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Introduction

Matsuno (1966; Fig. 1) studied the linearized shallow water equations applied to an 
equatorial β -plane: 

∂u
∂t

− fv + g ∂h
∂x

= 0,

∂v
∂t

+ fu + g ∂h
∂y

= 0,

∂h
∂t

+ H ∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
= 0.

(1)
Here f ≡ βy , where y  is distance in the meridional direction, measured from y = 0  at the 

Equator ( i .e . , y = aϕ ) , and β ≡ df
dy

 i s 

approximated by a constant value. 

Matsuno defined a time scale, Τ ≡ 1
cβ

, and a 

length scale, L ≡ c
β

. Here c ≡ gH  is the 

phase speed of a pure gravity wave. With these 
length and time scales, the velocity scale is 
simply c . See Fig. 2 for a sketch defining the 
other quantities. The length L  can be interpreted 
as the “Equatorial radius of deformation.” For 
c = 10  m s-1, we find that L = 1000  km and 
Τ ≅ 1  day. Nondimensionalizing the governing 
equations by Τ  and L , we obtain 

Figure 1: Prof. T. Matsuno, giving a lecture at 
UCLA in January 1998.
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∂u
∂t

− yv + ∂φ
∂x

= 0,

∂v
∂t

+ yu + ∂φ
∂y

= 0,

∂φ
∂t

+ ∂u
∂x

+ ∂v
∂y

= 0.

(2)
Here φ is the non-dimensional form of gh . 

As a side comment, we note that these 
equations can actually apply  to a model with 
vertical structure (e.g. McCreary, 1981), and so 
are more readily applicable to the real 
atmosphere than one might guess. For 
example, consider a two-level model:

∂V1
∂t

+ fk ×V1 +∇φ1 = 0,

∂V3
∂t

+ fk ×V3 +∇φ3 = 0,

∂
∂t

φ3 −φ1( ) + SΔpω 2 = 0.

(3)
As shown in Fig. 2, subscript  1 denotes the upper level and subscript 3 denotes the lower level. 
The vertical velocity is defined in between, at level 2. Here Δp ≡ p3 − p1  is the pressure 

thickness between the two layers, and S ≡ −α
θ
∂θ
∂p

 is the static stability of the basic state. Let

Vd ≡ V3 −V1 ,
(4)

φd ≡ φ3 −φ1 ,
(5)

be the vertical shear (actually, difference) of the horizontal wind between the two layers, and the 
thickness between the two layers, respectively. Then (3) implies that

∂Vd

∂t
+ fk × Vd +∇φd = 0 ,

(6)
and

Figure 2: Schematic used to explain the two-
level model represented by Eqs. (3).
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∂φd
∂t

+
SΔp2

2
∇ ⋅Vd = 0 ,

(7)
which are identical to the shallow water equations, and we can identify

ci ≡ Δp S
2

(8)
as the phase-speed of the internal gravity waves. 

We return now to our discussion of (2). Assume solutions of the form

u = û y( )ei kx+ω t( ),

v = v̂ y( )ei kx+ω t( ),

φ = φ̂ y( )ei kx+ω t( ) ⋅
(9)

If we adopt the convention that k  is positive, then ω > 0  corresponds to westward propagation, 
and ω < 0  to eastward propagation. Substitution into (2) gives

iω û − yv̂ + ikφ̂ = 0,

iω v̂ + yû + dφ̂
dy

= 0,

iωφ̂ + ikû + dv̂
dy

= 0.

(10)

The first of these equations can be solved for û  in terms of v̂  and φ̂ , and the result  can be used 

to eliminate û  in the other two equations. Then the system (10) can be rewritten as

ω û = −kφ̂ − iyv̂,

kyφ̂ −ω dφ̂
dy

= i ω 2 − y2( ) v̂,

ω 2 − k2( )φ̂ = i kyv̂ +ω dv̂
dy

⎛
⎝⎜

⎞
⎠⎟
.

