
Copyright © 2006, David A. Randall                                           Revised Thu, 6 Jul 06, 15:21:38

The Shallow Water Equations
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1. A derivation of the shallow water equations

The  shallow  water  equations  are  the  simplest  form  of  the  equations  of  motion  that

can  be  used  to  describe  the  horizontal  structure  of  an  atmosphere.  They  describe  the

evolution  of  an  incompressible  fluid  in  response  to  gravitational  and  rotational

accelerations.  The  solutions  of  the  shallow  water  equations  represent  many  types  of

motion, including Rossby waves and inertia-gravity waves. In these notes, we begin with

a  more  complete  version  of  the equations  of  motion,  and  simplify  to  obtain  the  shallow

water equations. 

Ignoring the effects of friction, the momentum equation is

(1)rK Du
ÅÅÅÅÅÅÅÅÅÅÅ
Dt

+ fkävO = -“ p - rgk .

Here  r  is  the  density  of  the  air,  u  is  the  three-dimensional  velocity  vector,  the  total

derivative operator DH L êDt  is defined by

(2)
DH L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Dt
ª

!
ÅÅÅÅÅÅÅÅ
! t

 H L + Hu ÿ “L H L ,

f is the coriolis parameter,  k  is a unit vector pointing away from the center of the planet,

v  is  the  horizontal  velocity  vector,  W  is  the  angular  velocity  vector  associated  with  the

planet’s  rotation,  p is pressure,  and g is  the magnitude  of  the acceleration  vector due to

the  planet’s  gravity.  In  writing  (1),  we  have  adopted  “traditional”  approximations

appropriate  to  an  atmosphere  whose  depth  is  shallow  compared  with  the  radius  of  the

planet. 

The continuity equation is 

(3)
! r
ÅÅÅÅÅÅÅÅÅÅ
! t

+ “ ÿ HruL = 0 ;



it can also be written as

(4)
Dr
ÅÅÅÅÅÅÅÅÅÅ
Dt

+ r “ ÿu = 0 .

We  now  show  how  (1)  and  (4)  can  be  simplified  to  obtain  the  shallow  water

equations.

It  is  convenient  to  partition  pressure  and  density  into  equilibrium  and  departures

from equilibrium values. That is,

(5)p = p0HzL + p£Hx, y, z, tL, and r = r0HzL + r£Hx, y, z, tL .

The  equilibrium  pressure  p0HzL  and  the  equilibrium  density  r0HzL  are  defined  in  such  a

way that they satisfy the hydrostatic equation

(6)
d p0
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
d z

= -g r0 .

Substituting (5) into the momentum equation (1), and using (6), we obtain the momentum

equation in the form

(7)r K Du
ÅÅÅÅÅÅÅÅÅÅÅ
Dt

+ fkävO = -“ p£ - r£  gk .

The  full  density  still  appears  on  the  left-hand  side  of  (7);  no  approximations  have  been

made in passing from (1) to (7). On the right-hand side of (7), we see a “buoyancy” term,

which is the product of the perturbation density and the acceleration due to gravity. 

Now  we  assume  that  the  fluid  is  incompressible,  that  is,  r = r0  is  a  constant  and

r£ = 0.  Water  is  nearly  incompressible,  and  the  name  “shallow  water  equations”  comes

partly from the use of this incompressibility  assumption. For an incompressible  fluid, the

three-dimensional momentum equation, (7), can  be simplified to

(8)rK Du
ÅÅÅÅÅÅÅÅÅÅÅ
Dt

+ 2 W ävO = -“ p£ .

In addition, the mass conservation equation, (4), reduces to 

(9)“ ÿ u = 0 .

Equations (8) and (9) apply at each point in the three-dimensional fluid. 

Now we begin to consider  how to describe  the vertically  integrated  circulation.  We

assume  that  the  effects  of  vertical  shear  of  the  horizontal  velocity  are  negligible.  Such

effects would arise, for example, through the vertical advection of horizontal momentum.

