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34.1 Free and forced small-amplitude oscillations of a thin spherical atmosphere

 

34.1.1)Perturbation equations

 

Laplace (originally published in French in 1799; English translation in 1832) was
the first to investigate the free and forced oscillations of a thin atmosphere on a spherical
planet. His 200-year old paper is still very relevant today.

The basic state considered by Laplace has a highly idealized form:

(34.1)

here  is an arbitrary function of 

 

p

 

. Note that  does 

 

not

 

 depend on latitude. This state
has no meridional temperature gradient and no mean flow. It is, of course, in balance.

The linearized governing equations are

(34.2)

(34.3)

(34.4)

(34.5)

where  is the static stability, which depends on 

 

p

 

, and  is the heating. Friction

has been neglected. Also,
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(34.6)

where 

 

/

 

 is the 

 

external

 

 gravitational tidal potential, due to the moon and/or sun. In
(34.6), we recognize that the atmosphere experiences gravitational accelerations due to
the pulls of the moon and sun, in addition to that of the Earth. The variation of 

 

/

 

 with 

 

p

 

 is
negligible, because the atmosphere is thin compared to the distances to the sun and moon.
Note that these equations are valid only for atmospheres which are shallow compared to
the planetary radius, 

 

a

 

. 

We look for solutions of the form

(34.7)

where

The superscripts  simply denote the particular frequency and zonal wave number

associated with each mode. Using , we see that (34.2) and (34.3)

can be written as 

(34.8)

(34.9)

Solving for  and , we find that 

(34.10)
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(34.11)

where  is the 

 

normalized

 

 frequency. Substituting (34.10) and (34.11) into the

continuity equation (34.4) gives

(34.12)

Now introduce a new “latitude” variable, . This change of variables is
useful because of the convergence of the meridians. Note that . Then from
(34.12) and (34.5) we get two equations for the two unknowns  and :

(34.13)

(34.14)

Here 

 

F

 

 is an operator that involves 

 

µ

 

, 

 

s

 

, and 

 

6

 

:

(34.15)

Some algebra is needed to obtain this form of 

 

F

 

. Eliminating  between (34.13) and
(34.14) gives

(34.16)

For now we regard  as known, so that (34.16) contains the single unknown
. The assumption that  is known means that  is at least

approximately independent of the motion. An example would be heating due to absorption
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of solar radiation by ozone. 

You are strongly encouraged to work through the details of the derivation from the
beginning of this section up to (34.16). 

A further separation of variables (see box) is achieved by assuming that for a
given pair ,

(34.17)

Here the subscript 

 

n

 

 is introduced to recognize the possibility of multiple solutions, and
the summation over 

 

n

 

 just represents superposition of these solutions. It can be shown

that the set  for all 

 

n

 

 is 

 

complete

 

 for . At this point, we do not

know what the meridional structure represented by  is. Substitution of (34.17)
into (34.16) gives:

(34.18)

(34.19)

Here we have introduced the nondimensional quantity

  (34.20)

The quantity , which appears in (34.19) and (34.20), is the “separation constant.” It is
called the “equivalent depth,” for reasons that will become clear later. 

For reasons that should be obvious, Eq. (34.18) is called the meridional structure
equation, and Eq. (34.19) is called the vertical structure equation. Recall that we have
derived these equations using the assumption that the basic state is at rest, and that the
temperature depends on pressure (i.e. height) only. Separation of variables becomes
impossible if the basic state is made more realistic, e.g. if the observed zonally averaged
temperature and winds are used.
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Eq. (34.18) was derived by Laplace about 200 years ago. It is often called the
Laplace Tidal Equation or LTE. Using the definition of 

 

F

 

, we can expand the LTE into the
alternative form

. (34.21)

The LTE is a second-order ordinary differential equation and so it requires two boundary
conditions. It suffices to assume that the  must be bounded at the poles, i.e. at

. 