(11)
Kelvin waves

There is a special solution, called the Kelvin wave, for which the meridional wind is 
identically zero. In that case, (11) reduces to
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ω û = −kφ̂,

kyφ̂ −ω dφ̂
dy

= 0,

ω 2 − k2( )φ̂ = 0.

(12)
The third of these implies that, for non-trivial solutions,

ω = ±k .
(13)

With the use and inclusion of (13), our system becomes

±û = −φ̂,

−yφ̂ ± dφ̂
dy

= 0,

ω = ±k
(14)

The middle equation obviously determines the meridional structure of φ . The solution is

φ̂ = e± y
2 /2 .

(15)
Here the plus and minus signs correspond to those used in (13). If we choose the plus sign, we 
get solutions that  grow exponentially  away from the Equator, which is unacceptable, especially 
since the Equatorial beta plane approximation is only useful near the Equator. We therefore 
choose the minus sign in (14)-(15). In (15), this gives a “bell-shaped” solution with a maximum 
on the Equator, and symmetry across the Equator. The solution can be written as

û = e− y
2 /2 ,

φ̂ = e− y
2 /2 ,

ω = −k.
(16)

Note that ω = −k  implies eastward propagation. 

Other solutions

Returning now to the general case, we can combine the second and third equations of 
(11) to obtain
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ky kyv̂ +ω d
dy
v̂

⎛
⎝⎜

⎞
⎠⎟
−ω d

dy
kyv̂ +ω d

dy
v̂

⎛
⎝⎜

⎞
⎠⎟
= ω 2 − k2( ) ω 2 − y2( ) v̂ ,

(17)
which can be simplified to

d 2v̂
dy2

+ ω 2 − k2 + k
ω

− y2⎛
⎝⎜

⎞
⎠⎟ v̂ = 0 .

(18)
Note that the substitution used to obtain (17)-(18) is only  valid for ω 2 − k2 ≠ 0 . Therefore, (18) 

does not apply to the Kelvin wave, for which ω 2 − k2 = 0 . 

We expect the solutions of (18) to have “wavy” behavior for ω 2 − k2 + k
ω

− y2 > 0 , and 

exponential behavior for ω 2 − k2 + k
ω

− y2 < 0 . Because of the − y2  term, exponential behavior 

will emerge sufficiently far from the Equator, and, as with the Kelvin wave, we want this to be 
exponential decay rather than exponential growth. Therefore, as boundary conditions, we use

v̂→ 0 as y→ ±∞ . 
(19)

It can be shown that nontrivial solutions satisfying these boundary conditions exist when

 
ω 2 − k2 + k

ω
= 2n +1 for n = 0,  1,  2… .

(20)
Note that the expression on the right-hand side of (20) generates all positive odd integers, so that 

Eq. (20) is equivalent to the statement that ω 2 − k2 + k
ω

 is an odd positive integer. 

Notice, however, that (20) will give ω = −k  if we set n = −1 . For this reason, it is 
convenient to think of the Kelvin wave as the solution corresponding to n = −1 , and this will be 
used in Fig. 3, to be discussed later.

You can verify by substitution that the solutions of (18) are

v̂ y( ) = Ce−
1
2
y2

Hn y( ) ,
(21)

where Hn y( )  is the nth Hermite polynomial, which is given by
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Hn y( ) ≡ (−1)n ey2 d
n

dyn
e− y

2( ) .

(22)

(See the QuickStudy on Hermite polynomials.) As already mentioned, the factor e− y
2
 ensures that 

these modes decay rapidly away from the Equator. The e-folding distance is about 1000 km.

The dispersion equation, (20), is cubic in ω , and so there are three ω s for each k,n( )  

pair. Two of these correspond to inertia-gravity waves. For large k , they can be approximated by

ω1,2 ≅ ± k2 + 2n +1 .
(23)

These expressions can be compared with (38). The third root of (20) corresponds to a Rossby 
wave. For small k , it can be approximated by

ω 3 ≅
k

k2 + 2n +1
.

