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The Navier-Stokes Equation

David A. Randall

Department of Atmospheric Science
Colorado State University, Fort Collins, Colorado 80523

25.1 Analysis of the relative motion near a point

Suppose that the velocity of the fluid at position ry(x,y,z) and time 7 is
V(x,y,z,t), and that the simultaneous velocity at a neighboring position r,+r is
V + 8V . We can write

ou du ou
Su dx dy 0z
Sv| =| v W v it (25.1)
ox 0z 0z
ow z
w Iw Iw
ox dy o0z
In vector form, this can be written as
oV=D"r, (25.2)

where D is called the deformation tensor because it describes how the fluid element is
being deformed by the non-uniform motion field. Using Cartesian tensor notation, we can
alternatively express (25.1) as

v, )
0v, = —x.,wherei = 1,2,3. (25.3)

! axjf’

We can decompose dv;/ ox; into two parts which are symmetric and anti-

symmetric in the suffices 7 and j. They are

1/9v; avj
g, = _(_ + —> , (25.4)
72 ax;  ox;

and
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194  The Navier-Stokes Equation

. 1/9v; avj (25.5)
v 2<axj ax) ' '

respectively. The deformation D can now be expressed by

D=c¢+E, (25.6)
where we define two “parts” of D
Cxx exy €xz 0 Exy Exz
€= eyx eyy eyz , and E = ny 0 Eyz (257)
€ox ezy €., sz gzy 0

We show below that € is related to the divergence, and E is related to the vorticity.
Correspondingly, 0V can be divided into two parts, i.e.

0V = E)V(S)+6V(a),where 6V§S) = el-ij,and 6V§a) = §l.ij. (25.8)

Here the superscripts s and a denote “symmetric” and “antisymmetric,” respectively.

We refer to € as the rate of strain tensor, or simply as the strain tensor. The
diagonal elements of €, i.e. e = a_u’ = a_v’ L, = dw , are called the normal strains,
ox 9y 0z
and represent the rate of volume expansion, as illustrated in Fig. 25.1 a. The sum of the
normal strains, i.e., the trace of the strain tensor, is the divergence of V, i.e.

ente,te, =e; = V-V. (25.9)

XX

The off-diagonal elements of €, namely > €)rs and e__, are called the shearing

strains, and express the rate of shearing deformation, as illustrated in Fig. 25.1 b. They
can be written as

_ _1<au 8v>
e, . =e, ==-[—+—],
2\dy ox

e = e :.1_<a_v+a_w>
2o 2\az oyl

e..=¢e :l(a_w.{.a_u>

= oo 2\ox oz (25.10)
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25.1 Analysis of the relative motion near a point 195

y a
dy E
L ou v
ox dy
Dy E
0 Dx du -
y
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du P ’ //
_=>7’—__ p
/ / ou , v
' y dy oOx
Dy ) /
/ - ’4 dV
>
0 Dx

Figure 25.1: a) The normal strains, representing the rate of volume expansion. b) The
shearing strains, which represent the rate of shearing deformation.

The elements of the anti-symmetric tensor, =, are

1/0w v 1/0u ow av 8u>
= — = - — - — = - = ={———— = — = —_— . 2511
gzy §y ‘ 2( dy az) 8= 5 2 < 0z ax> ’ %y X g"y (ax dy ( )

Introducing the notation w, = —2§yz, W, = -2E_, o, = -2E__, we see that (w,, W, w,)
is the vorticity vector

w=VxV. (25.12)
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196 The Navier-Stokes Equation

In tensor notation, (25.12) can be written as

v,
w; = 5z‘jk§’ (25.13)
J
where €k = 1 when i, j, k are in even permutation, and €k = —1 when i, j, k are in odd

- v, Vi 9y du : :
permutation. For example, ®, = w3 = €35, — +¢€3;,— = — ——, which gives
0x, ox, dx dy

twice the angular velocity about the z-axis, as illustrated in Fig. 25.2. Thus

-4y

-

Dy v du

=
|
|
|
I
Q.
+
m-

\(’1

Dx

Figure 25.2: The component of the vorticity in the z direction.

Su'® 0 -, -o

1 7
6v(a) =5 o, 0 -0, y | (25.14)
S (a) —0,, O, 0 z
or
(a) _ 1
oV = E(mxr). (25.15)

25.2 Invariants of the strain tensor

Consider the scalar product
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25.2 Invariants of the strain tensor 197

r-e'r=r-(g-r)

2 2 b
Wote z + (exyxy +e,yz+ e, .zx)

2
= €. X +€y

=%, ,2). (25.16)

By putting f{(x,y,z) = constant , we obtain a surface of second order, the strain
quadratic, also called the ellipsoid of strain.

