
Where Do Fluxes Come From?

David Randall ∗

Department of Atmospheric Science, Colorado State University

May 31, 2020

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 3.0 Unported”
license.

∗david.randall@colostate.edu

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en


Where Do Fluxes Come From?
Revised May 31, 2020 at 2:45pm

1 Four closures needed

A key goal of fluid dynamics research is to develop a theory to determine statistics of
turbulent flows. The most basic statistics are the average values of such variables as the
velocity components, the temperature, and the humidity. Additional statistics of interest
include second and higher moments of these same fields, singly or in combination.

This essay derives and discusses a set of equations that governs these various statis-
tics. The method is often called “higher-order closure,” for reasons that will become
clear. The basic equations of higher-order closure can be applied to any type of motion,
including turbulence, cumulus convection, and gravity waves. This extreme generality
is an attraction of the method. Unfortunately, the closures needed for actual use of the
equations are not comparably general.

In statistical parlance, the average of a field (e.g., the potential temperature) is called
a “first moment.” The second moment is the average of the square of the field, but we
will use the term second moment to refer to “second moments about the mean,” which
are the averages of products of two departures from the mean(s) of one or more variables;
these are variances and covariances. Third moments are averages of the products of three
departures from the mean, and so on. The examples given later will make the terminology
more clear. As will be explained, the equations that predict the first moments involve the
second moments, equations to predict the second moments involve the third moments,
and so on. This is one of the four closure problems of turbulence.

The second closure problem is that the equations used to predict statistics involv-
ing velocity components inevitably include statistics that involve the pressure field; these
represent additional unknowns.

The third closure problem is that the equations for the second (and higher) moments
include important terms arising from molecular viscosity and molecular conductivity.
These involve unknown statistics of the very small-scale spatial structure.

The fourth closure problem is parameterizing the source and sink terms, due to such
processes as phase changes and radiative heating.

In the following sections, we will discuss the first the first and second moments of the
winds, the potential temperature, and moisture. We will also briefly discuss some third
and fourth moments.

1



Where Do Fluxes Come From?
Revised May 31, 2020 at 2:45pm

2 The starting point

The anelastic momentum equation can be written in flux form as

∂ui

∂ t
+

1
ρ j

∂

∂x j
(ρ0uiu j−Fi, j)−2εi, j,ku jΩk =−

∂

∂xi

(
δ p
ρ0

)
+

δθ

θ0
gi. (1)

Here δ p = p− p0, δθ ≡ θ − θ0, and F is the viscous stress tensor. By convention,
repeated subscripts are summed out. The symbol εi, j,k denotes 1 if the subscripts run in
forward order, -1 if they run in backwards order, and 0 otherwise. Here “otherwise” refers
to the case in which two or more of the subscripts take the same numerical value. In
somewhat simplified form, the viscous stress tensor can be expanded as

Fi, j = µ

(
∂ui

∂x j
+

∂u j

∂xi

)
− 2

3
µδi, j

∂uk

∂xk
, (2)

where µ is the molecular viscosity and δi, j is the Kroneker delta. Note that
∂uk

∂xk
is simply

the divergence of the wind vector, and appears in the same way in each element of F .
The sum of the diagonal elements of F satisfies

Fi,i = 2µ

(
∂ui

∂xi
− 1

3
∂uk

∂xk

)
= 0. (3)

The anelastic continuity equation is

∂

∂xi
(ρ0ui) = 0. (4)

Using (4), we can rewrite the momentum equation in advective form:

∂ui

∂ t
+u j

∂ui

∂x j
− 1

ρ0

∂Fi, j

∂x j
−2εi, j,ku jΩk =−

∂

∂xi

(
δ p
ρ0

)
+

δθ

θ0
gi. (5)

The anelastic form of the thermodynamic energy equation is

ρ0

(
∂θ

∂ t
+u j

∂θ

∂x j

)
=

θ0

T0

Q
cp
−

∂H j

∂x j
(6)
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where Q represents the sum of all heating processes, and

H j =−
θ

T
κ

∂T
∂x j

(7)

is the flux of θ due to molecular processes. The flux form of (6) is

∂ (ρ0θ)

∂ t
+

∂

∂x j
(u jρ0θ +H j) =

θ0

cpT0
Q (8)

Finally, the conservation equation for total water substance is

ρ0

(
∂qt

∂ t
+u j

∂qt

∂x j

)
+

∂Wj

∂x j
= Sw, (9)

where Sw represents any possible source (or sink) of qt (e.g., convergence of precipitation
flux), and

Wj =−κ
∂qt

∂x j
(10)

is the flux of qt due to the molecular diffusion of water vapor. Here we have assumed for
simplicity that the molecular diffusion coefficient for water vapor is the same as that for
temperature. The flux form corresponding to (9) is

∂ (ρ0qt)

∂ t
+

∂

∂x j
(u jρ0qt +Wj) = Sw. (11)

3 Averaging the continuity equation

The Reynolds decomposition,

() = ()+()′ (12)

where the overbar denotes an average (see the QuickStudy on Reynolds averaging), allows
us to write the continuity equation for the mean flow as
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∂

∂xi
(ρ0ūi) = 0. (13)

Here ūi is an example of a “first moment.” We can then use (4) and (12) to write the
continuity equation for the fluctuations as

∂

∂xi

(
ρ0u′i

)
= 0. (14)

We will need both (13) and (14) in the following analysis.