(24)
For the special case n = 0 , the equations simplify quite a bit. First of all, H0 y( ) = 1for all 

y , so the meridional structure of v̂ y( ) , given by (21) is simply the bell-shaped Gaussian curve. 

This means that the meridional velocity has the same sign on both sides of the Equator and is a 
maximum on the Equator.

In addition, for n = 0  the dispersion equation (20) can be factored:

ω − k( ) ω 2 + kω −1( ) = 0  for n = 0 .

(25)
Matsuno showed that the three roots of (25) can be interpreted as follows:

Eastward gravity wave: ω1 = −
k
2
−

k
2

⎛
⎝⎜

⎞
⎠⎟
2

+1  for n = 0 ,

(26)

Westward gravity wave: ω 2 =
− k

2
 + k

2
⎛
⎝⎜

⎞
⎠⎟

2

+1 for k ≤ 1
2

k                       for k ≥ 1
2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 for n = 0 ,

(27)
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Rossby wave: ω 3 =

k                       for k ≤ 1
2

− k
2
+ k

2
⎛
⎝⎜

⎞
⎠⎟

2

+1 for k ≥ 1
2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 for n = 0 .

(28)
The westward gravity wave described by (27) and the Rossby  wave described by (28) are not 

really distinct. They coincide for k = 1 / 2 . For 
reasons discussed just below Eq. (18), the root 
ω = k  has to be thrown out. Matsuno concluded, 
therefore, that for n = 0  we really  have only  two 
waves: an eastward moving gravity wave, and a 
“mixed Rossby-gravity  wave,” which is also 
called the “Yanai wave,” after the late Prof. 
Michio Yanai1  of UCLA. The Yanai wave 
behaves like a gravity wave for k < 1 / 2 , and 

like a Rossby wave for k > 1 / 2 . The 
dispersion relation for the Yanai wave is

ω =
k
2

⎛
⎝⎜

⎞
⎠⎟
2

+1 − k
2

. 

(29)

Substituting k = 1/ 2  in (29) gives ω = 1/ 2 , 
so that ω = k . 

The various wave-solutions of Matsuno’s model are summarized in Fig. 3, which shows 
the roots of the dispersion equation. Recall that  positive values of the frequency correspond to 
westward propagating waves, and negative values (lower part of the figure) to eastward 
propagating waves. The thick solid curves arcing upward from the origin represent Rossby 
waves, with positive values of . The dashed curves in the upper part of the diagram correspond to 
westward propagating inertia-gravity waves, and the thin solid curves in the lower part of the 
diagram correspond to eastward propagating inertia gravity waves. 

The westward propagating wave represented by the curve that is partly solid and partly 
dashed is the mixed Rossby-gravity  wave, or Yanai wave. The dashed portion of this curve, 
plotted for k < 1 / 2 , represents those wave numbers for which the Yanai wave behaves like a 

westward propagating gravity  wave. The solid portion of the curve, for k > 1 / 2 , represents 
those wave numbers for which the Yanai wave behaves like a Rossby wave. 

Figure 1: Prof. Michio Yanai.
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The dashed line proceeding down and towards the right from the origin represents the 
Kelvin wave.

For n = 0 , the eastward moving inertia-gravity wave and westward moving Yanai wave 
have the structures shown in the upper and middle panels of Fig. 4. For a pure gravity wave we 
expect the winds to be perpendicular to the isobars. When rotation is dominant, the winds are 
parallel to the isobars. The waves shown look like pure gravity waves near the Equator. For 
n = 0  and k = 1 , the Yanai wave takes on the characteristics of a Rossby wave, as shown in the 
lower panel.