We refer the strain quadratic to its principal axes (X, X,, X3) . Then (25.16) takes
the form

e X + e, X5+ e;Xs = F(X,,X,, X;) = constant . (25.17)

Here e, e,, and ey are the principal values of the strain tensor, and are called the
principal normal strains.

Using (25.16), we see that

ou' = %g—? = e Xte yte.z

5,0 _ %% = e xte vte . (25.18)
19

ow'®) = 56—]2( =e, X+e,y+e. .z

In terms of the principal axes (X, X,, X3),

6v(ls) = 1oF _ e X, ngs) = e, X,, Bv(;) = e3Xj; . (25.19)
20X,

(6v(s), 6v(2s), 6v(3s)) are the projections of o) upon the principal axes. Therefore, the

symmetric part of OV is composed of three expansions (or contractions) in the mutually
orthogonal directions of the principal axes of the strain quadratic.

We next consider the sum of the diagonal elements of €, i.e.

ente,te, =e; = V-V. (25.20)

This quantity is an invariant under the rotation of the axes of reference. Consider the
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198 The Navier-Stokes Equation

transformation by which the surface f(x,y,z) = the constant of (25.16) is
transformed into F(X|, X,, X;) = the constant of (25.17). We can write the

transformation between the two Cartesian coordinates in the schematic, tabular form
shown in Table 25.1

X y z
X1 al b1 gl
X2 a2 b2 g2
X3 a3 b3 g3

Table 25.1: The transformation between two Cartesian coordinate systems. Here 2 bi 9
are the direction cosines between the axes.

Here 2 b 9i are the direction cosines between the axes. We find that

3
2 o = 1P of; = 0 (25.21)
o0+ BiBj+Yin = 61.1.
where 51']‘ is Kronecker’s delta (61.1. =1 when i =}, 6I.j =0 when i=j).
Substituting the expression
X; = oax+By+y,zwherei =1,2,3 (25.22)

into (25.17), we obtain

3 ) 3
Eaizl, Eaiﬁi:O
o ot . (25.23)
o0+ BiBj"-Yin = 61‘]
This expression must be identical with (25.16), so that
2 2 2
€ =01 +0pe) +ases, e = o Bre; +a,Bre, +aspBzes,

2 2 2
e,, =Pre; +Pre, +P3es, e = Pyvie +Pyvaes + Pyvses, - (25.24)

2 2 2
€,y =V1€ tYey tV3€3 €, =Y 0 €+ Y058, +Y3035e;,
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25.3 Stress 199

It follows that

3
2 .2 2
A=e, te,te, = E (a; +B; +v;)e; = e; +ey+ ey (25.25)

i=1

ie., the sum e  + e, te, = V -V is independent of the choice of reference. Of course,

this quantity is called the divergence, and we “knew already” that it is independent of the
choice of reference.

Another invariant of the strain tensor is

e2 —e2 —eix = constant . (25.26)

el te e te e —e —e,

XX-yy

The proof is left as an exercise.
25.3 Stress

In a moving viscous fluid, forces act not only normal to a surface but also
tangential to it. In Fig. 25.3, T, T, and T, denote respectively the forces per unit area

acting upon the surfaces normal to the positive x, y, and z directions, respectively. In

z
A Jt,
T+ —Az
0z
f T, = T
/ v
ot
T, + Ay
B 4 dy
0 >y
T, =T,

Figure 25.3: Sketch illustrating the normal and tangential forces acting on an element of
fluid.
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200 The Navier-Stokes Equation

general, each force is a vector with 3 components, so that

T, = T i+T,j+T,k,
T, = rxyi + 'cyyj + rzyk , L (25.27)

T, =T A+T j+T k.

Symbolically we can write an element of the stresses as rl.]-(i =1,2,3;=1,2,3). Here
T;;
normal to the j-direction. The stress is thus a tensor with nine elements, and can be
represented by the matrix

is the i-component of the force per unit area exerted across a plane surface element

Tyx ’ny Tz

T=|rv 7", (25.28)

Tox tzy Tz

For an arbitrarily chosen plane surface, whose normal vector is n, the force acting per
unit area is T, . See Fig. 25.4. The equilibrium condition is

oo (25.29)
t,A0-t,A0, -1 AG,-T A0, = 0,

where Ao is the area of the oblique surface, Ao, Aoy , Ao_, are the areas of the faces

lying in the planes x = 0,y = 0 and z = 0. Denoting the direction cosines of n by o,

Ao, Ao Ao, .
B and vy, we have =a, — =8, = v . Therefore (25.29) can be written as
Ao Ao Ao
T, = Ot + [Sry +yT,, (25.30)
or
xn Tyx txy Tz o
T | S| T T T || B | (25.31)
IZ}'I IZ)C rZy ‘EZZ Y
or
T, = T-n. (25.32)
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25.3 Stress 201

Tn n(a, B,y)

_"c -

Figure 25.4: Sketch illustrating the normal force acting on a plane surface.