4 Averaging the momentum equation

Averaging (1) gives us the equation of motion for the mean flow:

∂ ūi

∂ t
+

1
ρ0

∂

∂x j

(
ρ0ūiū j +ρ0u′iu

′
j−Fi, j

)
−2εi, j,kū jΩk =−

∂

∂xi

(
δ p
ρ0

)
+

δθ

θ0
gi (15)

Here we have used the usual Reynolds averaging result that

uiu j = ūiū j +u′iu
′
j. (16)

In (15), the new quantity ρ0u′iu
′
j is called the “Reynolds stress;” it appears in parallel

with the viscous stress, but it is normally many orders of magnitude larger than the vis-
cous stress. The quantity u′iu

′
j, which is the main ingredient of the Reynolds stress, is

an example of a “second moment.” The Reynolds stress can also be called the turbulent
momentum flux. It is a tensor, because it is associated with “two directions:” the direction
of the momentum vector that is being transported, and the direction in which it is being
carried. Using the averaged continuity equation, (13), Eq. (15) can also be written in the
“advective form:”

∂ ūi

∂ t
+ ū j

∂ ūi

∂x j
+

1
ρ0

∂

∂x j

(
ρ0u′iu

′
j−Fi, j

)
−2εi, j,kū jΩk =−

∂

∂xi

(
δ p
ρ0

)
+

δθ

θ0
gi. (17)
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5 The Reynolds stress equation

We now begin a discussion of the prediction equations for the second moments, starting
with the most complicated case, which arises from the momentum equation.

Subtracting (17) from the advective form of the un-averaged momentum equation,
(5), using (12) and (14), and rearranging, we obtain the momentum equation for the fluc-
tuating part of the wind field:

∂u′i
∂ t

+ ū j
∂u′i
∂x j

+u j
′ ∂ ūi

∂x j
+

1
ρ0

∂

∂x j

(
ρ0u′iu

′
j−ρ0u′iu

′
j

)
− 1

ρ0

∂F ′
i, j

∂x j
−2εi, j,ku′jΩk

=− ∂

∂xi

(
δ p′

ρ0

)
+

δθ ′

θ0
gi.

(18)

Deriving (18) is a little bit tricky, so you should work it through to see how it goes.
Inspection of (18) shows that each term will vanish if averaged. Multiplying (18) by ρ0u′l
gives

ρ0u′l
∂u′i
∂ t

+ρ0u′l ū j
∂u′i
∂x j

+ρ0u′lu j
′ ∂ ūi

∂x j
+ u′l

∂

∂x j

(
ρ0u′iu

′
j−ρ0u′iu

′
j

)
−u′l

∂F ′
i, j

∂x j
−2ρ0u′lεi, j,ku′jΩk

=−ρ0u′l
∂

∂xi

(
δ p′

ρ0

)
+ρ0u′l

δθ ′

θ0
gi.

(19)

Of course, (19) remains valid if i and l are interchanged. Performing this operation,
adding the result to (19), averaging, and combining terms, we obtain the Reynolds stress
equation:
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∂

∂ t

(
ρ0u′iu

′
l

)
+

∂

∂x j

(
ρ0ū ju′iu

′
l +ρ0u′iu

′
ju
′
l−u′iF

′
l, j−u′lF

′
i, j

)
−2εl, j,kΩkρ0u′iu

′
j−2εi, j,kΩkρ0u′lu

′
j

=−ρ0u′lu
′
j
∂ ūi

∂x j
−ρ0u′iu

′
j
∂ ūl

∂x j

− ∂

∂xi

(
u′lδ p′

)
− ∂

∂xl

(
u′iδ p′

)
+

δ p′

ρ0

∂

∂xi

(
ρ0u′l

)
+

δ p′

ρ0

∂

∂xl
(ρ0u′i)

+
ρ0

θ0

(
u′lδθ ′gi +u′iδθ ′gl

)
−

(
F ′

i, j
∂u′l
dx j

+F ′
l, j

∂u′i
∂x j

)
.

(20)

In deriving (20), we have used both of the two continuity equations, (13) and (14).

We see from (20) that the present value of ρ0u′iu
′
l depends on its past history. If (20)

is used to predict ρ0u′iu
′
l , then the result can be used to predict ūi, using (15) or (17).

There are three “closure” problems, however: First of all, Eq. (20) contains the new
unknown ρ0u′iu

′
ju
′
l (a “triple correlation,” or “third moment”), which must be determined

before ρ0u′iu
′
l can be predicted. In addition, (20) contains second moments involving the

pressure, and second moments involving the viscous stress tensor. There are “two kinds”
of pressure terms, and two kinds of viscous terms. The viscous terms appear on both the
right- and left-hand sides of (20). We conclude that three closures are needed before (20)
can be used: closures for the third moments, closures for the pressure terms, and closures
for the viscous terms.

It is possible to derive a prognostic equation for the triple moment ρ0u′iu
′
ju
′
l , but it

contains fourth moments, etc. One strategy is to model or parameterize the third moments
in terms of the mean flow and the second moments. Some success has been achieved
with this approach, which is called “second-order closure.” Further discussion of the third
moments is given later.