Figure 3: Frequencies as functions of wave 
number. Positive frequencies correspond to 
westward propagation. Thin solid line: 
eastward propagating inertia-gravity  waves. 
Thin dashed line: westward propagating 
inertia-gravity  waves. Thick solid line: Rossby 
(quasi-geostrophic) waves. Thick dashed line: 
The Kelvin wave. The westward moving wave 
with n = 0  is the Yanai wave. It is denoted by 
a dashed line for k <1/ 2 , and by a solid 

line for k >1/ 2 . From Matsuno (1966).

westward
propagating

eastward
propagating
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Solutions for n = 1  are shown on the left side of Fig. 5. The corresponding results for 
n = 2  are shown on the right side of the figure. Recall that the subscript n  denotes the solution 
whose meridional structure is described by  the n th Hermite polynomial. As can be seen in the 
figure, higher values of correspond to more nodes in the meridional direction. 

Figure 4: Pressure and velocity  distributions of solutions for n = 0 and k = 0.5 . a) Eastward 
moving inertia-gravity  wave. b) Westward moving Yanai wave, which for this value of k behaves 
like an inertia-gravity  wave. c) The structure of the Yanai wave for n = 0 and k =1 , in which case 
the Yanai wave acts like a Rossby  wave. For each mode, v is a maximum on the Equator and does 
not pass through zero anywhere. This is characteristic ofn = 0 . From Matsuno (1966).

a

b

c
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The structure of the Kelvin wave is shown in Fig. 6. Note that the velocity vectors are 
purely  zonal, and that the tendency of the zonal wind is in phase with the pressure, as in a gravity 
wave. 

Figure 5: Left side: Pressure and velocity  distributions of solutions for n =1 . a) Eastward 
propagating inertia-gravity wave. For each mode, u = 0 on the Equator, as we expect for n =1 . b) 
Westward propagating inertia-gravity  wave. c) Rossby  wave. Right side: Corresponding results 
for n = 2 . For each mode, u is symmetrical across the Equation, as we expect for n = 2 . From 
Matsuno (1966).
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There have been many  observational studies 
of tropical waves. Yanai and Maruyama 
(1966) and Maruyama and Yanai (1967) 
observed the mixed-Rossby-gravity wave 
shortly after Matsuno had predicted its 
existence. Wallace and Kousky (1968) 
found the Kelvin wave shortly thereafter. 
This is a spectacular example of theoretical 
work (Matsuno, 1966) foreshadowing 
observational discoveries.

In more modern work, Wheeler and Kiladis 
(1999) examined the space-time variability 

of the tropical outgoing long wave radiation.In Fig. 7, the data have been separated into modes 
that are symmetric across the Equator (right panel), such as the Kelvin wave, and modes that are 
anti-symmetric across the Equator (left panel), such as the mixed-Rossby-gravity wave. Through 
the use of additional filtering procedures motivated by Matsuno’s results, Wheeler and Kiladis 
were able to show the longitudinal propagation of various types of equatorially trapped 
disturbances, as shown in Figs. 7-8. 

The response of the tropical atmosphere to stationary heat sources and sinks

The discussion above is all about “free waves.” Forced solutions to Matsuno’s model are 
also of great  importance. Fig. 9, which is taken from Matsuno (1966), shows the stationary 

Figure 6: Pressure and velocity distributions for 
n = −1  andk = 0.5 . This is a Kelvin wave. From 
Matsuno (1966).

Figure 7: The variability  of the outgoing longwave radiation (OLR) as a function of frequency  and 
zonal wave number for modes that are symmetric across the Equator (right panel) and anti-
symmetric (left panel). Eastward propagation is associated with positive wave numbers, and vice 
versa. The boxes select particular wave types. From Wheeler and Kiladis (1999).
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circulation driven by a mass source and sink on the Equator. Think of this figure in terms of the 
low-level flow. The mass sink can be interpreted as a region of rising motion, where the air is 