Equation (25.32) shows that matrix T transforms a vector n into another vector
T,, so that T is a tensor, called the stress tensor. See Fig. 25.5. The three diagonal

elements, T, Ty and T, , are normal stresses. The six off-diagonal elements are
tangential stresses.
An important property of T is its symmetry, i.e. Ty = Ty This symmetry can be

deduced from the condition of moment equilibrium. Consider for example a moment

about the z-axis due to Ty and Tyt

1 1
(‘cyxAyAz)EAx - (‘cxyAxAz)EAy = —(tyx—‘cxy)AxAyAz . (25.33)

The shear stresses acting on the negative x- and y-surfaces contribute also, so that the total
moment about the z-axis is

(T — Ty JAXAYAZ . (25.34)

Euler’s equation (for a rotating rigid body) states that
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202 The Navier-Stokes Equation

—> Ax

X
Figure 25.5: Sketch illustrating the components of the stress tensor.

dQ
L dt

© = (1, - T,,)AxAyAz (25.35)

2 2
where [, = w = l—pzAxAyAz[(Ax)2 + (Ay)z] is the moment of inertia of

the fluid element pAxAyAz, and Q_ is the angular velocity about the positive z-axis.
Then (25.35) reduces to

dQ
p 2 2 z
LA +(AY) T} —= = 1, -1, . (25.36)

dQ
In order that d_tz remains finite, we need (ryx —Tyy) = 0 when Ax, Ay — 0. It follows

that Ty = Ty Similar considerations establish that the stress tensor is symmetric, i.e.,

T.=7T,,T =T ,T.. = T.. (25.37)

Xy yx’ “yz z)y? “zXx Xz
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25.4 Invariants of the stress tensor 203

25.4 Invariants of the stress tensor

As in the case of the strain tensor, we have a scalar product
r-T-r= rlX? +12X§ +r3X§ = constant, (25.38)

where T, T,, and T; are the principal stresses acting on the surface elements normal to

the principal axes (X', X2, X3) of the ellipsoid of stress. It can be shown that r - T - r is an
invariant under the rotation of the axes of reference. The sum of the normal stresses, i.e.,
the trace of the stress tensor,

Tt T 4T, = T; = Ty +T,+ T3 = -3p, (25.39)
is also an invariant. For a moving fluid, (25.39) is the definition of pressure p, which
reduces to the static pressure when the fluid is at rest.

25.5 The resultant forces due to the spatial variation of the stresses

The resultant force acting in the x-direction on a volume element of fluid AxAyAz
is

(r + atxxAx) AyAz -1 AyAz + (17 + aTWAy) AxAz
xx ox XX xy dy

T ot ot JtT
szz) AxAy -1 _AxAy = ( oy Ty XZ> AxAyAz .
0z 0x ay 0z

—rxyAyAz + (‘I:xz +
(25.40)

Therefore the three components of the resultant force (vector) per unit volume are

3

X = T, N arxy N Jt,. B aixj

0x ay 0z 0x j

ot ot ot ot .
Y= XXy vz | (25.41)

0x dy 0z 0x g

7 - JT_, N a'czy N T, 3 a'czj

0x dy 0z 0x .

J

Equation (25.41) can be compactly written as
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204  The Navier-Stokes Equation

Jgt. Jt, Ot
DivT = 2+ 2L+ =
ox dy o0z

AL SR AZS

ox; "oy 0z (25.42)
DivT is a tensor divergence and, therefore, is a vector.

25.6 Physical laws connecting the stress and strain tensors

The relation between the stress tensor and the strain tensor may be established by
the following assumptions.

)

Ty = —p6U+ Fij, (25.43)
where Fl.j is the frictional stress tensor which depends on the space derivatives of the
velocity, i.e. the strain tensor.

ii) The relationship between F,; and ell is linear.

ii1) The relationship does not depend on the frame of reference.

We have already shown that, with reference to the respective principal axes,

7, 0 0 e; 00
T=] 07,0 |ande=| 0e¢, 0 | (25.44)
0 0 T4 0 0 ey

Because T, T,, and T; are normal stresses and el, €2, ¢3 are normal strains, it is natural
to assume that the principal axes of both tensors are the same. We therefore assume that

T, = —p+AV-V+2ue
T, = —p+AV-V+2ue, !, (25.45)
Ty = —p+AV-V+2ue,

where p satisfies (25.39).