Note that (34.21) and its boundary conditions are satisfied quite nicely by the

 

Separation of Variables

 

The motion of a vibrating string is described by

Assume a solution of the form

,

i.e. a function of 
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 only multiplied by a function of 
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 only. Then substitution gives

which can be written as
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trivial solution . Non-trivial solutions do exist, but only for particular choices
of the parameters  and/or  (or ). If these parameters are chosen “at random,” the

 

only

 

 solution of (34.18) that satisfies the boundary conditions is the trivial solution
. A problem of this type is called an “eigenvalue problem.” The frequencies

and/or equivalent depths are the eigenvalues and the  are the eigenfunctions or
eigenvectors, which are called 

 

Hough functions

 

. 

Note that all information about the planetary radius, rotation rate, and gravity is
“buried” in  and . The parameter  is sometimes given the imposing name “the
terrestrial constant.” Because it contains only two non-dimensional parameters
characterizing the planet, the LTE does not “know” or “care” very much about the
particular planet to which it is being applied. For given 

 

s

 

, 

 

6

 

, and , the eigenvalues and
eigenfunctions of (34.21) are the same for all planets, provided that the atmosphere in
question is shallow compared to the planetary radius. This means that the solutions of
(34.21) have a very broad applicability. 

The LTE itself describes only the meridional structure of the oscillations. It could
be called the “meridional structure equation.” The vertical structure of the solution is
governed by (34.19), which, naturally enough, is called the “

 

vertical structure equation

 

.”
It is a second-order ordinary differential equation for . At the top of the
atmosphere we apply the boundary condition

(34.22)

This is exact. 

At the lower boundary, the exact boundary condition (in the absence of

mountains) is  at . We apply the linearized boundary condition

. (34.23)

Here  is the value of  in the basic state. Because

(34.24)

where  is known, and using the hydrostaticity of the basic state, as expressed
by

(34.25)
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we can rewrite the lower boundary condition (34.23) as 

(34.26)

or

(34.27)

(Note that we retain the symbol 

 

/

 

 here for notational simplicity.) The tidal forcing thus
enters through the lower boundary condition.

Eliminating 

 

"

 

 between (34.27) and (34.13) (as applied at ) gives

(34.28)

Expressing 

 

/

 

 in terms of Hough functions, i.e.

(34.29)

we finally obtain the lower boundary condition as

(34.30)

Note that the gravitational forcing enters the problem through the lower boundary
condition on the vertical structure equation. The thermal forcing enters through the
vertical structure equation itself. The gravitational and thermal forcings do not appear in
the LTE.

 

34.1.2)Free oscillations of the first and second kinds

 

A free oscillation is one for which there is no thermal or gravitational forcing.
When there is 

 

no thermal forcing

 

 the vertical structure equation (34.19) reduces to 

(34.31)

When there is 
 

no gravitation forcing
 

 the surface boundary condition (34.30) can be
simplified to 
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(34.32)

We also have

(34.33)

Then (34.31) has non-trivial solutions only for special values of 

 

h

 

. These eigenvalues are
denoted by . For , only the trivial solution [i.e. ] exists. In order to find

the  and the corresponding solutions for , we have to specify the static stability
 as a function of height. Different choices for  will give different  and .

For the case of free oscillations, the solution procedure is shown in Fig. 34.1.
Note that in this case we have 

 

two

 

 eigenvalue problems: One from the vertical structure

equation, and a second from the LTE. In the vertical structure problem, the eigenvalues
are the equivalent depths. In the meridional structure problem, the eigenvalues are the
frequencies. 

As a very simple example, suppose that the atmosphere is isentropic, so that
. Then we find from (34.31) that 

(34.34)

A solution of (34.34) that is consistent with the upper boundary condition (34.33) is 

(34.35)

where  A   is an arbitrary constant. Use of (34.35) in the lower boundary condition (34.32)
gives
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Figure 34.1: The solution procedure for free oscillations. The vertical structure equation is 
solved first. The frequency is obtained as an eigenvalue of the LTE. 
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(34.36)

This is the only possible equivalent depth for free oscillations of an isentropic atmosphere.

 

With more general stratifications there can be many (infinitely many) equivalent depths

 

.
The basic procedure used in this simple example would be the same for other
stratifications. 