6 The turbulence kinetic energy equation

The rate equation for the Reynolds stress tensor represents nine scalar equations, six of
which are independent. The diagonal terms, for which i = l, can be written as

6



Where Do Fluxes Come From?
Revised May 31, 2020 at 2:45pm

∂

∂ t

(
ρ0

u′iu
′
i

2

)
+

∂

∂x j

(
ρ0ū j

u′iu
′
i

2
+ρ0u′j

1
2

u′iu
′
i−F ′

l, ju
′
i

)
+

∂

∂xi

(
δ p′u′i

)
−2εi, j,kΩkρ0u′iu

′
j

=
δ p′

ρ0

∂

∂xi
(ρ0u′i)+

ρ0

θ0

(
u′iδθ ′gi

)
−ρ0u′iu

′
j
∂ ūi

∂x j
−F ′

i, j
∂u′i
∂x j

.

(21)

Here we temporarily suspend the summation convention for the i subscript only, so that

(21) represents three equations for the three velocity variances ρ0
u′1u′1

2
, ρ0

u′2u′2
2

, and

ρ0
u′3u′3

2
.

We have moved one of the pressure terms to the left-hand side of (21), because it
represents energy transport by pressure-work. The other pressure term, on the right-hand
side of the equation, will be discussed below.

Similarly, the viscous terms on the left-hand side of (21) represent energy transports
by the viscous force; they do not act as net sources or sinks. In contrast, the viscous terms
on the right-hand side of (21) represent net sinks of the velocity variances; this can be
seen by use of (2). They are called “dissipation” terms.

The rotation and pressure terms on the second line of (21) merely redistribute energy
among the three individual components, e.g., from 1

2 u′1u′1 to 1
2 u′2u′2. This means that

they will cancel out when we sum (21) over i. The pressure term is usually larger than the
rotation term, and will be discussed further below. The rotation term may be important
for mesoscale Reynolds stresses.

Now reinstating the summation convention, we “contract” (21) to obtain the turbu-
lence kinetic energy (TKE) equation:

∂

∂ t

(
ρ0

u′i
2

2

)
+

∂

∂x j

(
ρ0ū j

u′i
2

2
+ρ0u′j

u′i
2

2
+δ p′u′j−u′iF

′
i, j

)

=−ρ0u′iu
′
j
∂ ūi

∂x j
+

ρ0

θ0
u′iδθ ′gi−F ′

i, j
∂u′i
∂x j

.

(22)

Note that the rotation and pressure-redistribution terms have cancelled, because they only
redistribute energy.
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The terms in
∂

∂x j
() on the left-hand side of (22) represent energy fluxes due to triple

moments, pressure-velocity correlations, and viscous stresses. The remaining terms rep-
resent mechanical production, buoyant production, and viscous dissipation, respectively.
The dissipation term is always a sink of TKE. This can be seen by using (2) to write

F ′
i, j

∂u′i
∂x j

= µ

(
∂u′i
∂x j

)2

. (23)

The TKE equation is by far the most widely used of the second-moment equations.
Many models predict the TKE, and then use it in diagnostic closure assumptions to deter-
mine the fluxes that appear in the first-moment equations.

7 The second- and third-moment equations for generic scalars

Consider a generic scalar variable, A, satisfying

ρ0

(
∂A
∂ t

+u j
∂A
∂x j

)
+

∂

∂x j
(MA) j = SA. (24)

where is a source of , per unit volume, and is the (vector) molecular flux of . The corre-
sponding flux form is

∂ (ρ0A)
∂ t

+
∂

∂x j

[
u jρ0A+(MA) j

]
= SA. (25)

Reynolds-averaging (25) gives

∂ (ρ0A)
∂ t

+
∂

∂x j

[
u jρ0A+(MA) j

]
= SA. (26)

The corresponding advective form is

ρ0

(
∂A
∂ t

+u j
∂A
∂x j

)
+

∂

∂x j

[
ρ0u′jA′+

(
MA
)

j

]
= SA. (27)

Subtracting (27) from (24), we find that
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ρ0

(
∂A′

∂ t
+ ū j

∂A′

∂x j
+u′j

∂A
∂x j

+u′j
∂A′

∂x j

)
+

∂

∂x j

[
−ρ0u′jA′+

(
M′A

)
j

]
= S′A. (28)

Similarly, a second generic scalar, B, satisfies

ρ0

(
∂B′

∂ t
+ ū j

∂B′

∂x j
+u′j

∂B
∂x j

+u′j
∂B′

∂x j

)
+

∂

∂x j

[
−ρ0u′jB′+

(
M′B

)
j

]
= S′B. (29)

Multiplying (28) by B′, and (29) by A′, and adding the results, we find that

ρ0

[
∂

∂ t

(
A′B′

)
+ ū j

∂

∂x j

(
A′B′

)
+u′jB

′ ∂A
∂x j

+u′jA
′ ∂B
∂x j

+u′j
∂

∂x j

(
A′B′

)]
+B′

∂

∂x j

[
−ρ0u′jA′+

(
M′A

)
j

]
+A′

∂

∂x j

[
−ρ0u′jB′+

(
M′B

)
j

]
= B′S′A +A′S′B.