The  “no-shear”  assumption  is  reasonable  if  the  fluid  is  “shallow,”  and  this  partly

accounts for the name “shallow water equations.” 
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Now we begin to consider  how to describe  the vertically  integrated  circulation.  We

assume  that  the  effects  of  vertical  shear  of  the  horizontal  velocity  are  negligible.  Such

effects would arise, for example, through the vertical advection of horizontal momentum.

The  “no-shear”  assumption  is  reasonable  if  the  fluid  is  “shallow,”  and  this  partly

accounts for the name “shallow water equations.” 

The next step is to find the form of the horizontal  pressure  gradient  force  acting on

the shallow,  incompressible  fluid.  Supposed that there exists  a “free” surface of constant

or  nearly  constant  pressure,  which  is  also  a  material  surface  in  the  sense  that  no  mass

crosses  it.  This  is  analogous,  for  example,  to the  surface  of  the ocean.  Let h f Hx, y, tL  be

the height of a this free surface.  Let hSHx, yL  be the height of the surface topography  and

let h* = h f - hS  be the depth of the fluid. 

As mentioned above, we assume that no fluid crosses the free surface. It follows that

the height of a parcel embedded in the free surface satisfies

(10)
Dh f
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Dt

= wHx, y, h f , tL .

Similarly,  no  fluid  can  cross  the  lower  boundary,  so  the  fluid  motion  there  must  follow

the topography: 

(11)
DhS
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Dt

= wS ,

or

(12)
!hS
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
! t

+ v ÿ “ hS - wS = 0 .

When the topographic height is independent of time, we obtain

(13)wSHx, y, hS , tL = v ÿ “ hS .

Using  our  assumption  that  the  density  is  constant,  and  integrating  the  hydrostatic

equation from some arbitrary depth z within the fluid up to the free surface gives

(14)pHx, y, z, tL - pHx, y, h f , tL = -g rHh f - zL .

As an upper boundary condition, we have 

(15)pHx, y, h f , tL = p f .
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It follows that

(16)p = g rHh f - zL + p f .

So, since p = -g rz + p£Hx, y, z, tL , we obtain p£ = g rh f + p f  and

(17)“ p£ = g r0  “h f .

Here we have assumed that p f is horizontally  uniform. Using (17), we can now write the

horizontal momentum equation as

(18)
Dv
ÅÅÅÅÅÅÅÅÅÅ
Dt

+ f  käv = -g “h f .

Since  we have  assumed no vertical  shear,  this equation applies  at any height within

the  fluid,  but  the  range  of  heights  in  question  is  presumably  small  since  the  fluid  is

“shallow.”  Equation  (18)  is  the  form  of  the  momentum  equation  for  the  shallow  water

system.  Using  the vector  identity  Hv ÿ “L v = “@Hv ÿvL ê 2D + H“ ävLäv ,  we  can  rewrite  the

momentum equation (18) as

(19)
!v
ÅÅÅÅÅÅÅÅÅ
! t

 Hz + f L k ä v =  “ Igh f + KM .

Here 

(20)K ª
v ÿv
ÅÅÅÅÅÅÅÅÅÅÅÅ

2

is the kinetic energy per unit mass, and

(21)z = k ÿ H“ ävL
is the relative vorticity.

Since  the  horizontal  velocity  is  independent  of  z ,  we  can  easily  integrate  the

continuity equation, (9), with respect to z, from z = hS  to z = h f , to obtain

(22)wHx, y, h f , tL - wSHx, y, hS  tL = -Hhf - hSL “ ÿv .

where “ ÿ v is the horizontal divergence. Substitute (20) and (12) into (22), to obtain

(23)
!

ÅÅÅÅÅÅÅÅ
! t

 Hh f - hSL + “ ÿ @vHh f - hSLD = 0 ,
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or, with h* = h f - hS , 

(24)
!

ÅÅÅÅÅÅÅÅ
! t

 h* + “ ÿ Hvh*L = 0 .

This is the continuity equation for the shallow water system.