With  given by (34.36), nontrivial solutions of (34.18) exist only when there is a
special relation (called the dispersion relation) among 

 

6

 

, 

 

s

 

, and 

 

n

 

. We refer to 

 

n

 

 as the
“wave type.” The Hough functions [i.e. the solutions of (34.18)] have been tabulated by
Longuet-Higgins (1968) and others. Here we consider only some limiting cases. First

suppose that there is no rotation, so that . We continue to assume that

 so that (34.36) applies. For this case, find that

(34.37)

and

(34.38)

Then the LTE, (34.21), reduces to 

(34.39)

It can be shown that (34.39) has solutions that are bounded as  
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These are eigenvalues again. Think of (34.40) as fixing the allowed frequencies of the
waves. The eigenfunctions are called associated Legendre Functions of order 

 
n

 
 and rank 

 
s

 
,

denoted by

(34.41)
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(34.42)

These are the spherical harmonics (see the handout on this topic). Here 

 

n

 

 is the total
number of nodal circles, 

 

s

 

 is the zonal wave number, and 

 

n

 

-

 

s

 

 is the number of nodes in the
meridional direction, also known as the “meridional nodal number.” 

The solutions found here are external gravity waves. They are called “external”
because they have no nodes in the vertical. The frequency

(34.43)

depends

 

 

 

on the wave’s scale through the two-dimensional index, 

 

n

 

, but it 

 

is independent
of s

 

. For example, when , 

 

s

 

 can be either 0 or 1, but both modes have the same
frequency. This is not true when rotation is present, because then the zonal direction (in
which scale is measured by 

 

s

 

) becomes physically “different” from the meridional
direction. A non-isentropic atmosphere can support both external and internal gravity
waves.

Now we consider , still for an isentropic atmosphere, and neglect all details.
Define a stream function 

 

G

 

 and a velocity potential 

 

H

 

 so that 

(34.44)

The vorticity is then , and the divergence is

. The equation of horizontal motion leads to

(34.45)

(the vorticity equation) and
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(the divergence equation). We can also show (see the problems at the end of this chapter)
that 
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Equations (34.44) through (34.47) form a closed set that can be solved for 

 

G

 

, 

 

H

 

, and .

 From (34.45) and (34.47) we see that stationary motion cannot exist unless
. For nontrivial stationary motion with  it follows from (34.2) that ,

i.e. the motion must be purely zonal and also zonally uniform.

Margules (1893) and Hough (1898) showed that the LTE has two classes of
solutions, which they named Free Oscillations of the First and Second Classes. For the

case of  small (weak rotation), we can solve (34.45) and (34.46) by expanding

in spherical harmonics (see Longuet-Higgins, 1968). The Free Oscillations of the First
Class (FOFC) are essentially gravity waves, satisfying

(34.48)

Compare with our earlier results, obtained for . Haurwitz (1937) obtained a more
accurate expression for the frequency of the FOFC:

(34.49)

This should be compared with (34.48). The additional terms in (34.49) involve 

 

&

 

. For
 the error in (34.49) is less than 1%. From (34.49) we see that eastward propagating

inertia gravity waves have frequencies slightly different from those of westward
propagating inertia gravity waves. The difference is due to rotation. 

The Free Oscillations of the Second Kind (FOSC) are the so-called Rossby-
Haurwitz waves, which satisfy

(34.50)

Note that, since , 
 

the FOSC always move westward
 

. They are nearly nondivergent.
They can be found by assuming  from the beginning, as follows: The linearized
nondivergent vorticity equation is
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(34.51)

Therefore

(34.52)

or

(34.53)

This is another eigenvalue problem. The solution of (34.53) is , so that

(34.54)

Note that for these waves, unlike the pure gravity waves, 

 

0

 

 does depend explicitly on 
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. 

This westward propagation of Rossby-Haurwitz waves is due to the Earth’s
sphericity. To see this, rewrite (34.51) as 

(34.55)
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Figure 34.2: Chain of vortices along a latitude circle, illustrating the westward propagation 
of Rossby waves.
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(34.56)

Note that . Consider a chain of vortices along a latitude circle, as shown in Fig. 34.2.

In places where , , so . Similarly, where , , so . 