(30)

Use of the two continuity equations (13) and (14) allows us to rewrite (30) as

∂

∂ t

(
ρ0A′B′

)
+

∂

∂x j

(
ρ0ū jA′B′+ρ0u′A′B′

)
+ρ0u′jB

′ ∂A
∂x j

+ρ0u′jA
′ ∂B
∂x j

+B′
∂

∂x j

[
−ρ0u′jA′+

(
M′A

)
j

]
+A′

∂

∂x j

[
−ρ0u′jB′+

(
M′B

)
j

]
= B′S′A +A′S′BB .

(31)

Reynolds-averaging (31) gives

∂

∂ t

(
ρ0A′B′

)
+

∂

∂x j

(
ρ0ū jA′B′+ρ0u′A′B′

)
+ρ0u′jB′

∂A
∂x j

+ρ0u′jA′
∂B
∂x j

+B′
∂

∂x j

[
(M′A) j

]
+A′

∂

∂x j

[
(M′B) j

]
= B′S′A +A′S′B .

(32)

Finally, we move the gradient-production terms to the right-hand side, and rearrange the
molecular terms to separate the transport from the dissipation. The result is
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∂

∂ t

(
ρ0A′B′

)
+

∂

∂x j

[
ρ0ū jA′B′+ρ0u′A′B′+B′(M′A) j +A′(M′B) j

]
=−ρ0u′jB′

∂A
∂x j
−ρ0u′jA′

∂B
∂x j

+B′S′A +A′S′B +(M′A) j
∂B′

∂x j
+(M′B) j

∂A′

∂x j

(33)

The molecular transport terms of (33) are normally negligible. The molecular dissipation
terms may or may not be negligible.

In a similar way, we can derive a generic third-moment equation governing A′B′C′,
where C is a third generic scalar. As a starting point, we use the product rule for differen-
tiation to write

∂

∂ t

(
A′B′C′

)
=A′

∂

∂ t

(
B′C′

)
+B′C′

∂A′

∂ t

=A′
(

B′
∂C′

∂ t
+C′

∂B′

∂ t

)
+B′C′

∂A′

∂ t

=A′B′
∂C′

∂ t
+A′C′

∂B′

∂ t
+B′C′

∂A′

∂ t
.

(34)

Using (28), (29), and a similar equation for C′, we get

ρ0

[
∂

∂ t

(
A′B′C′

)
+ ū j

∂

∂x j

(
A′B′C′

)
+u′jB

′C′
∂A
∂x j

+u′jA
′C′

∂B
∂x j

+u′jA
′B′

∂C
∂x j

+u′j
∂

∂x j

(
A′B′C′

)]
+B′C′

∂

∂x j

[
−ρ0u′jA′+

(
M′A

)
j

]
+A′C′

∂

∂x j

[
−ρ0u′jB′+

(
M′B

)
j

]
+A′B′

∂

∂x j

[
−ρ0u′jC′+

(
M′C

)
j

]
= B′C′S′A +A′C′S′B +A′B′S′C .

(35)

Use of the two continuity equations (13) and (14) allows us to rewrite (35) as

∂

∂ t

(
ρ0A′B′C′

)
+

∂

∂x j

(
ρ0ū jA′B′C′+ρ0u′jA

′B′C′
)
+ρ0u′jB

′C′
∂A
∂x j

+ρ0u′jA
′C′

∂B
∂x j

+ρ0u′jA
′B′

∂C
∂x j

+B′C′
∂

∂x j

[
−ρ0u′jA′+

(
M′A

)
j

]
+A′C′

∂

∂x j

[
−ρ0u′jB′+

(
M′B

)
j

]
+A′B′

∂

∂x j

[
−ρ0u′jC′+

(
M′C

)
j

]
= B′C′S′A +A′C′S′B +A′B′S′C .

(36)
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Notice that we are going to have gradient-production terms again. Move those terms to
the right-hand side:

∂

∂ t

(
ρ0A′B′C′

)
+

∂

∂x j

(
ρ0ū jA′B′C′+ρ0u′jA

′B′C′
)

+B′C′
∂

∂x j

(
M′A

)
j +A′C′

∂

∂x j

(
M′B

)
j +A′B′

∂

∂x j

(
M′C

)
j

= B′C′
∂

∂x j

(
ρ0u′jA′

)
+A′C′

∂

∂x j

(
ρ0u′jB′

)
+A′B′

∂

∂x j

(
ρ0u′jC′

)
−ρ0u′jB

′C′
∂A
∂x j
−ρ0u′jA

′C′
∂B
∂x j
−ρ0u′jA

′B′
∂C
∂x j

+B′C′S′A +A′C′S′B +A′B′S′C .

(37)

Separate the molecular terms into the transport parts and the dissipation parts:

∂

∂ t

(
ρ0A′B′C′

)
+

∂

∂x j

[
ρ0ū jA′B′C′+ρ0u′jA

′B′C′+B′C′
(
M′A

)
j +A′C′

(
M′B

)
j +A′B′

(
M′C

)
j

]
= B′C′

∂

∂x j

(
ρ0u′jA′

)
+A′C′

∂

∂x j

(
ρ0u′jB′

)
+A′B′

∂

∂x j

(
ρ0u′jC′

)
−ρ0u′jB

′C′
∂A
∂x j
−ρ0u′jA

′C′
∂B
∂x j
−ρ0u′jA

′B′
∂C
∂x j

+B′C′S′A +A′C′S′B +A′B′S′C

+
(
M′A

)
j

∂

∂x j

(
B′C′

)
+
(
M′B

)
j

∂

∂x j

(
A′C′

)
+
(
M′C

)
j

∂

∂x j

(
A′B′

)
.

