum_{k=-n}^{n} \hat{u}_{k}(t) e^{i k x_{j}}, \\
\hat{u}_{k}(t) \cong \frac{1}{M} \sum_{i=1}^{M} u\left(x_{j}, t\right) e^{-i k x_{j}},-n \leq k \leq n,  \tag{6}\\
\frac{\partial u}{\partial x}\left(x_{j}, t\right) \cong \sum_{k=-n}^{n} i k \hat{u}_{k}(t) e^{i k x_{j}} . \tag{7}
\end{gather*}
$$

Note that we have used "approximately equal signs" in (6) - (8). In (7) we sum over a grid with $M$ points. In the following discussion, we assume that the value of $n$ is chosen by the user. The value of $M$, corresponding to a given value of $n$, is discussed below.

Substitution of (6) into (7) gives

$$
\begin{equation*}
\hat{u}_{k}(t)=\frac{1}{M} \sum_{i=1}^{M}\left\{\left[\sum_{l=-n}^{n} \hat{u}_{l}(t) e^{i l x_{j}}\right] e^{i k x_{j}}\right\},-n \leq k \leq n . \tag{9}
\end{equation*}
$$

This is of course a rather circular substitution, but the result serves to clarify some basic ideas. If expanded, each term on the right-hand side of (9) involves the product of two wave numbers, $l$ and $k$, each of which lies in the range $-n$ to $n$. The range for wave number $l$ is explicitly spelled out in the inner sum on the right-hand side of (9); the range for wave number $k$ is understood because, as indicated, we wish to evaluate the left-hand side of (9) for $k$ in the range $-n$ to $n$. Because each term on the right-hand side of (9) involves the product of two Fourier modes with wave numbers in the range $-n$ to $n$, each term includes wave numbers up to $\pm 2 n$. We therefore need $2 n+1$ complex coefficients, i.e. $2 n+1$ values of the $\hat{u}_{k}(t)$.

Because $u$ is real, it must be true that $\hat{u}_{-k}=\hat{u}_{k}^{*}$, where the $*$ denotes the conjugate. To see why this is so, consider the $+k$ and $-k$ contributions to the sum in (6):

$$
\begin{align*}
T_{k}\left(x_{j}\right) & \equiv \hat{u}_{k}(t) e^{i k x_{j}}+\hat{u}_{-k}(t) e^{-i k x_{j}} \\
& \equiv R_{k} e^{i \theta} e^{i k x_{j}}+R_{-k} e^{i \mu} e^{-i k x_{j}}, \tag{10}
\end{align*}
$$

where $R_{k} e^{i \theta} \equiv \hat{u}_{k}(t)$ and $R_{-k} e^{i \mu} \equiv \hat{u}_{-k}(t)$, and $R_{k}$ and $R_{-k}$ are real and non-negative. By linear independence, our assumption that $u\left(x_{j}, t\right)$ for all $x_{j}$ is real implies that the imaginary part of $T_{k\left(x_{j}\right)}$ must be zero, for all $x_{j}$. It follows that

$$
\begin{equation*}
R_{k} \sin \left(\theta+k x_{j}\right)+R_{-k} \sin \left(\mu-k x_{j}\right)=0 \text { for all } x_{j} . \tag{11}
\end{equation*}
$$

The only way to satisfy this for all $x_{j}$ is to set

$$
\begin{equation*}
\theta+k x_{j}=-\left(\mu-k x_{j}\right)=-\mu+k x_{j}, \text { which means that } \theta=-\mu \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{k}=R_{-k} . \tag{13}
\end{equation*}
$$

Eqs. (12) and (13) imply that

$$
\begin{equation*}
\hat{u}_{-k}=\hat{u}_{k}^{*}, \tag{14}
\end{equation*}
$$

as was to be demonstrated.
Eq. (14) implies that $\hat{u}_{k}$ and $\hat{u}_{-k}$ together involve only two distinct real numbers. In addition, it follows from (14) that $\hat{u}_{0}$ is real. Therefore, the $2 n+1$ complex values of $\hat{u}_{k}$ embody the equivalent of only $2 n+1$ distinct real numbers. The Fourier representation up to wave number $n$ is thus equivalent to representing the real function $u(x, t)$ on $2 n+1$ grid points, in the sense that the information content is the same. We conclude that, in order to use a grid of $M$ points to represent the amplitudes and phases of all waves up to $k= \pm n$, we need $M \geq 2 n+1$; we can use more than $2 n+1$ points, but not fewer.