A direct test of the theory of non-divergent Rossby waves was made by Eliassen
and Machenhauer (1965) and Deland (1965). They performed a spherical-harmonic
analysis of the 500 mb stream function, isolating transient waves by taking the difference
in 24 hours. Their results, illustrated in Fig. 34.3, show westward propagation. Table 34.1

compares the computed [from (34.54)] and observed phase speeds, in degrees of longitude
per day.The model overpredicts the westward phase speeds. This error is due to our
neglect of the effects of divergence. 

Madden and Julian (1972) found a 5-day oscillation of surface pressure in the
tropics, which corresponds to a FOSC with , . It drifts westward, as shown in
Fig. 34.4. 

Table 34.2 gives examples of the periods of the FOFC and FOSC. Notice that
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Figure 34.3: Successive daily values of the phase angle for the 24 hour tendency field, 
, at the 500 mb level for the components 

, during the 90 day period beginning 1 
December 1956. The abscissa represents the number of westward circulations 
round the Earth after the first passage of the Greenwich meridian. From 
Eliassen and Machenhauer (1965). 
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westward moving gravity waves with ,  have periods close to 12 hours.
These modes are observed, and early theories attributed their period to semidiurnal
forcing. This point is discussed further later. 

 

34.2 Atmospheric Tides 

 

The atmospheric tides were first detected as small amplitude, large-scale surface
pressure oscillations with periods that divide evenly into a day; see Fig. 34.5. At the
surface, the 

 

semidiurnal

 

 solar barometric tide is the most prominent. Its existence is
easily detected at tropical stations. In higher latitudes the barometric tide is weaker, and
also the day-to-day synoptic fluctuations of surface pressure are stronger, so the tides are
less conspicuous. 

The various tides are denoted by  and  for solar and lunar modes,

 

(s, n) cR-H cobs

(1,2) -115 -70

(2,3) -53 -40

(3,4), (1,4) -28 -20

(2,5) -16 -12

(3,6) -9 -8
Table 34.1: Predicted and observed phase speeds of Rossby-Haurwitz modes, in degrees 

of longitude per day. 

n 2= s 2=

Figure 34.5: A barometric record taken at a tropical station, together with one taken in a 
temperature latitude. The horizontal axis is time in days.
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respectively. Here  is the  diurnal oscillation, and similarly for . For example, 
and  are the diurnal and semidiurnal solar tides, respectively. The tides include both
standing  and migratory  components. 

Each tide consists of a superposition of zonal wave numbers. For example,

(34.57)

Haurwitz (1956) summarized data on , based on 296 stations, as shown in Fig.
34.6. There are two main families,  and . Here  moves westward
with the sun. It has a maximum amplitude of about 1.2 mb on the Equator, as can be seen
in Fig. 34.6 a. At a given station,  is greatest at 9:44 am and pm (local time).  is

Figure 34.4: a) Longitude-time diagrams of zonal wavenumber 1 anomalies of the high-
pass filtered sea-level pressures. b) 500-mb heights from 25S to 25N. Shaded 
areas represent negative anomalies. From Madden and Julian (1972). 
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a family of 

 

standing

 

 oscillations, so that phase angles depend on both longitude and local
time. According to Haurwitz (1956), the data are well fit by

(34.58)

Here ,  (Greenwich time in hours)/24, longitude is taken to be zero on
the Greenwich meridian, and  are the seminormalized associated Legendre

 

n s

First Class
To West,
hours

First Class
To East,
hours

Second Class
Only to West,
days

1 1 13.76 39.34 1.21

2 1 10.92 14.50 5.37

2 11.80 18.10 1.64

3 1 9.11 10.09 8.75

2 9.23 10.96 3.87

3 9.63 12.17 2.10

4 1 7.65 7.99 12.78

2 7.65 8.28 6.11

3 7.75 8.66 3.79

4 7.94 9.18 2.56

5 1 6.52 6.67 17.75

2 6.52 6.79 8.70

3 6.52 6.95 5.62

4 6.58 7.24 3.92

5 6.69 7.49 3.05
Table 34.2: Periods of the free oscillations on the sphere, as computed from theory. Note 
that the periods of the gravity waves are given in hours, while those of the Rossby waves 

are given in days. From Phillips (1963).

