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Conservation of momentum on a rotating sphere

Newton's statement of momentum conservation, as applied in an inertial (i.e., non-
accelerating) frame of reference, can be written as follows:

DaVa

Dt
= −∇φa −α∇p −α∇⋅F .

(1)

Here 
Da ( )
Dt

 is the Lagrangian derivative in the inertial frame, and Va  is the velocity  as seen in 

the inertial frame. The left-hand-side of (1) represents the acceleration of the air as seen in an 
inertial frame. The gravitational potential is φa , and F  is the stress tensor associated with 

molecular effects.

The length of a sidereal day is 86,164 s, so the Earth rotates about its axis with an angular 

velocity of 2π
86,164 s( ) ≅ 7.292 ×10−5  s−1 . This angular velocity can be represented by a vector, 

Ω , pointing towards the celestial North Pole, as shown in Fig. 1. In spherical coordinates 
λ,ϕ,r( ) , the unit vectors are eλ , eϕ , and er , respectively, and the components of Ω  are 

Ω 0,cosϕ,sinϕ( ) . 

Let r be a position vector extending from the center of the Earth to a particle of air whose 

position is generally changing with time. The “absolute velocity”  of the air, Va ≡
Dar
Dt

, is related 

to its relative velocity, V ≡
Dr
Dt

, as seen in the rotating coordinate system, by

Dar
Dt

= Dr
Dt

+Ω × r ,

(2)

or
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Va = V +Ω× r
≡ V +Ve .

(3)

A transformation of the form (3) can be applied to any vector. In contrast, the time rate of change 

of a scalar quantity, such as temperature, is the same in the inertial and rotating frames. In the 
second line of (3), we define

Ve ≡Ω × r
= Ωr cosϕ( )eλ .

(4)

Here Ve  is the velocity (as seen in the inertial frame) that a particle at  radius r  and latitude ϕ  

experiences due to the Earth's rotation (refer to Fig. 1). Note that Ve  always points towards the 

east. According to (3), the velocity as seen in the rotating frame is different from the velocity as 
seen in the inertial frame. Since Ω  is a constant, the first line of Eq. (4) implies that 

DVe

Dt
= Ω×V .

(5)

Now we apply  the transformation used in (2) again, to relate the acceleration as seen in the 
inertial frame to the acceleration as seen in the rotating frame:

Fig. 1: Sketch defining vectors used in the text.
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DaVa

Dt
= DVa

Dt
+Ω×Va .

(6)

Substituting for Va  in (6), from (4), and using (5), we find that

DaVa

Dt
= D
Dt

V +Ve( ) +Ω× V +Ve( )

= DV
Dt

+ 2Ω×V +Ω×Ve

= DV
Dt

+ 2Ω×V +Ω×Ve .

(7)

Eq. (7) relates the absolute acceleration, DaVa

Dt
, to the apparent acceleration as seen in the 

rotating frame, i.e., DV
Dt

. Using (7) in (1), we find that the equation of motion relative to the 

rotating frame is

DV
Dt

+ 2Ω×V +Ω×Ve = −∇φa −α∇p −α∇⋅F . 

(8)

The term 2Ω ×V  is the Coriolis acceleration, which points in a direction perpendicular to V . 
The term Ω×Ve  is the centrifugal acceleration, which can be written as

Ω×Ve = − Ω 2r cosϕ( )eλ × eΩ
= −Ω 2re ,

(9)

where re  is a vector that is parallel to the plane of the Equator, as shown in Fig. 1, and eΩ  is a 

unit vector pointing toward the celestial north pole. Eq. (9) shows that the centrifugal 
acceleration points outward, in the direction of re , which is perpendicular to the axis of the 

Earth’s rotation. With reference to (9), the centrifugal acceleration can be expressed in spherical 
coordinates as

Ω×Ve =Ω 2r cosϕ 0,−sinϕ,cosϕ( ) .
(10)

It has an upward component that is largest at the Equator, and an equatorward component that is 
largest at the pole, but no zonal component. 
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Kinetic energy

The kinetic energy equation associated with (1) is

DaKa

Dt
= Va ⋅ −∇φa −α∇p −α∇⋅F( ) ,

(11)

where Ka ≡
1
2
Va ⋅Va( ) . The right-hand side of (11) represents work done by true forces. From 

(6), we see that

DaKa

Dt
= DKa

Dt
.

