
Spherical Harmonics and Related Topics

David Randall

The spherical surface harmonics are convenient functions for representing the distribution 
of geophysical quantities over the surface of the spherical Earth.

We look for solutions of Laplace’s differential equation, which is

∇2S = 0 ,
(1)

in a three-dimensional space. The ∇2  operator can be expanded in spherical coordinates as:

∇2S = 1
r2

∂
∂r

r2 ∂S
∂r

⎛
⎝⎜

⎞
⎠⎟ +∇

2
hS = 0 .

(2)

Here r  is the distance from the origin, and ∇2
hS  is the Laplacian on a two-dimensional surface 

of constant r , i.e., on a spherical surface. We postpone showing the form of ∇2
hS  until page 2. 

Inspection of (2) suggests that S  should be proportional to a power of r . We write

S = rnYn .
(3)

Here we are assuming that  the radial dependence of S  is “separable,” in the sense that the Yn  are 

independent of radius. They are called spherical surface harmonics of order n . The subscript n  
is attached to Yn  to remind us that it corresponds a particular exponent in the radial dependence 

of S . 

In order for S  to remain finite as r→ 0 , we need n ≥ 0 . Since n = 0  would mean that S  
is independent of radius, we conclude that n  must be a positive integer. Using 
1
r2

∂
∂r

r2 ∂S
∂r

⎛
⎝
⎜

⎞
⎠
⎟ =

n n +1( )
r2

S , which follows immediately from (3), we can rewrite (2) as
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∇2
hYn +

n n +1( )
r2

Yn = 0 .

(4)
Before continuing with the separation of variables, it is important to point out that all of the 

quantities appearing in (4) have meaning without the need for any particular coordinate system 
on the two-dimensional spherical surface. We are going to use longitude and latitude coordinates 
below, but we do not need them to write down (4).

At this point we make an analogy with a trigonometric functions. Suppose that we have a 
“doubly  periodic” function W x, y( )  defined on a plane, with the usual Cartesian coordinates x  

and y . As a particular example, let 

W x, y( ) = Asin kx( )cos ly( ) ,
(5)

where A  is an arbitrary constant. In Cartesian coordinates the two-dimensional Laplacian of W  
is

∇h
2W = ∂2

∂x2
+ ∂2

∂y2
⎛

⎝
⎜

⎞

⎠
⎟W

= − k2 + l2( )W .

(6)
Compare (4) and (6). They are closely  analogous. In particular, n n +1( ) / r2  in (4) corresponds to 

k2 + l2( )  in (6). This shows that n n +1( ) / r2  can be interpreted as a “total horizontal wave 

number” on the sphere. 

We now write out the “horizontal Laplacian” as

∇2
hS =

1
r2 cosϕ

∂
∂ϕ

cosϕ ∂S
∂ϕ

⎛
⎝⎜

⎞
⎠⎟
+ 1
r2 cos2ϕ

∂2S
∂λ 2 ,

(7)
using the familiar spherical coordinate system in which r  is the radial coordinate, λ  is longitude 
and ϕ  is latitude. Then (4) can be rewritten as 

1
cosϕ

∂
∂ϕ

cosϕ ∂Yn
∂ϕ

⎛
⎝⎜

⎞
⎠⎟
+ 1
cos2ϕ

∂2Yn
∂λ 2 + n n +1( )Yn = 0 .

(8)

Factors of 1/ r2  have cancelled out  in (8), and as a result r  no longer appears. Nevertheless, its 
exponent, n , is still visible, like the smile of the Cheshire cat. 
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Next, we separate the longitude and latitude dependence in the Yn λ,ϕ( ) , i.e.

Yn ϕ,λ( ) =Φ ϕ( )Λ λ( ) ,
(9)

where Φ ϕ( )  and Λ λ( )  are to be determined. By substitution of (9) into (8), we find that

cos2ϕ
Φ

1
cosϕ

d
dϕ

cosϕ dΦ
dϕ

⎛
⎝⎜

⎞
⎠⎟
+ n n +1( )Φ⎡

⎣
⎢

⎤

⎦
⎥ = −

1
Λ
d 2Λ
dλ2

.

(10)
The left-hand side of (10) does not contain λ , and the right-hand side does not contain ϕ , so 

both sides must be a constant, c . Then the longitudinal structure of the solution is governed by 

d 2Λ
dλ2

+ cΛ = 0 .

(11)
It follows that Λ λ( )  must be a trigonometric function of longitude, i.e.

Λ = AS exp imλ( ) , where m = c ,
(12)

and AS  is an arbitrary  complex constant. The cyclic condition Λ λ + 2π( ) = Λ λ( )  implies that 

c  must be an integer, which we denote by m . We refer to m  as the zonal wave number. Note 
that m  is non-dimensional, and can be either positive or negative.