S2
2 p0( ) 1.23P2

2 µ( ) 0.182P4
2 µ( )– …+[ ] 2t 2( 158°+ +( )!!!mbsinC

S2
0 p0( ) 8.5P2

0 µ( ) 2t 118°+( ) 10 2–( )!!!mb×sinC

µ 'sin= t 2>=
Pn
2 µ( )
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a

b

Figure 34.6: a) Observed distribution of the amplitude of S2 (unit 10-2 mb). b) Observed 
distribution of the phase constant of S2 in local time. See Eq. (34.58) for the 
definition of the phase angle. The phase lines come together at nodes where 
the amplitude of the standing wave is zero. From Haurwitz (1956).
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functions with zonal wave number 2. The factor of 158° that appears in the argument of
the sine is the “phase constant” plotted in Fig. 34.6 b. 

As shown in Fig. 34.7,  is weaker than , and is also much less
regular over the Earth. Haurwitz first expanded

(34.59)

where  is local time. Based on the A's and B's, he determined amplitudes as shown in
Fig. 34.7. Positive wave numbers denote westward propagation. The major component is

. There are many other active modes. They are due to the complicated pattern of
heating associated with the distributions of land and sea. The maximum amplitude of

 is about half that of .

Observations also show the existence of solar tides with shorter periods.

Numerous authors have used upper air data on winds, temperature, and heights to
investigate the diurnal and semidiurnal tides, as shown in Fig. 34.8. The dominance of 
in the lower troposphere gives way to a dominance of  in the upper troposphere and
lower stratosphere. Rocket soundings have revealed strong diurnal and semidiurnal tides
between 30 and 60 km as shown in Fig. 34.9. Note the large amplitudes at these altitudes.

S1 p0( ) S2 p0( )

Figure 34.7: Amplitudes of the component waves of the diurnal pressure oscillation. From 
Haurwitz (1956).

Wave number, s
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Figure 34.8:

 

a) Annual average 
0000 - 1200 GMT 
(solid) and 0300 - 
1500 GMT (dashed) 
wind differences at 
500 mb, plotted in 
vector form. b) 
Annual average 
0000 - 1200 GMT 
wind differences at 
100 mb plotted in 
vector form. From 
Wallace and 
Hartranft (1969).
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In the lower thermosphere (80 - 120 km) the tidal winds attain amplitudes of 20 - 50 m s

 

-
1

 

.

Up to now we have been concentrating on the thermally forced solar tides. There
are also gravitationally driven lunar tides. As shown in Fig. 34.10,the gravitationally
driven lunar tide  has been detected both in the tropics and in middle latitudes. Its
amplitude is measured in 

 

µ

 

b, reaching about 80 

 

µ

 

b on the equator. It exhibits large
regional and seasonal irregularities. The major component is , which moves

westward with the moon. In the troposphere, the temperature oscillation is on the order of
10

 

-2

 

 K, and the wind oscillations are on the order of 10

 

-2

 

 m s

 

-1

 

. The gravitationally driven
wind oscillations reach 1-2 m s

 

-1

 

 near 85-100 km altitude. 

Generally speaking, the tides are very well explained by the linear theory. As
shown in Fig. 34.11, at high latitudes, the phase is nearly independent of height,
suggesting trapped waves. At lower latitudes, the phase changes rapidly with height,

L2 p0( )

Figure 34.9: Meridional wind components in m s-1 averaged over 4 km layers centered at 
40, 44, 48, 52, 56 and 60 km. Positive values indicate a south to north flow. 
From Beyers, Miers, and Reed (1966). 
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indicating vertical propagation of wave energy.

The solar tides are caused by thermal excitation primarily due to absorption of
solar radiation by ozone in the stratosphere and water vapor in the troposphere. This
heating is 

 

almost independent of the motion of the atmosphere

 

, and it is periodic. The sun
also imposes a periodic gravitational forcing that is completely independent of the motion
of the atmosphere. Similarly, gravitational forcing due to the moon is periodic and
completely independent of the motion. The theory of the tides seeks to explain how the
observed tidal motions are driven by these externally imposed periodic forcings. The fact
that the forcing functions for the tides are motion-independent and periodic explains why
the theory of the tides is so well developed. It is much more difficult to solve the equations
when the forcing (e.g. latent heat release) is dependent on the motion. 