(12)

This means that the time change of Ka  is the same in the inertial and rotating frames, consistent 

with our earlier assertion that the time rate of change of a scalar is the same in the inertial and 
rotating frames. Using (12), we can rewrite (11) as 

DKa

Dt
= Va ⋅ −∇φa −α∇p −α∇⋅F( ) .

(13)

The kinetic energies as seen in the inertial and rotating frames are different. We will derive 
the kinetic energy equation for the rotating frame in two different ways. First, the hard way: 
From (3), we can write

Va ⋅Va = V +Ve( ) ⋅ V +Ve( ) .

(14)

Then 

Ka = K +Ve ⋅V + 1
2
Ve ⋅Ve ,

(15)

where K ≡ 1
2
V ⋅V( ) . From (15), we see that
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DKa

Dt
= DK
Dt

+Ve ⋅
DV
Dt

+ V ⋅ DVe

Dt
+Ve ⋅

DVe

Dt

= DK
Dt

+Ve ⋅
DV
Dt

+Ve ⋅
DVe

Dt

= DK
Dt

+Ve ⋅
DVa

Dt
.

(16)

To obtain the second line of (16), we have used (5). To obtain the third line, we have used (3). 
Combining (16) with (6) and (1), we find that

DKa

Dt
= DK
Dt

+Ve ⋅
DaVa

Dt
−Ω×Va

⎛
⎝⎜

⎞
⎠⎟

= DK
Dt

+ Va −V( ) ⋅ DaVa

Dt
−Ω×Va

⎛
⎝⎜

⎞
⎠⎟

= DK
Dt

+ DaKa

Dt
−V ⋅ DaVa

Dt
−Ω×Va

⎛
⎝⎜

⎞
⎠⎟

= DK
Dt

+ DaKa

Dt
−V ⋅ −∇φa −α∇p −α∇⋅F( ) +V ⋅ Ω×Va( ) .

(17)

Cancelling DaKa

Dt
 in (17), and using V ⋅ Ω×Va( ) = V ⋅ Ω×Ve( ) , we can rearrange the result to 

obtain

DK
Dt

+V ⋅ Ω×Ve( ) = V ⋅ −∇φa −α∇p −α∇⋅F( ) .

(18)

We can also obtain (18) simply by dotting V  with (8). That’s the easy way.

Comparing (18) and (13), we see that

D Ka − K( )
Dt

= V ⋅ Ω×Ve( ) +Ve ⋅ −∇φa −α∇p −α∇⋅F( ) .

(19)

The first  term on the right-hand side of (19) appears to be the work done by  the centrifugal 
acceleration. The second appears to be the work done by the true forces acting on Ve . Of course, 

neither of these terms represents real work done. The first is due to a fictitious force, and the 
second is due to a fictitious velocity.
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Effective gravity

The centrifugal acceleration can be written as

− Ω ×Ve( ) =Ω 2re

= ∇ 1
2
Ω × r 2⎛

⎝⎜
⎞
⎠⎟

= ∇ 1
2
Ve

2⎛
⎝⎜

⎞
⎠⎟ ,

,

(20)

i.e., it is the gradient of a potential, called the “centrifugal potential,” which is equal to the 
“kinetic energy” associated with Ve . From (20) and (4), we see that the centrifugal potential is 

given by − 1
2

Ωr cosϕ( )2. 

Since both the acceleration due to gravity and the centrifugal acceleration can be expressed 
as gradients of potentials, it is natural and convenient to combine them into an “apparent” 
gravity, g , defined by

g ≡ ga −Ω
2re ,

(21)

where ga ≡ ∇Φa . Using (23) we see that the potential of g  is

φ = φa −
1
2
Ω × r 2 ,

(22)

so that g ≡ ∇φ . We refer to φ  as the “geopotential.” For most purposes g ≅ ga = −ger , because 

the centrifugal acceleration is small compared to ga . Here er  is a unit vector pointing upward, 

away from the center of the Earth. The acceleration due to the apparent gravity g  is 

perpendicular to surfaces of constant φ , which differ slightly  from spherical surfaces of constant 

radius. The Equatorial radius of the Earth is about 20 km larger than the polar radius, due to the 
centrifugal acceleration.

