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Introduction

Inertial stability and instability  are relevant to the atmosphere and ocean, and also in other 
contexts such as engineering. We will approach the problem from two points of view. 

An engineering perspective

The first approach is based on the paper of John Strutt  (1916), also known as “Lord 
Rayleigh.” I have simplified the discussion, and modified the notation and terminology to be 

more consistent what we use in atmospheric 
science. 

We adopt cylindrical coordinates λ,r( ) , 

with azimuthal and radial velocity 
components u,v( ) . To avoid unnecessary 

complications, the density  is considered to 
be a constant, denoted by ρ0 . We assume 

from the beginning that there are no 
variations in the azimuthal (λ ) direction. 
Define the Lagrangian time derivative by

D
Dt

≡ ∂
∂t

+ v ∂
∂r

.

(1)

The equations of motion can then be written 
as

Du
Dt

+ uv
r
= 0 ,

(2)
Lord Rayleigh
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Dv
Dt

− u
2

r
= − ∂

∂r
p
ρ0

⎛
⎝⎜

⎞
⎠⎟

,

(3)

where p  is the pressure. No pressure-gradient term appears in (2), because we have assumed that 

∂
∂λ

= 0 . Notice that (2) and (3) do not include the Coriolis terms, because we are not using a 

rotating frame of reference. These equations are relevant to machinery, but are not directly 
applicable to the atmosphere.

Eq. (2) can be rewritten as

DM
Dt

= 0 ,

(4)

where 

M ≡ ru
(5)

is the angular momentum about the origin, per unit mass, and we have used

v ≡ Dr
Dt

.

(6)

According to (4), the angular momentum of a particle is conserved. The reason is that there is no 
azimuthal pressure gradient. 

For the balanced state with Dv /Dt = 0 , Eq. (3) can be written as

M 2

r3
= ∂
∂r

p
ρ0

⎛
⎝⎜

⎞
⎠⎟

.

(7)

In geophysical parlance, this is a statement of cyclostrophic balance. There is an analogy 
between cyclostrophic balance and hydrostatic balance. In hydrostatic balance, , i.e., when the 
vertical acceleration of the air is negligible, the pressure changes with height  as required to 
balance the weight of the air above. Similarly, according to (7), when Dv /Dt = 0  (required for 
cyclostrophic balance), the pressure changes with radius as required to balance the centrifugal 
acceleration, u2 / r . As you know, hydrostatic balance can be either stable or unstable, depending 
on the rate of change of temperature with height. Similarly, cyclostrophic balance can be either 
stable or unstable, depending on the rate of change of M  with r . 
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We now linearize our equations about a cyclostrophically balanced basic state. The basic 
state is denoted by an overbar and the perturbations by primes. The basic state satisfies v = 0  and 

u
2

r
= ∂
∂r

p
ρ0

⎛
⎝⎜

⎞
⎠⎟

. The linearized version of (3) can be written as

∂ ′v
∂t

− 2M
r3

′M = − ∂
∂r

′p
ρ0

⎛
⎝⎜

⎞
⎠⎟

,

(8)

and the linearized version of (4) is 

∂ ′M
∂t

+ ′v ∂M
∂r

= 0 .

(9)

For simplicity, we ignore the pressure-gradient term of (8), which plays only a secondary role. 
We look for solutions of the form 

 
′v , ′M( ) = v!,M"( )eσ t . Then our system reduces to

 
σ v! − 2M

r3
M" = 0 ,

(10)

 

∂M
∂r

v! +σM" = 0 .

(11)

For nontrivial solutions, we need

σ 2 + 2M
r3

∂M
∂r

= 0 ,

(12)

or 

σ 2 = − 1
r3

∂M
2

∂r
.

(13)

The system is stable (oscillatory) for ∂M
2 / ∂r > 0 , and unstable for ∂M

2 / ∂r < 0 . 