Earlier we studied free oscillations. The tides are forced oscillations. For forced
oscillations the period (or frequency) and zonal wave number of the forcing are 

 

given

 

. In
contrast, with free oscillations the frequency and zonal wave number of the solution are
determined by solving an eigenvalue problem. 

For a given 

 

0

 

 and 

 

s

 

, the LTE,

Figure 34.10:Global amplitude distribution of the lunar semidiurnal tide (unit 1 µbar = 10-3 
mbar). The number at each station dot shows the local amplitude of . 
From Haurwitz and Chapman (1967). 
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Figure 34.11:a) Amplitude and phase of diurnal variation of meridional wind component at 
61° N. The phase angle, in accordance with usual convention, gives the 
number of degrees in advance of origin (chosen as midnight) that the 
upcrossing of the sine curve occurs; maximum (max). b) Same as (a) for 37° N. 
c) Same as (a) for 30° N. d) Same as (a) for 20° N. e) Same as (a) for 8° S. From 
Reed (1969).

a

b

c

d

e
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(34.60)

will yield a generally infinite set of eigenvalues  and Hough functions, . A method
for solving the LTE for the case of forced oscillations was worked out by Hough (1898),
who showed that the solutions of the LTE, i.e. the functions named for him, can be
expanded in a series of associated Legendre functions. The vertical structure of each
eigensolution is determined by solving the vertical structure equation

(34.61)

using with the boundary condition

. (34.62)

Recall that J is the heating and G is the gravitational potential, and that these are both
regarded as known here. When the excitation is thermal, we need to know the vertical
profile of . If the heating is confined to certain levels (the ozone layer, for instance), the
solution is basically the unforced (homogeneous) solution away from those levels.

The solution procedure is shown in Fig. 34.12. Note that the basic logic of this

procedure is quite different from that used to study free oscillations. 

Extensive tabulations of  and  are available for various 0 and s. Examples
are shown in Table 34.3. 

To solve the vertical structure equation, (34.61), it is useful to make a change of
variables:

d
dµ
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0 s,
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) *
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+ , 1

62 µ2–
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(34.60) (34.61)
infinite set of  and hn <n

0 s,Given 0, s

of excitation

Wn
0 s,

plus knowledge of 

, , and Jn
0 s, Gn

0 s, Sp p( )

Figure 34.12:The solution procedure for forced oscillations. The frequency is given in the 
specification of the forcing. 
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Solar semidiurnal tide : 

Wave type .

Wave type :

Lunar semidiurnal tide : 

Wave type :

Wave type : 

Solar ter-diurnal tide : 

Wave type :

Wave type :

 

Table 34.3: Equivalent depths and Hough’s functions for a few important wave types. 

Computed for the terrestrial constant . Terms in the Hough’s 
functions with coefficients les than 0.1 are omitted. After Siebert (1961). From Craig (1965).  
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(34.63)

Here . Note that 

 

Z

 

 is non-dimensional. For an isothermal atmosphere, we can show

that  We can thus interpret 

 

Z

 

 as a kind of non-dimensional height. Using
(34.63), we can rewrite (34.61) as

(34.64)

where , and . The advantage of (34.64) over (34.61) is that whereas 

 

p

 

appears explicitly in (34.61), 

 

Z

 

 does not appear explicitly in (34.64). This makes (34.64)
easier to handle mathematically. 

With the 

 

Z

 

 coordinate, the lower boundary condition becomes

(34.65)

The upper boundary condition is that the kinetic energy density remains bounded as
. It can be shown that this implies that the  remain bounded as . In some

cases this condition is replaced by a radiation condition that requires upward propagation
of energy.

Let

(34.66)

Note that for an isothermal atmosphere . The solutions of the homogeneous
equation are exponential for , i.e.

(34.67)
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and wave-like for , i.e.

(34.68)

For , the exponential solutions are of the “external” type (no nodes in 

 

Z

 

), and there
is no vertical energy propagation, so that forcing produces effects only close to the levels
of excitation. When , the solution is of the “internal” type (there 

 

are

 

 nodes in 

 

Z

 

)
and vertical energy propagation does occur, so that forcing can produce effects far from

the level where it occurs. For internal modes, the vertical wavelength is essentially .