2. The vorticity and divergence equations for shallow water

The absolute vorticity is the sum of the relative and planetary vorticity, i.e., 

(25)h ª z + f .

The vorticity equation can be derived by applying the operator k ÿ “ ä  to (19): 

(26)

!z
ÅÅÅÅÅÅÅÅÅ
! t

= k ÿ C“ ä
!v
ÅÅÅÅÅÅÅÅÅ
! t

G

= k ÿ “ ä C-h Kk äv O - “ Igh f + KMG

= -k ÿ “ äCh Kkäv OG - k ÿ A“ ä “Igh f + KME

= -k ÿ “ ä @h Hk äv LD

= -k ÿ;“ h äKkävO + h C“ äKkävOG?

= -k ÿ CHv ÿ “ h L - vK“ h ÿkOG

-k ÿ;h Hv ÿ “L k - Kk ÿ “O v + kH“ ÿvL - vK“ ÿkO?

= -Hv ÿ “ h L - h H“ ÿvL
= -“ ÿ Hh vL .

Because  the coriolis  parameter  does  not  depend  on time,  we can  write  !h ê! t = !z ê! t .

Then (26) can be re-written as

(27)
!h
ÅÅÅÅÅÅÅÅÅÅÅ
! t

= -“ ÿ Hh vL .

One of the conclusions that can be drawn from (27) is that if there is no absolute vorticity

in  the  fluid  at  a  certain  time,  then  none  will  ever  form.  A purely  divergent  flow (in  the

absence of planetary rotation) will remain purely divergent forever, within the framework

considered here.
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One of the conclusions that can be drawn from (27) is that if there is no absolute vorticity

in  the  fluid  at  a  certain  time,  then  none  will  ever  form.  A purely  divergent  flow (in  the

absence of planetary rotation) will remain purely divergent forever, within the framework

considered here.

The divergence is defined by

(28)d ª “ ÿv .

The divergence equation can be derived from the momentum equation, as follows:

(29)

!d
ÅÅÅÅÅÅÅÅÅ
! t

= “ ÿ
!v
ÅÅÅÅÅÅÅÅÅ
! t

= “ ÿ C-h KkävO - “Ig h f + KMG

= -“ ÿ Ch KkävO - “2  Igh f + KMG

= -C“ h ÿ KkävO + h “ ÿ KkävOG - “2  Igh f + KM

= -;“ h ÿ KkävO + h Cv ÿ K“ äkO - k ÿ H“ ävLG? - “2  Igh f + KM

= h k ÿ H“ ävL - “h ÿ KkävO - “2  Igh f + KM

= h k ÿ H“ ävL + “h ÿ KväkO - “2  Igh f + KM

= h k ÿ H“ ävL + k ÿ H“ h ävL - “2  Ighf + KM

= k ÿ @“ h äv + h H“ ävLD - “2  Igh f + KM

= k ÿ “ ä Hh vL - “2  Igh f + KM
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3. Expressing the shallow water equations in terms of the stream function and velocity      

potential 

Helmholtz’s  Theorem states  that any vector field V  can be separated  into rotational

and  divergent  parts,  i.e.,  V = “ y +Vc ,  where  “ ÿ Vy = 0  and  “ ä Vc = 0.  If  the  vector

field is the horizontal  wind, we can define a stream function, y , to express  the rotational

part, kä “ y , and a velocity potential, c , to express the divergent part, “ c , i.e.,

(30)v = kä “ y + “ c .

The  conservation  equation  for  absolute  vorticity  is  can  be  rewritten  in  terms of  the

stream function and velocity potential, as follows:

(31)

!h
ÅÅÅÅÅÅÅÅÅÅÅ
! t

= -“ ÿ Hh vL

= -“ ÿ Ch Kkä “ y + “ cOG

= -“ ÿ Ch Kkä “ yOG - “ ÿ Hh “ cL

= -“ ÿ Hh “ cL - h “ ÿ Kkä“ yO - “ h ÿ Kkä“ yO

= -“ ÿ Hh “ cL + k ÿ H“ h ä “ yL .