(38)

Finally, Reynolds-average the result:
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∂

∂ t

(
ρ0A′B′C′

)
+

∂

∂x j

[
ρ0ū jA′B′C′+ρ0u′jA′B′C′+B′C′(M′A) j +A′C′(M′B) j +A′B′(M′C) j

]
= B′C′

∂

∂x j

(
ρ0u′jA′

)
+A′C′

∂

∂x j

(
ρ0u′jB′

)
+A′B′

∂

∂x j

(
ρ0u′jC′

)
−ρ0u′jB′C′

∂A
∂x j
−ρ0u′jA′C′

∂B
∂x j
−ρ0u′jA′B′

∂C
∂x j

+B′C′S′A +A′C′S′B +A′B′S′C

+(M′A) j
∂

∂x j
(B′C′)+(M′B) j

∂

∂x j
(A′C′)+(M′C) j

∂

∂x j
(A′B′) .

(39)

For the special case of purely vertical transport, this reduces to

∂

∂ t

(
ρ0A′B′C′

)
+

∂

∂ z

[
ρ0wA′B′C′+ρ0w′A′B′C′+B′C′(M′A) j +A′C′(M′B) j +A′B′(M′C) j

]
= B′C′

∂

∂ z

(
ρ0w′A′

)
+A′C′

∂

∂ z

(
ρ0w′B′

)
+A′B′

∂

∂ z

(
ρ0w′C′

)
−ρ0w′B′C′

∂A
∂ z
−ρ0w′A′C′

∂B
∂ z
−ρ0w′A′B′

∂C
∂ z

+B′C′S′A +A′C′S′B +A′B′S′C

+(M′A)z
∂

∂ z
(B′C′)+(M′B)z

∂

∂ z
(A′C′)+(M′C)z

∂

∂ z
(A′B′) .

(40)

8 Predicting the turbulent flux of potential temperature

After Reynolds-averaging, the flux form of the potential temperature equation can be
written as

∂

∂ t

(
ρ0θ̄

)
+

∂

∂x j

(
ρ0ū jθ̄ +ρ0u′jθ ′+ H̄ j

)
=

θ0

T0

Q̄
cp

(41)

which leads to the advective form
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ρ0

(
∂ θ̄

∂ t
+ ū j

∂ θ̄

∂x j

)
=− ∂

∂x j

(
ρ0u′jθ ′

)
+

θ0

T0

Q̄
cp
−

∂ H̄ j

∂x j
. (42)

Subtraction of (42) from (6) gives

ρ0

(
∂θ ′

∂ t
+u j

∂θ ′

∂x j
+u′j

∂ θ̄

∂x j
+u′j

∂θ ′

∂x j

)
=− ∂

∂x j

(
ρ0u′jθ ′

)
+

θ0

T0

Q′

cp
−

∂H ′j
∂x j

(43)

Multiplying (43) by u′i yields

ρ0

(
u′i

∂θ ′

∂ t
+u′iu j

∂θ ′

∂x j
+u′iu

′
j
∂ θ̄

∂x j
+u′iu

′
j
∂θ ′

∂x j

)
=−u′i

∂

∂x j

(
ρ0u′jθ ′

)
+u′i

θ0

T0

Q′

cp
−u′i

∂H ′j
∂x j

(44)

Multiplying (18) by ρ0θ ′, adding the result to (44), averaging, and combining terms, we
obtain a prognostic equation for the potential temperature flux, ρ0u′iθ ′:

∂

∂ t

(
ρ0ui

′θ ′
)
+

∂

∂x j

(
ū jρ0ui

′θ ′+u j
′ρ0ui

′θ ′
)

=−ρ0ui
′u j
′ ∂ θ̄

∂x j
−ρ0u j

′θ ′
∂ ūi

∂x j
+2εi, j,kρ0u j

′θ ′Ωk

−ρ0θ ′
∂

∂x j

(
δ p′

ρ0

)
+ρ0

(θ ′)2

θ0
gi +θ ′

∂F ′
i, j

∂x j
+

θ0

T0

ui
′Q′

cp
−ui

′
∂H ′j
∂x j

(45)

Again, a “triple correlation” has appeared. The components of the potential temperature
flux predicted by (45) can be used in (41), (16), and (22).

Notice that (25) contains (θ ′)2, which can also be predicted, using a special case of
(33):

∂

∂ t

[
1
2

ρ0(θ ′)
2
]
+

∂

∂x j

[
ū j

1
2

ρ0(θ ′)
2 +u j

′ 1
2

ρ0(θ ′)
2 +H ′jθ ′

]
=

−ρ0u j
′θ ′

∂ θ̄

∂x j
+

θ0

T0

θ ′Q′

cp
−H ′j

∂θ ′

∂x j
.

(46)
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In order to complete the second moment equations, we have to include any scalar
constituents of the air that are of sufficient interest to warrant prediction. The most impor-
tant example, and the only one that we will actually consider, is water in its three phases.
A parallel discussion can be given for other chemical constituents.