The upper boundary condition requires  for the external modes, and 
for the internal modes. The latter is the radiation condition.

Ever since the time of Laplace a puzzling question had been recognized: 

 

Why is
 stronger than 

 

? It seems intuitively that the rising and setting sun should
force the diurnal tide more strongly than the semi-diurnal tide, and yet the opposite is
observed, at least in terms of the oscillations of the surface pressure. One possible
explanation is that  is forced by the gravitational attraction of the sun. This is
plausible because a gravitational tide is expected to have a wave-number 2 structure, as
shown in Fig. 34.13. 

If the solar gravitational semi-diurnal tide is so strong, however, then we must ask
why the lunar semi-diurnal tide is observed to be so weak, given that the Earth’s
atmosphere experiences a gravitational attraction due to the moon which is 2.2 times
stronger than that due to the sun. 

On the other hand, if  is thermally forced, then we would expect  to be
even stronger than , because thermal forcing has a structure that (at least superficially)
appears to prefer wave number 1 (again, see Fig. 34.13). As already mentioned, however,

 is considerably weaker than . 

Kelvin (1882) suggested an explanation that was accepted for a long time, but
ultimately proved to be incorrect: he argued that the semi-diurnal tide is thermally driven
and that  is selected by (is stronger than  due to)

 

 resonance

 

. This could happen if the
atmosphere had a 

 

free

 

 oscillation with a period very close to 12 hours. Referring back to
Table 5.34.2, we see that the FOFC with ,  has a period of 11.8 solar hours.
As we have seen,  has a major contribution from ). Many investigators
tried to find a realistic  such that the free mode for  had a period of almost

 

exactly

 

 12 hours. As shown in Table 34.3, this requires . As  became
better known from observations, the resonance theory became less tenable. It was dealt a
major setback when Jacchia and Kopel (1952) showed that the model atmosphere needed
to make a strong resonance at 12 solar hours is unrealistically warm (by about 50 K) at
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the 50 km level. See Fig. 34.14. 

As the resonance theory failed, the question remained: Why is ? The
explanation came from two directions. First, improved understanding of the heating
profile led to larger predicted amplitudes for . When Siebert (1961) included the

Figure 34.13: Sketch showing the differences between gravitational tides, which are 
basically “wave number 2,” and thermal tides, which are basically “wave 
number 1.” A gravitational tide acts symmetrically on the parts of the planet 
that are closest to the attracting object and furthest from it. See the problems at 
the end of the chapter. A thermal tide acts asymmetrically on the part of the 
planet closest to the radiating object.

gravitational tide

thermal tide

Figure 34.14:

 

Some model atmospheres and the corresponding amplification curves. The 
solid curves represent an atmosphere devised by Jacchia and Kopal (1952) to 
give large resonance for . The dashed curves represent an atmosphere 
consistent with some early rocket results (computed by Jacchia and Kopal). 
The dashed-dot curves represent a simple two-layer atmosphere and a 
mathematical model of Siebert, the resonance curve (computed by Siebert, 
1961) being essentially the same for both. (After Siebert, 1961). From Craig 
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effects of solar warming due to tropospheric water vapor, he obtained an amplitude for
 that was about 1/3 that observed. When Butler and Small (1963) included the

solar warming due to ozone absorption in the stratosphere, they obtained an amplitude for
 that was about 2/3 that observed.

The second advance was the simultaneous and independent discovery of negative
equivalent depths for  by Kato (1966) and Lindzen (1966). Three examples are shown
in Table 5.34.4. The negative eigenvalues corresponded to previously overlooked
solutions of the LTE.  From (34.66), we see that small positive ’s make  large

and negative, so that although vertical propagation does occur the vertical wavelengths
are very small. Such modes have large vertical gradients and so are easily dissipated.
Negative ’s make  positive, so that 

 

the corresponding waves do not propagate
vertically

 

. For these reasons, the  modes excited by ozone absorption 

 

do not reach the
ground

 

, although they can propagate to higher levels. This is now accepted as the reason
why  is much weaker than . 
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negative 

 

h
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n=5                 h5=0.048 km                     n=-6                 h-6=-0.64 km                

Table 34.4: Examples of positive and negative equivalent depths. 
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