Notice m  has meaning only with respect to a particular spherical coordinate system. In this 
way m  is less fundamental than n , which comes from the radial dependence of the three 
dimensional function S , and has a meaning that is independent of any particular spherical 
coordinate system.

The equation for Φ ϕ( ) , which determines the meridional structure of the solution, is

1
cosϕ

d
dϕ

cosϕ dΦ
dϕ

⎛
⎝⎜

⎞
⎠⎟
+ n n +1( )− m2

cos2ϕ
⎡

⎣
⎢

⎤

⎦
⎥Φ = 0 .

(13)
Note that the zonal wave number, m , appears in this meridional structure equation, as does the 
radial exponent, n . The longitude and radius dependencies have disappeared, but the zonal wave 
number and the radial exponent are still visible. 

For convenience, we define a new independent variable to measure latitude, 
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µ ≡ sinϕ ,
(14)

so that dµ ≡ cosϕdϕ . Then (13) can be written as

d
dµ

1− µ2( ) dΦdµ
⎡
⎣⎢

⎤
⎦⎥
+ n n +1( )− m2

1− µ2
⎡

⎣
⎢

⎤

⎦
⎥Φ = 0 .

(15)
Eq. (15) is simpler than (13), in that (15) does not involve trigonometric functions of the 
independent variable. This added simplicity is the motivation for using (14). We solve (15) 
subject to the boundary conditions that Φ  is bounded at both poles. These boundary conditions 
imply that n  is an integer such that 

n ≥ m .
(16)

The solutions of (15) are called the associated Legendre functions, are denoted by Pn
m µ( ) , 

and are given by

 

Pn
m µ( ) = 2n( )!

2n n! n −m( )! 1− µ2( )
m
2 ⋅ µn−m −

n −m( ) n −m −1( )
2 2n −1( ) µn−m−2⎡

⎣
⎢

+
n −m( ) n −m −1( ) n −m − 2( ) n −m − 3( )

2 ⋅4 2n −1( ) 2n − 3( ) µn−m−4 −…
⎤

⎦
⎥

(17)
The subscript n  and superscript m  are just “markers” to remind us that n  and m  appear as 
parameters in (15), denoting the radial exponent and zonal wave number, respectively, of 
S r,λ,ϕ( ) . The functions Pn

m µ( )  are said to be of “order n ” and “rank m .”  The sum in (17) is 

continued out as far as necessary  to include all non-negative powers of µ . The factor in brackets 

is, therefore, a polynomial of degree n −m ≥ 0 . In view of the leading factor of 1− µ2( )
m
2  in 

(17), the complete function Pn
m µ( )  is a polynomial in µ  for even values of m , but  not for odd 

values of m .  Substitution can be used to confirm that  the associated Legendre functions are 
indeed solutions of (15).

Here we plot some examples of associated Legendre functions, which you might want to 
check for their consistency with (17):
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P0
0 µ( ) = 1
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0 µ( ) = 5
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It can be shown that the associated Legendre functions are mutually orthogonal, i.e.,

Pn
m µ( ) ⋅Plm µ( )dµ = 0,  for n ≠ l

−1

1

∫ , and Pn
m µ( )⎡⎣ ⎤⎦

2
dµ = 2

2n +1
⎛
⎝⎜

⎞
⎠⎟
n +m( )!
n −m( )!−1

1

∫ .

(18)
It follows that the functions

 

2n +1
2

⎛
⎝⎜

⎞
⎠⎟
n −m( )!
n +m( )!Pn

m µ( ),  n = m,  m +1,  m + 2,…

(19)
are mutually orthonormal for −1 ≤ µ ≤ 1 .

Referring back to (9), we see that a particular spherical surface harmonic can be written as

Yn
m µ,λ( ) = Pnm µ( )exp imλ( ) .

(20)
It is the product of an associated Legendre function of µ  with a trigonometric function of 

longitude. Note that the arbitrary constant has been set to unity. 
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Fig. 1 shows  examples of spherical harmonics of low order, as mapped out onto the 
longitude-latitude plane. Fig. 2 gives similar diagrams for n = 5  and m = 0, 1, 2,...,5, plotted out 
onto stretched spheres. Fig. 3 shows some low-order spherical harmonics mapped onto three-
dimensional pseudo-spheres, in which the local radius of the surface of the pseudo-sphere is one 
plus a constant times the local value of the spherical harmonic. 

By using the orthogonality  condition (18) for the associated Legendre functions, and also 
the orthogonality properties of the trigonometric functions, we can show that

Pn
m µ( )exp imλ( )Pl ′m µ( )exp i ′m λ( )dµdλ = 0

0

2π

∫
−1

1

∫  unless n = 1  and m = ′m .