The Reynolds-averaged conservation equation for total water substance is

∂

∂ t
(ρ0qt)+

∂

∂x j

(
ρ0ū jqt +ρ0u j

′q′t +W̄j

)
= S̄w, (47)

where

Wj =−κ
∂w
∂x j

(48)

is the flux of due to molecular diffusion.

By analogy with (45), we find that

∂

∂ t

(
ρ0ui

′q′t
)
+

∂

∂x j

(
ū jρ0ui

′q′t +u j
′ρ0ui

′q′t
)

=−ρ0ui
′u j
′ ∂qt

∂x j
−ρ0u j

′q′t
∂ ū
∂x j

+2εi, j,kρ0u j
′q′tΩk

−ρ0q′t
∂

∂x j

(
δ p′

ρ0

)
+ρ0

q′tθ ′

θ0
gi +q′t

∂F ′
i, j

∂x j
+ui

′S′w−ui
′
∂W ′j
∂x j

.

(49)

The buoyancy term of (49) is proportional to the covariance of qt and θ , which can
be predicted using a special case of (33):

∂

∂ t

(
ρ0q′tθ ′

)
+

∂

∂x j

(
ū jρ0q′tθ ′+u j

′ρ0q′tθ ′
)

=−ρ0u j
′θ ′

∂qt

∂x j
−ρ0u j

′q′t
∂ θ̄

∂x j
+

θ0

cpT0
q′tQ′+θ ′S′w−q′t

∂H ′j
∂x j
−θ ′

∂W ′j
∂x j

.

(50)

We can also use (33) to write a prediction equation for q′2t . Although this quantity
does not appear in any of our other equations, it may be useful to know for other purposes,

14



Where Do Fluxes Come From?
Revised May 31, 2020 at 2:45pm

e.g., to determine the fractional cloudiness following methods like those of Sommeria and
Deardorff (1977). We include the equation for completeness:

∂

∂ t

[
1
2

ρ0(q′t)
2
]
+

∂

∂x j

[
ū j

1
2

ρ0(q′t)
2 +u j

′ 1
2

ρ0(q′t)
2 +q′tW ′j

]
=−ρ0u j

′q′t
∂qt

∂x j
+q′tS′w +W ′j

∂q′t
∂x j

(51)

9 Discussion

The second- and third-moment equations are satisfied if all primed quantities vanish. In
that sense, the equations do not explain why the flow is turbulent; they only state that
certain interrelationships must be satisfied by any disturbances that arise. The explanation
for the existence of turbulence is usually given in terms of instabilities, especially shearing
instability.

It is also important to realize that the “fluctuations” described by the second- and
third-moment equations need not necessarily be turbulent in any sense. For example,
they may be orderly wave motions. They can be used to describe ensembles of cumulus
clouds, mesoscale convection, and even (with a change of coordinate systems and other
minor adjustments) the effects of large-scale zonally asymmetric motions on the zonally-
averaged global circulation of the atmosphere.

“Realizability” is an issue that arises in the use of these equations. For example, the
equations might predict a negative variance, which is impossible. We say that a nega-
tive variance is “not realizable.” As a second example, is mathematically necessary. As
discussed later, similar conditions can be derived for the third moments.

Finally, as has already been mentioned, the equations are not closed; additional in-
formation must be provided if the equations are to be used in models. The unknown terms
are of four types: triple moments, second and higher moments involving pressure fluc-
tuations, second and higher moments involving molecular fluxes, and second and higher
moments involving source-sink terms.

10 Second-order closure

Since the middle 1960s, there has been on-and-off interest, among meteorologists and
oceanographers, in modeling the PBL and/or the ocean mixed layer by integrating not
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only the prediction equations for the mean winds, temperature, moisture, and pollutant
concentrations, but also the prediction equations for the turbulent fluxes of these quanti-
ties. The predicted fluxes can then be used in the flux convergence terms for the prediction
of the mean flow, thus “solving” the problems of parameterizing these fluxes. It has even
been suggested that such an approach can be used to parameterize cumulus convection.

As noted above, the problem with this approach is that the second-moment equations
involve unknown quantities. These terms have to be “modeled” or “parameterized,” in
terms of known quantities.

Donaldson (1973) gave a very readable introduction to the use of the prediction equa-
tions for the second moments. He listed four principles that, he argued, should be applied
in devising parameterizations of the terms of the second-moment equations:

• A parameterization must have the same dimensions as the term it replaces. There
is no room for dimensional numerical parameters.

• A parameterization must satisfy all the conservation relationships known to govern
the variables in question. For example, a transport term must integrate to zero over
the domain (in the absence of boundary fluxes).

• A parameterization must have all the tensor properties and all the symmetries of
the term that it replaces.

• A parameterization must be invariant under a Galilean transformation, i.e., if we
shift to a second coordinate system that is in constant motion relative to the first,
the equations must be unchanged.