For arbitrary scalar functions A and B, define the Jacobian operator JHA, BL  by:

(32)JHA, BL ª k ÿ H“ Aä “ BL .

Then we can rewrite (31) as

(33)
!h
ÅÅÅÅÅÅÅÅÅÅÅ
! t

= -“ ÿ Hh “ cL + JHh , yL .

The  divergence  equation  can  be  re-written  in  terms  of  the  stream  function  and

velocity potential as follows:

(34)

!d
ÅÅÅÅÅÅÅÅÅ
! t

= k ÿ “ ä Hh vL - “2  Igh f + KM

= k ÿ “ äCh Kkä “y + “ cOG - “2  Igh f + KM
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(34)

= k ÿ “ äCh Kkä “y + “ cOG - “2  Igh f + KM

= k ÿ “ äCh Kkä “ yO + h “ cG - “2  Igh f + KM

= k ÿ “ äCh Kkä “yOG + k ÿ “ ä Hh “ cL - “2  Ighf + KM

= k ÿ;“ h ä Kkä“ yO + h C“ äKkä “yOG?

+k ÿ @“h ä “ c + h H“ ä “ cLD - “2  Igh f + KM

= k ÿ CkH“ y ÿ “ h L - “ yK“ h ÿkOG

+k ÿ;h CkH“ ÿ “ cL - “ cK“ ÿkO Kk ÿ “O “ y + H“ y ÿ “L kG?

+k ÿ H“ h ÿ “ cL - “2  Igh f + KM
= “ y ÿ “ h + h “2 y + JHh , cL - “2  Igh f + KM

= “ ÿ Hh “ yL + JHh , cL - “2  Igh f + KM .

The kinetic energy per unit mass, K, which appears in (34), can be expressed in terms of

the stream function and velocity potential, as follows:

(35)

K =
v ÿv
ÅÅÅÅÅÅÅÅÅÅÅÅ

2

=
1
ÅÅÅÅÅ
2
CKkä “ y + “ cO ÿ Kkä“ y + “ cOG

=
1
ÅÅÅÅÅ
2
CKkä “yO ÿ Kkä “ yO + Kkä“ cO ÿ “ c

+ “ c ÿ Kkä “ yO + “ c ÿ “ cG

=
1
ÅÅÅÅÅ
2
CKkä “yO ÿ Kkä “yO + “ ÿ Hc “ cL - c “2 cG

+“ c ÿ Kkä “ yO
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(35)

=
1
ÅÅÅÅÅ
2
CCKkä “ yOäkG ÿ “ y + “ ÿ Hc “ cL - c “2 cG + k ÿ H“ y ä “ cL

=
1
ÅÅÅÅÅ
2
C-CkäKkä “ yOG ÿ “ y + “ ÿ Hc “ cL - c “2 cG - JHy, cL

=
1
ÅÅÅÅÅ
2
C-CkK“ y ÿkO - “yKk ÿkOG ÿ “ y + “ ÿ Hc “ cL - c “2 cG - JHy, cL

=
1
ÅÅÅÅÅ
2
A“ y ÿ “y + “ ÿ Hc “ cL - c “2 cE - J Hy, cL

=
1
ÅÅÅÅÅ
2

 9A“ ÿ Hy “ yL - y “2 yE + “ ÿ Hc “ cL - c “2 c= - JHy, cL .

The Jacobian term of (35) “mixes” the rotational and divergent flow fields. We can show,

however, that the integral of the Jacobian over a closed or periodic domain vanishes. This

means  that  the  total  (volume-integrated,  but  not  mass-weighted)  kinetic  energy  can  be

expressed  in  terms  of  two  cleanly  separated  contributions:  a  rotational  part,  and  a

divergent part.