(21)

Figure 1:Examples of low-resolution spherical harmonics, mapped out onto the plane. The horizontal 
direction in each panel represents longitude, and the vertical direction represents latitude. The numbers 
in parentheses in each panel are the appropriate values of n  and s , in that order. Recall that the 
number of nodes in the meridional direction is n − s .  The shading in each panel represents the sign of 
the field (and all signs can be flipped arbitrarily). You may think of “white”  as negative and “stippled” as 
positive. From Washington and Parkinson (1986).
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The mean value over the surface of a sphere of the square of a spherical surface harmonic is 
given by

1
4π

Pn
m µ( )exp imλ( )⎡⎣ ⎤⎦

2
dµdλ = 1

2 2n +1( )
n +m( )!
n −m( )!0

2π

∫
−1

1

∫  for s ≠ 0 .

(22)
For the special case m = 0 , the corresponding value is 1 / 2n +1( ) . 

For a given n , the mean values given by  (22) vary greatly with m , which is inconvenient 
for the interpretation of data. For this reason, it  is customary  to use, instead of Pn

m µ( ) , the semi-

normalized associated Legendre functions, denoted by   P
! n
m
µ( ) . These functions are identical 

with Pn
m µ( )  when m = 0 . For m > 0 , the semi-normalized functions are defined by

Figure 2: Alternating patterns of positives and negatives for spherical harmonics with n = 5  and 
m = 0,1,2...5 .  From Baer (1972).
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P! n
m
µ( ) = 2 n −m( )!

n +m( )! ⋅Pn
m µ( ) .

(23)

The mean value over the sphere of the square of  P
! n
m
µ( )exp imλ( )  is then 2n +1( )−1 , for any n  

and m .

The spherical harmonics can be shown to form a complete orthonormal basis, and so can be 
used to represent an arbitrary function, F λ,ϕ( )  of latitude and longitude: 

F λ,ϕ( ) = Fn
mYn

m λ,ϕ( )
n=m

∞

∑
m=−∞

∞

∑
(24)

Figure 3: Selected spherical harmonics mapped onto three-dimensional pseudo-spheres, in which the 
local radius of the surface of the pseudo-sphere is one plus a constant times the local value of the 
spherical harmonic. 

n = 2, m = 1

n = 4, m = 1

n = 4, m = 2

n = 10, m = 1
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Here the Yn
m  are the expansion coefficients. Note that the sum over  ranges over both positive 

and negative values, and that the sum over n  is taken so that n − m ≥ 0 . 

The sums in (24) range over an infinity of terms, but in practice, of course, we have to 
truncate after a finite number of terms, so that (24) is replaced by 

F = Fn
mYn

m

n= m

N m( )

∑
m=−M

M

∑ .

(25)
Here the overbar reminds us that the sum is truncated. The sum over n ranges up  to N m( ) , 

which has to be specified somehow. The sum over m  ranges from −M  to M . It can be shown 
that  this ensures that the final result is real; this is an important result that you should prove for 
yourself.

The choice of N m( )  fixes what is called the “truncation procedure.” There are two 

commonly used truncation procedures. The first, called “rhomboidal,” takes

N m( ) = M + m .
(26)

The second, called “triangular,” takes

N m( ) = M .
(27)

Triangular truncation has the following beautiful property. In order to actually  perform a 
spherical harmonic transform, it is necessary to adopt a spherical coordinate system λ,ϕ( ) . 

There are of course infinitely many such systems. There is no reason in principle that the 
coordinates have to be chosen in the conventional way, so that the poles of the coordinate system 
coincide with the Earth’s poles of rotation. The choice of a particular spherical coordinate system 
is, therefore, somewhat arbitrary. Suppose that we choose two different spherical coordinate 
systems (tilted with respect to one another in an arbitrary  way), perform a triangularly  truncated 
expansion in both, then plot the results. It can be shown that the two maps will be identical. This 
means that the arbitrary orientations of the spherical coordinate systems used had no effect 
whatsoever on the results obtained. The coordinate system used “disappears” at the end. 
Triangular truncation is very widely used today, in part because of this nice property.
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Fig. 4 shows  an example based on 500 mb height data, provided originally on a 2.5° 
longitude-latitude grid. The figure shows how the data look when represented by just a few 
spherical harmonics (top  left), a few more (top right), a moderate number (bottom left) and at full 
2.5° resolution. The smoothing effect of severe truncation is clearly visible. 
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Figure 4: Demonstration of the effects of various horizontal truncations of 500 m patterns of geopotential 
height (m) data provided originally on a 2.5˚ longitude-latitude grid. From Washington and Parkinson 
(1986).
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