All authors mentioned here use the “tendency-towards-isotropy” model of the pressure-
shear covariance terms of the Reynolds stress equation, which is

∂

∂ t

(
ρ0u′iu

′
l

)
∼δ p′

ρ0

[
∂

∂xi

(
ρ0u′l

)
+

∂

∂xl
(ρ0u′i)

]
=−

(
ρ0q
3l1

)(
u′iu
′
l−

δi,l

3
q2
)
,

(52)

where

q2 ≡u′ku′k
≡2e ,

(53)
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and l1 is a length scale that has to be supplied as part of the parameterization. If the tur-
bulence is truly isotropic, then only the diagonal members of u′iu

′
l are non-zero (because

the others are fluxes), and these three diagonal members must each be equal to q2/3, so

that u′iu
′
l−

δi,l

3
q2, which appears on the right-hand-side of (52), will vanish. The term

is thus formulated as a measure of the departure from isotropy. If u′iu
′
l departs from its

“isotropic value” (0 for the off-diagonal members, and q2/3 for the diagonal members),
then the term will tend to force it back towards isotropy. One effect of this is that the
Reynolds stresses can?t become too large. This model of the term stems from the recog-
nition that the pressure-shear covariance terms only redistribute kinetic energy among the
three components. It was first suggested by Rotta (1951).

In a similar way, we take

p′
∂θ ′

∂xi
=− q

3l2

(
u′iθ ′

)
(54)

and

p′
∂q′t
∂xi

=− q
3l3

(
u′iq
′
t

)
(55)

in the prediction equations for ρ0u′iθ ′ and ρ0u′iq
′
t respectively. These formulations tend to

damp the fluxes towards zero.

The remaining pressure terms of these equations are all derivatives, and so should
tend to vanish when integrated over sufficiently large regions. They are often parameter-
ized as diffusion terms, in which the “fluxes” are given as follows:

p′u′k =−ρ0λ1q
∂

∂xi

(
u′iu′k

)
, (56)

p′θ ′ =−ρ0λ1q
∂

∂xi

(
u′iθ ′

)
, (57)

p′q′t =−ρ0λ1q
∂

∂xi

(
u′iq
′
t

)
. (58)

The “triple correlation” terms of the second-moment equations are also transport
terms, and are sometimes parameterized as diffusion. The complete model is then
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− ∂

∂x j

(
ρ0u′iu

′
ju
′
l

)
− ∂

∂xi

(
u′l p′

)
− ∂

∂xl

(
u′i p′
)

=
∂

∂xk

{
qλ1

[
∂

∂xk

(
ρ0u′iu

′
l

)
+

∂

∂xi

(
ρ0u′lu

′
k

)
+

∂

∂xl

(
ρ0u′ku′i

)]}
,

(59)

− ∂

∂x j

(
u′jρ0u′iw′

)
−ρ0

∂

∂xi

(
p′w′

ρ0

)
=

∂

∂xk

{
qλ4

[
∂

∂xk

(
ρ0u′iw′

)
+

∂

∂xi

(
ρ0u′iw′

)]}
.

(60)

Similarly, the triple correlation terms of the scalar variance and covariance forecast
equations can be parameterized as down-gradient diffusion terms:

− ∂

∂x j

(
u′j

1
2

ρ0(θ ′)
2
)
=

∂

∂xk

{
qλ2

∂

∂xk

[
1
2

ρ0(θ ′)
2
]}

, (61)

− ∂

∂x j

(
u′jρ0q′tθ ′

)
=

∂

∂xk

[
qλ5

∂

∂xk

(
ρ0q′tθ ′

)]
, (62)

− ∂

∂x j

(
u′j

1
2

ρ0(q′t)
2
)
=

∂

∂xk

{
qλ6

∂

∂xk

[
1
2

ρ0(q′t)
2
]}

. (63)

All of these assumptions are “safe” in the sense that the parameterizations will not blow
up in a computer simulation. None of the assumptions is very convincing, but there is
what Lumley calls an “article of faith,” which is that weak assumptions at third order
are preferable to weak assumptions at second order (Lumley and Khajeh-Nouri 1975;
Wyngaard 1975).

The dissipation terms of the variance production equations are parameterized as ex-
ponential decay, while all other molecular terms are neglected:

−
F ′

i, j

ρ0

∂u′l
∂x j
−

F ′
l, j

ρ0

∂u′i
∂x j

=−2
3

q3

Λ1
δi,l, (64)

∂

∂x j

(
u′lF

′
i, j +u′iF

′
l, j

)
= 0, (65)
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θ ′
∂F ′

i, j

∂x j
−u′i

∂H ′j
∂x j

= 0, (66)

H ′j
∂θ ′

∂x j
=− 2q

Λ2
(θ ′)2, (67)

− ∂

∂x j

(
H ′jθ ′

)
= 0, (68)

−u′i
∂W ′j
∂x j

= 0, (69)

−q′t
∂H ′j
∂x j
−θ ′

∂W ′j
∂x j

= 0, (70)

−W ′j
∂q′t
∂x j

=
2q
Λ3

(q′t)
2, (71)

− ∂

∂x j

(
W ′jq

′
t

)
= 0. (72)

The heating and moistening terms are usually ignored:

θ0

T0

u′iQ′

cp
= 0, (73)

θ0

T0

θ ′Q′

cp
= 0, (74)

u′iS′qt = 0, (75)

θ0

T0

q′tQ′

cp
+θ ′S′qt = 0, (76)

q′tS′qt = 0. (77)
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Their potential importance must be faced, however, where the equations are applied to
clouds. The problem can be greatly simplified by predicting moist conservative variables
(e.g, equivalent potential temperature) instead of dry conservative variables (e.g., potential
temperature).