If the Earth’s internal density distribution was a function of radius only, then φa , the true 

gravitational potential, would also depend only on distance from the center of the Earth, and 
would take the form
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φa =
GMe

r
,

(23)

where G = 6.67 ×10−11  N m2 kg-2 is the gravitational constant, and Me  is the total mass of the 

Earth. Eq. (23), which is called Newton’s “Shell Theorem,” would apply at any level at or above 
the Earth’s surface. The geopotential φ  is then given by

φ = GMe

r
+ 1
2

Ωr cosϕ( )2 .

(24)

Using (22) we can now write (8), the equation of motion in the rotating frame, as

DV
Dt

+ 2Ω×V = −∇φ −α∇p −α∇⋅F .

(25)

Similarly, the kinetic energy equation, (18), becomes

DK
Dt

= V ⋅ −∇φ −α∇p −α∇⋅F( ) .

(26)

Component equations in spherical coordinates

Up to this point, we have not used any coordinate systems, except in connection with a 
comment on the centrifugal acceleration. We now consider spherical coordinates, λ,ϕ,r( ) . The 

unit vectors in the λ,ϕ,r( )  coordinates are eλ , eϕ , and er , respectively. You should be able to 

see that the direction of eλ  depends on longitude, and that the directions of eϕ , and er  depend 

on both longitude and latitude. This means that the directions of eλ , eϕ , and er  are functions of 

space, although of course their magnitudes are spatially constant. Simple geometrical reasoning 
leads to the following formulae:

Deλ
Dt

= Dλ
Dt
sinϕeϕ − cosϕ

Dλ
Dt
er

= u tanϕ
r

⎛
⎝⎜

⎞
⎠⎟ eϕ −

u
r
er ,

(27)
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Deϕ
Dt

= Dλ
Dt
sinϕeλ −

Dϕ
Dt
er

= u tanϕ
r

⎛
⎝⎜

⎞
⎠⎟ eλ −

v
r
er ,

(28)

Der
Dt

= cosϕ Dλ
Dt
eλ +

Dϕ
Dt
eϕ

= u
r
eλ +

v
r
eϕ

= Vh

r
.

(29)

In (29), Vh  is the horizontal wind vector.

The vector operators that are most commonly used in atmospheric science can be expressed 
in spherical coordinates as follows:

∇A =
1

r cosϕ
∂A
∂λ

,  1
r
∂A
∂ϕ

,  ∂A
∂r

⎛
⎝⎜

⎞
⎠⎟

,

(30)

∇ ⋅V =
1

r cosϕ
∂Vλ

∂λ
+

1
r cosϕ

∂
∂ϕ

Vϕ cosϕ( ) + 1r2
∂
∂r

Vrr
2( ) ,

(31)

∇×V = 1
r

∂Vr
∂ϕ

− ∂
∂r

rVϕ( )⎡

⎣
⎢

⎤

⎦
⎥,
1
r
∂
∂r

rVλ( ) − 1
r cosϕ

∂Vr
∂λ
, 1
r cosϕ

∂Vϕ

∂λ
− ∂
∂ϕ

Vλ cosϕ( )⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

(32)

∇2A =
1

r2 cosϕ
∂
∂λ

1
cosϕ

∂A
∂λ

⎛
⎝⎜

⎞
⎠⎟
+

∂
∂ϕ

cosϕ ∂A
∂ϕ

⎛
⎝⎜

⎞
⎠⎟
+

∂
∂r

r2 cosϕ ∂A
∂r

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ .

(33)

Here A  is an arbitrary scalar, and V  is an arbitrary vector.