Figure 8: Longitudinal propagation of the Madden-Julian Oscillation (MJO; discussed later), 
Kelvin waves, equatorial Rossby  (ER) waves, and mixed-Rossby-gravity  (MRG) waves, as seen in 
the OLR. The zero contour has been omitted. The various modes are selected by  including only 
the contributions from wave numbers and frequencies that fall in the corresponding boxes in Fig. 
7. This is what is meant by “filtering.” From Wheeler and Kiladis (1999).
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converging at low levels, e.g., in the western equatorial Pacific. The mass source can be 
interpreted as a region of sinking motion, where the air is diverging at low levels, e.g., in the 
eastern equatorial Pacific. (Unfortunately the mass sink is plotted on the east side and the mass 
source is plotted on the west side, but this does not really matter because the solution is periodic 
in the zonal direction anyway.) The model predicts strong westerlies converging (from the west, 
of course) at low levels into the region of rising motion, and low-level easterlies converging on 
the east side of the region of low-level convergence. The easterlies can be interpreted as the 
trades, and as the lower branch of the Walker circulation. The westerlies can be interpreted as a 

“monsoon-like” westerly inflow to a region of heating. Further discussion is given later.

Webster (1972) and Gill (1980) followed Matsuno’s lead by developing simple analytic 
models of the response of a resting tropical atmosphere to heat sources and sinks. Since much of 
the convective heating in the tropics is confined over three relatively small land regions (Africa, 
South America, and the Indonesian region), Gill examined the atmospheric response to a 
relatively small-scale heating source that is centered on the equator. If the atmosphere is abruptly 
heated at some initial time, Kelvin waves propagate rapidly eastward and generate easterly  trade 
winds to the east  of the heating. Thus the easterly trade winds in the Pacific could result from 
Kelvin waves produced by convective heating over Indonesia. Similarly, Rossby waves 
propagate westward and generate westerlies to the west of the heating. Because the fastest 
Rossby wave travels at  only one-third the speed of the Kelvin wave, the effects of the Rossby 
waves would be expected to reach only  one-third as far those as those of the Kelvin wave. Gill 

Figure 9: Stationary circulation pattern (lower panel) forced by  the mass source and sink shown 
in the upper panel. From Matsuno (1966).
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interpreted the westerlies over the Indian ocean as a response to Rossby waves generated by 
convective heating over Indonesia.

Gill (1980; Fig. 10) studied what amounts to a steady-state version of Matsuno’s model, 
and introduced forcing in the form of mass 
sources and sinks, along with very  simple 
damping. In place of (2), we have 

εu − yv+ ∂φ
∂x

= 0 ,

yu + ∂φ
∂y

= 0 ,

εφ + ∂u
∂x

+ ∂v
∂y

= −Q ,

(30)
and, as a purely diagnostic relation,

w = εφ +Q .
(31)

The wind components u  and v  represent 
the lower-tropospheric variables. In (30) and 
(31), ε−1  is a dissipation time scale, and Q  

is a “heating rate” that must be specified. 
The variables φ , w , and Q  are defined in 

the middle troposphere. Gill included 
dissipation in the form of Rayleigh friction and Newtonian cooling, and for simplicity  assumed 
that the time scales, given by ε−1 , are equal. Rayleigh friction is a simple parameterization of 
friction in which the velocity  is divided by a frictional time scale. The friction term is neglected 
in the meridional momentum equation of (30); see Gill (1980) for an explanation.

Gill focused primarily  on cases for which the heating is symmetric or anti-symmetric 
about the equator. As shown in Fig. 11, the solution for symmetric heating resembles a Walker 
circulation, with lower-tropospheric inflow into the heating region and upper-tropospheric 
outflow. The Walker Circulation is discussed in detail later in this Chapter. The surface easterlies 
cover a larger area than the surface westerlies because the phase speed of the eastward-
propagating Kelvin wave is three times faster than that of the westward-moving Rossby wave. 
By forming a vorticity  equation for the case of no damping, and then substituting from the 
continuity equation, Gill found that 

v = yQ .
(32)