In most theories, all of the various length scales introduced above are assumed to be
proportional to each other, and the proportionality factors are assumed to be constants.
The models are “tuned” by choice of these constants. Usually no attempt is made to argue
that the constants are “universal,” although it is tacitly assumed that they are.

Mellor and Yamada (1974) presented a hierarchy of turbulence closure models, rang-
ing form a fully prognostic system of second-moment equations (Level 4) to a fully diag-
nostic subset corresponding to mixing length theory (Level 1). They attempt to justify the
hierarchies using expansions in terms of small parameters, but I don?t find the argument
very convincing.

None of the models includes molecular effects other than dissipation, or diabatic
effects, or Coriolis effects (except in the equation of mean motion), or buoyant production
of momentum, heat, and moisture fluxes. All of the models are Boussinesq.

• Level 4 includes a total of 15 prognostic equations for the second moments, in
addition to 5 for the mean flow. Of course, modeling of pollutant transport would
require additional equations.

• At Level 3, only three prognostic equations are used for the second moments -
those for e, (θ ′)2, and (q′t)

2.

• Levels 2 and 1 involve only diagnostic relations for all of the second moments.

• Level 1 turns out to be equivalent to the “mixing length” theory.

Mellor and Yamada experimented with each of the models, and concluded that in most
applications the additional realism obtained at Level 4, relative to Level 3, was not suffi-
cient to warrant the additional complexity. Of course, this conclusion was based in part
on the parameterizations that they used for the triple moments, the dissipation terms, and
the pressure terms.

11 The third-moment equations

An equation to predict w′w′w′ can be derived by using
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∂w′3

∂ t
= 3w′2

∂w′

∂ t
. (78)

Here w′ ≡ u′3; in the following, we also use z≡ x3, and we replace gi by g. From (18) we
find that

∂w′

∂ t
+ ū j

∂w′

∂x j
+u′j

∂ w̄
∂x j

+u′j
∂w′

∂x j

= 2ε3, j,ku′jΩk−
∂

∂ z

(
δ p′

ρ0

)
+

δθ ′

θ0
g+

1
ρ0

∂

∂xi

(
F ′

3, j−ρ0w′u′j
)
.

(79)

After multiplication by 3w′w′, we obtain:

∂

∂ t
w′w′w′+ ū j

∂

∂x j
w′w′w′+3w′w′u′j

∂ w̄
∂x j

+u′j
∂

∂x j
w′w′w′

= 6ε3, j,ku′jw
′w′Ωk−3w′w′

∂

∂ z

(
δ p′

ρ0

)
+3

g
θ0

w′w′δθ
′+

3w′w′

ρ0

∂

∂x j

(
F ′

3, j−ρ0w′u′j
)
.

(80)

Use of the continuity equation for the fluctuating part of the flow, and averaging, intro-
duces a “fourth moment” term. The final result is

∂

∂ t
w′w′w′+ ū j

∂

∂x j
w′w′w′+3w′w′u′j

∂ w̄
∂x j

+
1
ρ0

∂

∂x j

(
ρ0u′jw′w′w′

)
=

6ε3, j,ku′jw′w′Ωk−3w′w′
∂

∂ z

(
δ p′

ρ0

)
+3

gi

θ0
w′w′δθ ′+

3
ρ0

w′w′
∂F ′3, j

∂x j
− 3w′w′

ρ0

∂

∂x j

(
ρ0w′u′j

)
.

(81)

Normally (81) is simplified by neglecting advection by the mean flow, the production term

involving
∂ w̄
∂x j

, the rotation term, and
3w′w′

ρ0

∂

∂x j

(
ρ0w′u′j

)
:

An equation to predict θ ′θ ′θ ′ can be written down by mimicking (39), with reference
to (6):
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∂

∂ t
θ ′θ ′θ ′+ ū j

∂

∂x j
θ ′θ ′θ ′+3w′w′u′j

∂θ

∂x j
+

1
ρ0

∂

∂x j

(
ρ0u′jθ ′θ ′θ ′

)
=

3
ρ0

θ ′θ ′
∂H ′ j
∂x j
− 3θ ′θ ′

ρ0

∂

∂x j

(
ρ0u′jθ ′

)
.

(82)

12 Third-order closure

Jean Claude André and collaborators (André et al. 1976a,b, 1978) constructed a model in
which the third moments are predicted, and the fourth moments are expanded in terms of
the second moments through the “quasi-normal assumption”:

a′b′c′d′ ∼= a′b′ c′d′+a′c′ b′d′+a′d′ b′c′, (83)

which is exact if a, b, c and d are Gaussian random variables. It has been shown that
models based on this idea predict the development of negative variances, and other non-
physical behavior. André et al. suggested that the difficulty can be avoided by requiring
that the third moments satisfy Schwartz?s inequality, which can be expressed as

∣∣a′b′c′∣∣≤min

{√
a2
[
b2c′2 +

(
b′c′
)2
]

,

√
b2
[
a2c′2 +

(
a′c′
)2
]

,

√
c2
[
a2b′2 +

(
a′b′
)2
]}

.

(84)

This is an example of a “realizability” constraint.

Krueger (1988) used third-moment closure in a cloud-resolving model.
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