As a very simple example, a highly truncated Fourier representation of $u$ including just wave numbers zero and one is equivalent to a grid-point representation of $u$ using 3 grid points. The real values of $u$ assigned at the three grid points suffice to compute the coefficient of wave number zero (the mean value of $u$ ) and the phase and amplitude (or "sine and cosine coefficients") of wave number one.

Substituting (7) into (8) gives

$$
\begin{equation*}
\frac{\partial u}{\partial x}\left(x_{l}, t\right) \cong \sum_{k=-n}^{n}\left[\frac{i k}{M} \sum_{i=1}^{M} u\left(x_{j}, t\right) e^{-i k x_{j}}\right] e^{i k x_{l}} \tag{15}
\end{equation*}
$$

Reversing the order of summation leads to

$$
\begin{equation*}
\frac{\partial u}{\partial x}\left(x_{l}, t\right) \cong \sum_{i=1}^{M} \alpha_{j}^{l} u\left(x_{j}, t\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{j}^{l} \equiv \frac{i}{M} \sum_{k=-n}^{n} k e^{i k\left(x_{l}-x_{j}\right)} \tag{17}
\end{equation*}
$$

The point of this little derivation is that (16) can be interpreted as a finite-difference approximation - a special one involving all grid points in the domain. From this point of view, spectral models can be regarded as a class of finite-difference models.

Eq. (9) can be rewritten as

$$
\begin{equation*}
\left(\hat{u}_{k}\right)=\frac{1}{M} \sum_{i=1}^{M}\left[\sum_{l=-n}^{n} \hat{u}_{l} e^{i(l-k) x_{j}}\right] . \tag{18}
\end{equation*}
$$

The contribution of wave number $l$ to $\hat{u}_{k}$ is

$$
\begin{equation*}
\left(\hat{u}_{k}\right)_{l} \equiv \frac{1}{M} \sum_{i=1}^{M}\left[\hat{u}_{l} e^{i(l-k) x_{j}}\right]=\frac{\hat{u}_{l}}{M} \sum_{i=1}^{M} e^{i(l-k) x_{j}} . \tag{19}
\end{equation*}
$$

Then we can write

$$
\begin{equation*}
\hat{u}_{k}=\sum_{l=-n}^{n}\left(\hat{u}_{k}\right)_{l} . \tag{20}
\end{equation*}
$$

For $l=k$, we recover

$$
\begin{equation*}
\left(\hat{u}_{k}\right)_{k}=\frac{u_{k}}{M} \sum_{i=1}^{M} 1=\hat{u}_{k} . \tag{21}
\end{equation*}
$$

For $l \neq k$, we get

$$
\begin{equation*}
\left(\hat{u}_{k}\right)_{l}=\frac{\hat{u}_{l}}{M} \sum_{i=1}^{M}\left\{\cos \left[(l-k) x_{j}\right]+i \sin \left[(l-k) x_{j}\right]\right\} . \tag{22}
\end{equation*}
$$

From (22) we can see that, provided that $l-k$ "fits" on the grid, we will have

$$
\begin{equation*}
\left(\hat{u}_{k}\right)_{l}=0 \text { for } l \neq k . \tag{23}
\end{equation*}
$$

The results (21) and (23) are as would be expected.
The contribution of grid point $j$ to the Fourier coefficient $\hat{u}_{k}$ is

$$
\begin{equation*}
\left(\hat{u}_{k}\right)_{j} \equiv \frac{1}{M} \sum_{l=-n}^{n} \hat{u}_{l} e^{i(l-k) x_{j}} \tag{24}
\end{equation*}
$$

Then

$$
\begin{equation*}
\hat{u}_{k}=\sum_{i=1}^{M}\left(\hat{u}_{k}\right)_{j},-n \leq k \leq n \tag{25}
\end{equation*}
$$

We must get $2 n+1$ independent complex values of $\hat{u}_{k}$. These are

$$
\left(\hat{u}_{k}\right)_{j}=\frac{e^{-i k x_{j}}}{M} \sum_{l=-n}^{n} \hat{u}_{l} e^{i x_{j}}
$$

Comparing with (7), we see that

$$
\begin{equation*}
\left(\hat{u}_{k}\right)_{j}=u\left(x_{j}\right) e^{i k x_{j}},-n \leq k \leq n, \tag{27}
\end{equation*}
$$

as expected.