We can express the velocity vector in spherical coordinates as

V ≡ ueλ + veϕ + wer ,

(34)

where
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u ≡ r cosϕ Dλ
Dt

, v ≡ r Dϕ
Dt

, and  w ≡ Dr
Dt

.

(35)

Using (35), the Lagrangian time derivative can then be expanded as

D
Dt

≡ Dt
Dt

∂
∂t

+ Dλ
Dt

∂
∂λ

+ Dϕ
Dt

∂
∂ϕ

+ Dr
Dt

∂
∂r

= ∂
∂t

+ u
r cosϕ

∂
∂λ

+ v
r

∂
∂ϕ

+w ∂
∂r
.

(36)

Eq. (34) shows that the directions in which the u , v , and w  components actually point 
depend on where you are. Taking this into account, for an arbitrary vector Q ≡ aeλ + beϕ + cer , 

we can write

DQ
Dt

≡ D
Dt

aeλ + beϕ + cer( )
= eλ

Da
Dt

+ a Deλ
Dt

+ eϕ
Db
Dt

+ b
Deϕ
Dt

+ er
Dc
Dt

+ c Der
Dt

= eλ
Da
Dt

+ a u tanϕ
r

⎛
⎝⎜

⎞
⎠⎟ eϕ −

u
r
er

⎡
⎣⎢

⎤
⎦⎥
+ eϕ

Db
Dt

+ b u tanϕ
r

⎛
⎝⎜

⎞
⎠⎟ eλ −

v
r
er

⎡
⎣⎢

⎤
⎦⎥
+ er

Dc
Dt

+ c u
r
eλ +

v
r
eϕ

⎛
⎝⎜

⎞
⎠⎟

= eλ
Da
Dt

+ bu tanϕ
r

+ uc
r

⎛
⎝⎜

⎞
⎠⎟ + eϕ

Db
Dt

+ au tanϕ
r

+ vc
r

⎛
⎝⎜

⎞
⎠⎟ + er

Dc
Dt

− ua + vb
r

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
.

(37)

As a special case of (37), the acceleration in the rotating frame can be expanded as

DV
Dt

≡ D
Dt

ueλ + veϕ +wer( )
= eλ

Du
Dt

+ u Deλ
Dt

+ eϕ
Dv
Dt

+ v
Deϕ
Dt

+ er
Dw
Dt

+w Der
Dt

= eλ
Du
Dt

+ u u tanϕ
r

⎛
⎝⎜

⎞
⎠⎟ eϕ −

u
r
er

⎡
⎣⎢

⎤
⎦⎥
+ eϕ

Dv
Dt

+ v u tanϕ
r

⎛
⎝⎜

⎞
⎠⎟ eλ −

v
r
er

⎡
⎣⎢

⎤
⎦⎥
+ er

Dw
Dt

+w u
r
eλ +

v
r
eϕ

⎛
⎝⎜

⎞
⎠⎟

= eλ
Du
Dt

+ uv tanϕ
r

+ uw
r

⎛
⎝⎜

⎞
⎠⎟ + eϕ

Dv
Dt

+ u
2 tanϕ
r

+ vw
r

⎛
⎝⎜

⎞
⎠⎟
+ er

Dw
Dt

− u2 + v2

r
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ .

(38)

Using (38), we can separate (8) into component form:
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Du
Dt

− 2Ω + u
r cosϕ

⎛

⎝
⎜

⎞

⎠
⎟ vsinϕ −wcosϕ( ) = − α

r cosϕ
∂p
∂λ

−α ∇ ⋅F( )λ ,

Dv
Dt

+ 2Ω + u
r cosϕ

⎛

⎝
⎜

⎞

⎠
⎟u sinϕ + vw

r
= −α

r
∂p
∂ϕ

−α ∇ ⋅F( )ϕ ,

Dw
Dt

− 2Ω + u
r cosϕ

⎛

⎝
⎜

⎞

⎠
⎟u cosϕ − v

2

r
+ g = −α ∂p

∂r
−α ∇ ⋅F( )r .

(39)

These are the components of the equation of motion in spherical coordinates. 

