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A Non-Hydrostatic Model
Using Isentropic Coordinates

David A. Randall

The basic equations in height coordinates

The basic equations in height coordinates, without rotation and friction, are

DV, :_lvzp’
Dt p
(1)
Dw__19p_
Dt poz °

0 0
(a—f)zwz -(pVh)+a—Z(pw)=0,
(3)
g=P0_¢2
Dt 11

(4)

Here D is the Lagrangian time derivative, V, is the horizontal velocity, p is density, p is
t

pressure, z is height, w= FZ is the vertical velocity, g is the acceleration of gravity, 6 is the
t

potential temperature, Q is the heating rate per unit mass, and Il is the Exner function, which

satisfies

c,I =116,

where ¢, is the heat capacity of air at constant pressure, 7' is temperature, and
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where

(7)
and R 1is the specific gas constant. Finally, we include the prognostic equation for an arbitrary
scalar A, which is

d d
[—(pA)} +V.-(pV,A)+—(pwA) = pS,,
ot . oz

(8)

where S, is the source of A per unit mass. Finally, we will need the ideal gas law, which is

p=pPRT .

Transformation to 0 -coordinates

As shown in the QuickStudy on coordinate transformations, the horizontal pressure gradient
can be transformed to isentropic coordinates as follows:

1 1 10
_Vp:_vep_ °L

~9y ..
p " op paz
(10)

The first term on the right-hand side of (10) can be rewritten as follows, using (5), (6), (7) and
9):
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Ly p=rrYel
p

p
RT V11

Kk II

T
Cﬁ VI

=6V, I1

=V, (HO)
=V, (CPT)
=V,s-gV,z,

where
s=c,T+gz

(12)

Is the Montgomery potential, also known as the dry static energy. Similarly, we write minus the
vertical pressure-gradient force as

1dp_RTOp
pdz p 0z
_RTON
- 1 9z
:cpTa_H
IT oz
o
-0z
0 00
=2 (T16)-TI=
Bz( ) 0z
0 200
—a—Z(CpT)—Ha—Z
ds 00
— _H_
0z & 0z

Using (11) and (13) in (10), we find that
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1 20 (
;Vzp:(Ves—gvez)—[a—(a—g—H] :|V9Z

00 ds
-v,s- P % _nlv,.
00 az(ae ]

From (13), we see that the hydrostatic equation can be expressed as

ds
% _n=o.
20

(15)

Eq. (14) shows that in the hydrostatic limit the horizontal pressure-gradient force is a gradient,
when expressed in 6 -coordinates.

With the use of (13) and (14), we can now rewrite (1) and (2) as
DV, 20 ( ds j
=—|V —I1 |V,z |,
Dt { a 0z (8 OZ}

Dw 89 ds
— —-11].
Dt 9z ( 00 ]

(17)

Using methods discussed in the QuickStudy on coordinate transformations, the continuity
equation, (3), can be written as

ap) 90 ap(az) ae{ d } 2 9
9p) _299p(9z) Ly . ipv, V)V +229 (=0
(azj 9z 00\ 2 (PVi) =57 3g(PV) | Vet 525 (pw) =0,

or

2(00) _on(0x) 2 v v 2 o)-
ae(at 30l ar ), Ve PV PVl [ Vaz+ g5 (pw) =0.

Note that
d( dz\| _dz(ap d (dz
P, ol | TP,
a\"a6)] a0\ ar s, 00 at
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and

0 0 0
a_gvh) = _Zve «(pV,)+pV, 'Ve(_zj .

Vo-(p 20 20

Substituting (20) and (21) into (19), we obtain
d 0 0z
(%)9 +V, '(pevh)_ a_e{p[(gl +V, V- W}} =0,

where

P95P£

is the pseudo-density. We recognize
0z
,u = —p[(g)e +Vh 'VQZ_W:|

as the upward mass flux across an isentropic surface. This allows us to rewrite (22) as

apej ou
Lo | 4V, (pV )+-==0.
(az 9+ o (o ’“)+89

In a similar way, the conservation equation for an intensive scalar, (8), becomes

J d
[E(peA)L +Vy-(peV,A) + %(HA) = PoSs -

The advective form can be obtained by combining (26) with (25):

0A U J0A
— | +V, -V A+——=S,.
(5], vear s,

As a special case of (27), the advective form of the potential temperature equation is
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1=p,0,
(28)
where we have used 6 =S, . By using (28), we can rewrite (26) as
d d "
5( PoA) | +Vy-(p,V,A)+ a_e( PBA)=p,S, .
6
(29)
The total time derivative is given by
D d . 0
—( )= = +V, Vo )+0—( ).
S EAIPARAPETS
(30)

Summary of the nonhydrostatic equations in 0 -coordinates

The prognostic equations needed to describe non-hydrostatic motions in 6 -coordinates can

now be summarized as follows:

DV, ae(as )
=—|Vys——| —=-I1|V
Dt { o3 dz\ 00 o

-

(31)

ﬂ:_a_@(é_nj ,

Dt dz\ 06
(32)
(aaﬂ) +Vy-(peV,)+==(ps8) =0,
t ) )
(33)
(%)ez—Vh~Voz+w—g—29 ,
(34)
d d :
[g(peA)L+V9‘(p9VhA)+%(p99A)=peSA :
(35)
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Not counting the scalar A, the prognostic variables of the 6 -coordinate model are V,, w, p,,

and z . The corresponding prognostic variables of the z-coordinate model are V,, w, p,and 0.

Finally, we have to determine IT. From p, and z(0), we can find the density p . Then the
equation of state in the form

K

-k
0

can be used to diagnose IT.

The quasi-static limit

In the quasi-static limit, the equation of vertical motion, (32), reduces to the hydrostatic
equation in the form

ds
—-I1=0,
0
(37)
and Eq. (23) for the pseudo-density can be rewritten as
1dp
Po= g0
(38)
To obtain (38) we have used the hydrostatic equation in the form
ap
oz Pg
(39)

Even in the quasi-static limit, the pseudo-density is still predicted using (33). Using the known
value of the pseudo-density, we can vertically integrate (38) to obtain the pressure and I1 as

functions of 8. We can then use (36) to determine p as a function of 6. Finally, we use (39) to

compute the height of each 6 surface, so that (34) is not needed and should not be used. The

procedure outlined above can be streamlined somewhat.
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