Figure 10: Adrian Gill, 1937-1986.
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This is closely related to what is 
sometimes called “Sverdrup 
b a l a n c e , ” i n w h i c h t h e 
“meridional advection of the 
Coriolis parameter,” i.e., the so-
called β -term of the vorticity 

equation, is balanced by the 
d ivergence te rm, which i s 
represented by the heating rate on 
the right-hand side of (32). For a 
incompressible atmosphere with a 
rigid lid at z = D  and a constant 
lapse rate, the gravest mode (the 
mode with the largest vertical 
scale) has horizontal velocity 
c o m p o n e n t s t h a t v a r y a s 
cos π z / D( ) , i . e . , t hey pas s 

through zero in the middle 
troposphere. This is similar to the 
observed vertical structure of the 
Hadley-Walker circulation. 

For Q > 0 , (32) implies poleward 

motion in the lower layer and 
equatorward motion in the upper 

layer. This suggests that in regions of heating, e.g. the western Pacific, the Walker circulation 
produces a north-south circulation that opposes the Hadley circulation. Geisler (1981) found the 
same result. For Q < 0 , the low-level motion is Equatorward; this is what  we see in the 

subtropical highs, e.g., in the eastern Pacific. 

The solution for anti-symmetric heating consists of a mixed Rossby-gravity wave and a 
Rossby wave. There is no Kelvin-wave response because the Kelvin wave is symmetric across 
the Equator. As a result, no response is generated to the east of the forcing region. Rossby  and 
Yanai waves propagate slowly, and so are dissipated before they can propagate very  far. As a 
result, the response to asymmetric heating is largely  confined to the region slightly  westward of 
the heating. To the west, the region of westerly flow into the heating region is limited because the 
Rossby modes travel slowly. 

Figure 11: Solution of Gill’s model for the case of heating 
symmetric about the Equator. The upper panel shows the 
heating field and the low-level wind field. The center panel 
shows the perturbation pressure field, which features low 
pressure along the Equator generally, with twin cyclones 
slightly off the Equator. The bottom panel shows the implied 
vertical motion and the zonal variation of the pressure along 
the Equator. From Gill (1980).
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Gill interpreted the symmetric case as a simulation of the Walker circulation, and the 

asymmetric case as a simulation of the Hadley circulation.

For heating centered on (symmetric about) the Equator, as in Fig. 11, Gill found strong 
westerlies on the west side, and strong easterlies on the east side, combining to give strong zonal 
convergence on the heating. The westerlies can be interpreted as the time-averaged response to 
westward -propagating Rossby  waves excited by the heating, and the easterlies can be interpreted 
as the time-averaged response to eastward-propagating Kelvin waves excited by the heating. This 
implies a Walker circulation, as indicated in Fig. 11, and a surface pressure field with a minimum 
pressure slightly to the west of the heating. 

When the heating is anti-symmetric across the Equator, as in Fig. 12, the model produces 
something like a Hadley circulation, with a low-level cyclonic circulation on the side with 
positive heating, and a low-level anticyclone on the other side. 

Figure 12: The response to antisymmetric heating. On the left side, the panel a) shows contours 
of the mid-level vertical velocity  superimposed on the horizontal wind vectors for the lower layer. 
Panel b) shows contours of the perturbation surface pressure, again with the lower-layer 
horizontal wind field superimposed. The right-hand panels show the zonally  integrated solution 
corresponding to the results in the left-hand panels. The upper right-hand panel shows the 
latitude-height  distributions of the zonal velocity and the stream function of the mean meridional 
circulation, as well as the meridional profile of the surface pressure. From Gill (1980).
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When the symmetric and antisymmetric heatings are combined, as in Fig. 13, the model 
produces a circulation that looks remarkably similar to that of the Asian summer monsoon, as 
shown in Fig. 14. 

Figure 13: The response of Gill’s model to a combination of symmetric and antisymmetric 
heating. From Gill (1980). Panel a) shows the heating, and panel b) shows the surface pressure. 
The low-level winds are shown in both panels.
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Figure 14: Observed 850 mb wind vectors for a) January, and b) July.

a

b
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