We can modify (39) to show “true gravity” and the centrifugal acceleration explicitly: 

Du
Dt

− 2Ω + u
r cosϕ

⎛
⎝⎜

⎞
⎠⎟
vsinϕ −wcosϕ( ) = − α

r cosϕ
∂p
∂λ

−α ∇⋅F( )λ ,

Dv
Dt

+ 2Ω + u
r cosϕ

⎛
⎝⎜

⎞
⎠⎟
u sinϕ + vw

r
+Ω 2r sinϕ cosϕ = −α

r
∂p
∂ϕ

−α ∇⋅F( )ϕ ,

Dw
Dt

− 2Ω + u
r cosϕ

⎛
⎝⎜

⎞
⎠⎟
u cosϕ − v

2

r
−Ω 2r cos2ϕ + ga = −α ∂p

∂r
−α ∇⋅F( )r .

(40)

By using the continuity equation in spherical coordinates, we can rewrite (39) in flux form:

∂
∂t

ρu( ) +∇⋅ ρVu( )− ρ 2Ω + u
r cosϕ

⎛
⎝⎜

⎞
⎠⎟
vsinϕ −wcosϕ( ) = − 1

r cosϕ
∂p
∂λ

− ∇⋅F( )λ ,

∂
∂t

ρv( ) +∇⋅ ρVv( ) + ρ 2Ω + u
r cosϕ

⎛
⎝⎜

⎞
⎠⎟
u sinϕ + ρ vw

r
= − 1

r
∂p
∂ϕ

− ∇⋅F( )ϕ ,

∂
∂t

ρw( ) +∇⋅ ρVw( )− ρ 2Ω + u
r cosϕ

⎛
⎝⎜

⎞
⎠⎟
u cosϕ − ρ v

2

r
+ ρg = − ∂p

∂r
− ∇⋅F( )r .

(41)

These equations are fairly exact. Various approximations are introduced below.

Solid-body rotation

It is instructive to consider the special case of zonal solid-body rotation, in which

u =ωr cosϕ , v = 0 , w = 0 , and p = p ϕ,r( ) ,
(42)

where ω = constant. This type of motion is called “solid-body rotation,” because the fluid rotates 
as if it were a solid, i.e., neighboring particles remain neighbors for all time. The flow is purely 
zonal. Eqs. (41) reduce to
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∂
∂t

ρu( ) = 0,

ρu2 tanϕ
r

= −ρ fu − 1
r
∂p
∂ϕ
,

−ρ u2

r
⎛

⎝
⎜

⎞

⎠
⎟ = ρ fu − ∂p

∂r
− ρg.

(43)

Here we have assumed that the stress tensor vanishes (it does). The zonal wind equation is in 
trivial balance. The meridional momentum equation is in “gradient-wind balance,” which is a 
generalization of geostrophic balance. The vertical momentum equation is in a modified 
hydrostatic balance, in which the centrifugal and Coriolis accelerations enter.

Approximations

Up to here the discussion has been fairly  exact. We now introduce some very useful 
approximations:

• Replace r  by a  everywhere, where a  is the radius of the Earth. An approximation of 
this form can be justified for an atmosphere which is thin compared to the radius of the 
planet, and so it is called the “thin atmosphere approximation.” It is a good 
approximation for Earth, but would not apply, e.g., to Jupiter.

• Replace (33) by

∇⋅V = 1
acosϕ

∂
∂λ

Vλ +
∂
∂ϕ

Vϕ cosϕ( )⎡
⎣⎢

⎤
⎦⎥
+ ∂Vr

∂r
.

(44)

This is also justified by the thinness of the Earth’s atmosphere. 

• Drop the terms involving the horizontal component of Ω , i.e., Ω cosϕ . This is often 

called “the traditional approximation.” There is an ongoing discussion as to whether or 
not this is always justified.

• Neglect 
uw
r

 and 
vw
r

, the curvature terms involving w, in the equations for u and v, 

respectively, neglect 
u2 + v2

r
 in the equation of vertical motion.

• Simplify the vertical component of (40) to

∂p
∂z

= −ρg .