As an example, consider a laboratory setup in which a viscous fluid is confined between 
two cylinders. Because the fluid is viscous, it sticks to both cylinders. If the inner cylinder is 
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spinning while the outer one is not, the (squared) angular momentum of the fluid will decrease 
outward, so the flow will be unstable. If the outer cylinder is spinning while the inner one is not, 
the flow will be stable.

A geophysical perspective

Now we repeat the analysis from a geophysical perspective, using a rotating reference 
frame, which introduces Coriolis terms, and also including variations of the potential temperature 
with height. We use spherical coordinates λ,ϕ,θ( ) , where λ  is longitude, ϕ  is latitude, and θ  is 

the potential temperature, which we assume to be conserved, i.e., we assume no heating. 

To avoid unnecessary complications, we will also assume that there are no variations with 
longitude. This is justified because the physics of inertial instability relate to spatial variations of 
the angular momentum, which occur mainly with latitude. Inertial instability is sometimes called 
“symmetric instability” in the atmospheric science literature. This is not meant to suggest that 
inertial instability has to be independent of longitude. It could occur, for example, in the vicinity 
of a local maximum of the zonal wind, i.e., a “jet max.”

The Lagrangian time derivative can be written as

D
Dt

≡ ∂
∂t

+ v
a

∂
∂ϕ

,

(14)

where the partial derivatives are taken along θ  surfaces. The equations of horizontal motion are 
given by

Du
Dt

− 2Ω + u
acosϕ

⎛
⎝⎜

⎞
⎠⎟
vsinϕ = − 1

acosϕ
∂s
∂λ

,

(15)

Dv
Dt

+ 2Ω + u
acosϕ

⎛
⎝⎜

⎞
⎠⎟
u sinϕ +Ω 2acosϕ sinϕ = − 1

a
∂s
∂ϕ

,

(16)

where Ω  is the magnitude of the angular velocity of the Earth’s rotation, a  is the radius of the 
Earth, ϕ  is latitude, and s  is the dry static energy. The term Ω 2acosϕ sinϕ  in (16) represents 

the centrifugal acceleration. Comparison of (16) with (3) shows that the u2 / r  term of (3) 
appears with a minus sign, while the u2 tanϕ / a  term of (16) does not. The reason is that the 

radial coordinate in (3) essentially points out away from the pole, so it is analogous to 

a π
2
−ϕ⎛

⎝⎜
⎞
⎠⎟ , i.e., it decreases with latitude, whereas Eq. (16) uses latitude itself as the “radial” 

coordinate.

! Revised Tuesday, February 23, 2016! 4

QuickStudies in Atmospheric Science
Copyright David Randall, 2016



Starting from Eq. (15), we can show that

DM
Dt

= 0 ,

(17)

where 

M ≡ acosϕ u +Ωacosϕ( )
(18)

is the component of the angular momentum, per unit mass, that points in the direction of the 
Earth’s axis of rotation, and we have used

v ≡ a Dϕ
Dt

.

(19)

Using (18), we can rewrite (16) as

Dv
Dt

+ M
2 sinϕ

a3 cos3ϕ
= − 1

a
∂s
∂ϕ

.

(20)

We now linearize the system about a basic state in which the flow is purely zonal and in 

gradient-wind balance, so that v = 0  and M
2 sinϕ

a3 cos3ϕ
= − 1

a
∂s
∂ϕ

. The linearized version of (20) can 

be written as

∂ ′v
∂t

+ 2M sinϕ
a3 cos3ϕ

⎛
⎝⎜

⎞
⎠⎟

′M = − 1
a
∂ ′s
∂ϕ

,

(21)

and the linearized version of (17) is 

∂ ′M
∂t

+ ′v
a
∂M
∂ϕ

= 0 .

