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For resting air, the equation of vertical motion reduces to

∂p
∂z

= −ρg .

(1)

This is called the hydrostatic approximation. With an appropriate boundary condition, (1) allows 
us to compute p z( )  from ρ z( ) . Even when the air is moving, (1) gives an exellent 

approximation to p z( ) , simply because 
Dw
Dt

 is small compared to g , even in a strong 

convective updraft. The hydrostatic equation itself is almost always a good approximation.

The quasi-static approximation is harder to justify. It consists of using the approximate 
p z( )  obtained from (1) to compute the pressure-gradient force in the equation of horizontal 

motion? The issue is that the horizontally varying part of the pressure, which is what matters for 
the horizontal pressure-gradient  force, is usually  quite small compared to the total pressure. Even 
through the total pressure is almost always well approximated by (1), the horizontally varying 
part of the pressure as determined from (1) may contain large errors.

To investigate the range of validity of the quasi-static approximation, define

p = ps z( ) + δ p,
α = α s z( ) + δα,

(2)

where the subscript  s  denotes a “reference sounding” that varies only with height. Define the 
reference state in such a way that it is hydrostatically balanced, i.e.,

α s
∂ps
∂z

= −g .

(3)

With these definitions, the equation of vertical motion can be written as
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Dw
Dt

= −α s
∂ps
∂z

− δα ∂ps
∂z

−α s
∂δ p
∂z

− δα ∂δ p
δz

− g .

(4)

Here we neglect the effects of rotation and friction. The first and last terms on the right-hand-side 
of (4) cancel, because of (3). The second-to-last term on the right-hand side of (4) can be 
neglected because it contains the product of two δ ’s. This is justified if α s >> δα , and 

ps >> δ p . We scale the remaining terms of (4) as follows:

Dw
Dt

≅ δα
αs

g −αs
∂
∂z

δp( ) .

(5)

NW                        α s
δ p
D

Here N −1  is an advective time scale, W  is a vertical velocity scale, and D  is a depth scale.

Again neglecting friction, the horizontal momentum equation can be written as

DVH

Dt
= −α s∇H δ p( )− fk ×VH .

(6)

NV                α s
δ p
L

        fV

Here V  is a horizontal velocity scale, and L  is a horizontal length scale.

Consider two cases:

1.N ≥ f  (“short” advective time scale; advection faster than rotation)

This is the case in which the advective time scale, N −1 , is small compared to an inertial 
period, which is usually true for small-scale motions. If N ~V / L , then N ≥ f  equivalent to 

Ro ≥ 1 , where Ro ≡ V
fL

 is the Rossby number. For this case, we find from (6) that

α sδ p ~ NLV .
(7)

Therefore, to have 
Dw
Dt

<< α ∂
∂z

δ p( ) , we need
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NW <<
NLV
D

,

(8)

or

W
D

⋅
L
V

⎛
⎝⎜

⎞
⎠⎟

D
L

⎛
⎝⎜

⎞
⎠⎟
2

<< 1 .

(9)

Normally (from continuity), we have

W
D

⋅
L
V

≤ 1 ,

(10)

provided that the stratification is stable. Then (9) shows that “fast” motions can be quasi-static if 

they  are “shallow” in the sense that D L( )2 <<1 , but  not if they are “deep.” Deep  convective 

circulations do not satisfy (9).

2. N ≤ f  (“long” advective time scale; rotation faster than advection)

This is the case in which the advective time scale is relatively long, which is usually true 
for large-scale motions. If we assume that N ~V / L , then N ≤ f  is equivalent to Ro ≤ 1 . For 

this case, (6) leads to

α sδ p ~ fLV ,
(11)

which is essentially an expression of geostrophic balance. To have 
Dw
Dt

<< α s
∂
∂z

δ p( ) , we need

NW << fLV
D

,

(12)

or

W
D

⋅
L
V

⎛
⎝⎜

⎞
⎠⎟

D
L

⎛
⎝⎜

⎞
⎠⎟
2 N
f
<< 1 .

(13)
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Compare this with (9). The only difference is the factor of N / f , which by assumption is less 

than one. Large-scale, geostrophically balanced circulations normally satisfy 

D
L

⎛
⎝⎜

⎞
⎠⎟
2

<< 1 ,

(14)

so they are expected to satisfy quasi-static balance.

When the quasi-static approximation is made, the effective kinetic energy is due entirely 
to the horizontal motion; the vertical component of the velocity, w , makes no contribution. For 
large-scale motions, w << VH , so that this quasi-static kinetic energy is very close to the true 

kinetic energy.
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