(45)
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Eq. (45) is called the hydrostatic equation. With an appropriate boundary condition, (45) 
allows us to compute p z( )  from ρ z( ) . Even when the air is moving, (45) gives a good 

approximation to p z( ) , simply because 
Dw
Dt

 and the vertical component of the friction 

force are small compared to g. Eq. (45) as applied to moving air is called the hydrostatic 
approximation, and it is applicable to virtually all meteorological phenomena, including 
violent thunderstorms. 

For large-scale circulations, the approximate p z( )  determined through the use of (45) 

can be used to compute the pressure gradient force in the equation of horizontal motion . 
To do so is to use the quasi-static approximation. The quasi-static approximation applies 
very well for large-scale motions, but it is not applicable to many small-scale motions, 
such as thunderstorms. When the quasi-static approximation is made, the effective kinetic 
energy is due entirely to the horizontal motion; the contribution of the vertical 
component, w, is neglected. For large-scale motions, w << u,v( ) , so that this quasi-static 

kinetic energy is very close to the true kinetic energy. Further discussion is given in the 
QuickStudy on the quasi-static approximation.

With the approximations discussed above, (39) is replaced by

Du
Dt

− uv tanϕ
a

= fv − α
acosϕ

∂p
∂λ

−α ∇ ⋅F( )λ ,

Dv
Dt

+ u
2 tanϕ
a

= − fu − α
a
∂p
∂ϕ

−α ∇ ⋅F( )ϕ ,

0 = −g −α ∂p
∂z
.

(46)

Component equations in a local Cartesian coordinate system

Now consider a locally defined “ x, y( )” or Cartesian coordinate system, as shown in Fig. 2. 

Here “locally  defined” means that the origin of the coordinate system is attached to a specific 
point on the rotating Earth, e.g., Fort Collins. With this coordinate system,

Ω =Ω 0,  cosϕ,  sinϕ( ) ,
(47)

where ϕ  is the latitude of the origin of the coordinate system, and
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−Ω ×V = −2Ω
i j k
0 cosϕ sinϕ
u v w

.

(48)

The directions of the unit vectors i , j , and k  are independent of position, although they do of 

course depend on the freely chosen position of the origin of the coordinate system. The 
components of the equation of motion in this local Cartesian coordinate system are

Du
Dt

= − fw + fv −α ∂p
∂x

−α ∇⋅F( )x ,
Dv
Dt

= − fu −α ∂p
∂y

−α ∇⋅F( )y ,

Dw
Dt

= fu −α ∂p
∂z

− −α ∇⋅F( )z − g .

(49)

Here we define

V ≡ ui + vj + wk ,
(50)

u ≡ Dx
Dt

,  v ≡ Dy
Dt

,  w ≡
Dz
Dt

,

(51)

f ≡ 2Ω sinϕ , and f ≡ 2Ω cosϕ ,
(52)

D
Dt

=
∂
∂t

+ u ∂
∂x

+ v ∂
∂y

+ w ∂
∂z

.

(53)

At the origin, and at all points with the same longitude as the origin, the x -coordinate points 
east; but because this Cartesian coordinate system is defined with respect to a fixed location on 
the Earth’s surface, the x -coordinate does not point east at other longitudes. For example, at 
points  90!  to the east of the origin, the x-coordinate points up, and on the opposite side of the 
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Earth from the origin, the x -coordinate points west. Such a coordinate system could be used to 

study the general circulation, but clearly it is not very well suited to such an application.

Comparing (49) with (39), we see that (49) does not contain the terms 
uw
r

, 
uv tanϕ

r
, etc. 

These so-called “metric” terms arise in (39) because in spherical coordinates the directions of the 
unit vectors eλ , eϕ , and er  vary with λ  and ϕ . This does not happen in the local Cartesian 

coordinate system.

Summary

We have presented the momentum equation that describes motion on a rotating sphere, as 
seen in the rotating frame of reference. We have also introduced several commonly  used 
approximations.
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Fig. 2: Sketch depicting a local Cartesian coordinate system.

! Revised March 24, 2014 12:27 PM! 14

Quick Studies in Atmospheric Science
Copyright David Randall, 2011