(22)

To investigate inertial stability  and instability, we ignore the pressure-gradient term of (21), 
which plays only a secondary role. After substituting 

 
′v , ′M( ) = v!,M"( )eσ t , our system reduces to
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σ v! + 2M sinϕ

a3 cos3ϕ
⎛
⎝⎜

⎞
⎠⎟
M" = 0 ,

(23)

 

∂M
∂ϕ

v!

a
+σM" = 0 .

(24)

For nontrivial solutions, we need

σ 2 = 2M sinϕ
a3 cos3ϕ

⎛
⎝⎜

⎞
⎠⎟
1
a
∂M
∂ϕ

= sinϕ
a4 cos3ϕ

∂M
2

∂ϕ
.

(25)

This result is consistent with (13), again taking into account that the radial coordinate in (13) is 
proportional to “minus” the latitudinal coordinate in (25). In either hemisphere, the system is 
inertially stable if the angular momentum decreases towards the pole along isentropic surfaces, 
and inertially unstable if the angular momentum increases towards the pole along isentropic 
surfaces. In a neutrally stable state, the angular momentum is constant along isentropic surfaces.

Rewriting the stability criterion in terms of vorticity

The criterion for inertial instability is often expressed in terms of vorticity  rather than 
angular momentum. Here’s how that works. In spherical coordinates, the vertical component of 
the absolute vorticity is given by

ζ + f = 1
acosϕ

∂v
∂λ

− 1
acosϕ

∂
∂ϕ

u cosϕ( ) + 2Ωsinϕ .

(26)

On the other hand, the meridional derivative of the angular momentum is 

1
a
∂M
∂ϕ

= ∂
∂ϕ

u cosϕ( )− 2Ωacosϕ sinϕ .

(27)

Comparing (26) and (27), we see that for a purely zonal flow
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ζ + f = −1
acosϕ

∂M
∂ϕ

.

(28)

This allows us to rewrite (25) as

σ 2 ≅ −2sinϕ
a3 cos2ϕ

M ζ + f( ) .

(29)

For the zonally averaged flow we can safely assume that M > 0 , except possibly close to the 

poles. It follows that the sign of σ 2  is determined by  the sign of −sinϕ ζ + f( ) . Inertial 

instability occurs when σ 2 > 0 . In the Northern Hemisphere, where sinϕ > 0 , the criterion for 

instability is satisfied for ζ + f < 0 , and in the Southern Hemisphere it is satisfied for ζ + f > 0 . 

In either hemisphere, inertial instability  occurs when the absolute vorticity has “the wrong sign.” 
Since ζ + f  passes through zero near the Equator, inertial instability  is relatively easy  to excite 

there. The criterion for inertial instability can be satisfied when absolute vorticity is advected 
across the Equator (e.g., Thomas and Webster, 1997). 

Conditional symmetric instability

Emanuel (1979, 1982) pointed out that  when the air is saturated with water vapor the 
criterion for inertial instability can be expressed in terms of angular momentum variations along 
surfaces of constant equivalent potential temperature (or moist static energy), rather than surfaces 

of constant dry potential temperature. For 
saturated motion, instability can occur 
when the angular momentum increases 
poleward along surfaces of constant 
saturation moist static energy. Another way 
of saying the same thing is that, for 
saturated motion, instability can occur 
when the saturation moist static energy 
decreases upward along surfaces of 
constant angular momentum. 

When the zonal wind does not vary with 
height, surfaces of constant angular 
momentum are vertical. When the zonal 
wind varies with height, however, e.g., 
below a jet  stream or in the vicinity of a 

Kerry Emanuel
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front, angular momentum surfaces are tilted in the latitude-height plane. It is possible for the 
saturation moist static energy  to decrease along such tilted surfaces of constant angular 
momentum even when it  does not decrease upward. Emanuel (1983b) called this conditional 
symmetric instability, a term that is now in common use in the forecasting community. Emanuel 
argued that conditional symmetric instability is relevant to extratropical squall lines that form in 
regions of strong vertical wind shear.
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