Writing direction cosines between the principal axes (X', X2, X3) and axes of a
Cartesian coordinate system (x, y, z) as shown in Table 25.2,
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25.6 Physical laws connecting the stress and strain tensors 205
X y z
X1 al b1 gl
X2 a2 b2 g2
X3 a3 b3 g3
Table 25.2: Direction cosines between principle axes.
we find that
2 2 2
T, = O T +0,T, + 03T, (25.46)
Ty = OB T + 05T, + a3PsTs
etc. Substituting (25.45) into (25.46), and using (25.24), we obtain
T, =[-p+MV-V)+ Zptel]oc? +[-p+NMV-V)+ Zuez]aé
2
+[-p+ AV V)+2uesJoy—p+AA+2ue,. (25.47)
Ty = [-p+MV-V)+2ueJo B +[-p+A(V-V)+2ue,]o,B,
+[-p+ AV -V)+2uey]o485 = 2ue,,
etc. In general we have
T = —pf)l.j +AV - V5,~j + 2uel.j . (25.48)
This expression gives
T,;, = -3p+AV-V+2uV-V
Because we have defined T = —3p , we conclude that
3A+2u+0. (25.50)

Thus we have the final expression
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206 The Navier-Stokes Equation

1
T = —pd,+ 2u<el.j -3V V6U>

=Pyt Ey (25.51)

25.7 The Navier-Stokes equation

Substitution of (25.51) into (25.42) gives the resultant forces per unit volume, as
expressed by the divergence of the stress tensor:

DivT = =Vp + DivF (25.52)
The equation of motion in the inertial frame (with subscript a omitted) is

DV _ -Vé-aVp +aDivF (25.53)

Dt

or, in Cartesian tensor notation,

1

Dv. v, v,
e R SN S [ ) B 2M[€i-—l(V’V)5,~]
Dt ot Jaxj x; ox . axj 3 J

v, ov; av
__@_aa_PJrai{M(_ur J>_2M_k},

B 0x; ox; axj axj a—xl 3 ox, (25.54)

This is called the Navier-Stokes equation.

When the fluid is incompressible (V-V =0), and u is spatially constant,
(25.54) reduces to

2
Dv; J v,
i QT SR T it I (25.55)
Dt ox  Ox; x>
J
or, in vector form,
%‘;’ = _Vo-aVp+auVV. (25.56)

Here we see the Laplacian of the vector V.
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25.8 Aproofthatthe dissipation is non-negative 207

1/0v, dv; ) .
It should be noted that e;; = —(— + —]) vanishes when V = Q xr (rigid
2 ax;  ox;

rotation), and that V- (Q x r) = 0. This means that we do not have to worry about the
distinction between V, = V+Q xr and V in the expression F = DivF in the equation

of relative motion. The frictional force is the same in the rotating frame as in the inertial
frame.

25.8 Aproofthatthe dissipation is non-negative

The dissipation rate is given by

v,
(F-V)-'V = Fi-—sé

T 0x .

Jj
Ju Ju ou
=F,=—+F,—+F,—
llax 128}1 1332
Jv Jav
~+F..=
226y 235,
ow ow
—+F,—.
328y 3382

(25.57)
av

+F,,—+F
2150

ow
+F,,—+F
315

Since Fl.j = Fjl. , we have

av.; av, avj

i f o F 2
Yox;

0 = Fl..— et
ij Ji
axj axj

(25.58)

SO we can write

28 = F..<—V’+4v> . (25.59)
Yy axj ox;

But

Jav. ov; v,
BEECE R
j i i

V.  Iv. v, Iv; v,
i Zo-s- 2120
2\ax;  ax 2\ox; ox/  3dx; (25.60)

or
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208 The Navier-Stokes Equation

1/9v; 0v; 20V,
;= 2l (5 ) (-5 + 22 } 25.61
Y PL[2(8xj dx; ( i) 3ox; Y ( )

Substituting (25.61) into (25.59), we find that

Jv. Jv; V. dv. v
o = M|:.l_<j+_v.l>(1_6l)+2_161i|<_v_l+_vl>
2 axj ox; J 38xj J axj 0x;

4 2
= u[2ei-ei.(1—6i-)+—(V-V) al..]
Sy /73 / (25.62)

This expression is obviously non-negative, since (1 — 60.) =0 and 6,,=0.

For a nondivergent flow, the dissipation can be expanded, using Cartesian
coordinates, as

0 = 2ueijeij

2 2
= l%(%ﬁl) +<6_u+8_W>
2 [\dy ox dz  0x

2 2
+<8_v+8_u> +<8_v+8_W>
ox dJy dz  dJy

2 2
+(8_W+6_U> +<6_W+QEH
dx 0z Jdz Oz

2 2
S EE

o2y
dy oOx 0z  0x dy Odz ' (25.63)

This shows that 0 is the sum of squares; again, it cannot be negative.
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