Finally,  the continuity  equation can be rewritten in terms of the stream function and

velocity potential as follows:

(36)

!
ÅÅÅÅÅÅÅÅ
! t

 h* = -“ ÿ Hh*  vL
= -“ ÿ Ch*  Kkä“ y + “ cOG

= -“ ÿ Ch* Kkä “ yOG - “ ÿ Hh*  “ cL

= -“ ÿ Hh*  “ cL - Ch*  “ ÿ Kkä“ yO + “ h* ÿ Kkä “ yOG

= -“ ÿ Hh*  “ cL + k ÿ H“ h* ä “yL
= -“ ÿ Hh* “ cL + JHh*, yL .
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4. Potential vorticity and potential enstrophy

We repeat here for convenience the mass conservation equation [see (24)], i.e.,

(37)
!

ÅÅÅÅÅÅÅÅ
! t

 h* + “ ÿ Hh*  vL = 0 ,

and the vorticity conservation equation [see (38)], i.e.,

(38)
!h
ÅÅÅÅÅÅÅÅÅÅÅ
! t

+ “ ÿ Hh vL = 0 .

It  is  interesting  that  these  two  equations  have  exactly  the  same form.  This  seems  to say

that vorticity is somehow like mass! 

We define the potential vorticity by

(39)q ª
h

ÅÅÅÅÅÅÅÅ
h*

.

Then (39) is immediately equivalent to

(40)
!

ÅÅÅÅÅÅÅÅ
! t

 Hh*  qL + “ ÿ @Hh*  vL qD = 0

which  expresses  conservation  of  potential  vorticity  in  flux  form.  The  corresponding

advective form can be obtained by subtracting q ä  (24) from (40). The result is

(41)
!q
ÅÅÅÅÅÅÅÅÅ
! t

+ Hv ÿ “L q = 0 ,

which  says  that  q  is  conserved  following  a  particle.  Of  course,  this  implies  that  any

function  of  q  is  also conserved.  In  particular,  1ÅÅÅÅ
2

 q2  is  conserved.  This  quantity  is  called

the potential enstrophy. We easily find that

(42)
!

ÅÅÅÅÅÅÅÅ
! t

 K 1
ÅÅÅÅÅ
2

 q2O + Hv ÿ “L K 1
ÅÅÅÅÅ
2

 q2O = 0

from which it follows that

(43)
!

ÅÅÅÅÅÅÅÅ
! t

Ch*K 1
ÅÅÅÅÅ
2

 q2OG + “ ÿ Ch*  vK 1
ÅÅÅÅÅ
2

 q2OG = 0 .
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5. Energy conservation

The kinetic energy equation can be derived by taking v ÿ (19), to obtain

(44)
!K
ÅÅÅÅÅÅÅÅÅÅÅ
! t

+ v ÿ “K + v ÿ “@gHhS + h*LD = 0 .

The  last  term  of  (44)  represents  conversion  between  kinetic  and  potential  energy.  We

have used h f = hS + h* . We can convert the kinetic energy equation to flux form:

(45)
!

ÅÅÅÅÅÅÅÅ
! t

 Hh*  KL + “ ÿ Hv h*  KL + h* v ÿ “@gHhS + h*LD = 0 .

The  potential  energy  equation  can  be derived  by  multiplying  (25) by gHhS + h*L ,  to
obtain

(46)
!

ÅÅÅÅÅÅÅÅ
! t

Ch*  KghS +
1
ÅÅÅÅÅ
2

 h*OG + gHhS + h*L “ ÿ Hv h*L = 0 .

This can be rewritten as

(47)
!

ÅÅÅÅÅÅÅÅ
! t

Ch* KghS +
1
ÅÅÅÅÅ
2

 h*OG + “ ÿ @v h* gHhS + h*LD - h* v ÿ “@gHhS + h*LD = 0 .

The last term represents conversion between kinetic and potential energy. 

If we add (45) and (47), we get

(48)
!

ÅÅÅÅÅÅÅÅ
! t

 ;h*CK + KghS +
1
ÅÅÅÅÅ
2

 h*OG? + “ ÿ 8v h*@K + gHhS + h*LD< = 0 .

This expresses total energy conservation. 
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