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Taylor Series
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A sufficiently differentiable function can be represented by a power series that is
referred to an arbitrary point :
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Here primes denote differentiation. This expansion, which is called a “Taylor series,” can
be derived without any assumptions or approximations except that the indicated
derivatives exist (Arfken, 1985). On the right-hand side of (1), f and its various
derivatives are evaluated at the point x = a.

We will use Taylor series to show how a function behaves at a distance /4 from a fixed
point a. If we write x = a + h in the above, so that x —a = h, we get

4 (n)
farm=f@+ @+ ey L0
: n.

. f(n+1)(a) hn+1 .
(n+1)!

h}’l

)

For a function of two variables, f(x, y), the total change of the function, at a
neighboring point in the (x, y) plane, can be due to changes in either of x or y:
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The analogy to advection is obvious, but should not be taken literally. We consider dx
and d y to be constant here; their ratio essentially specifies a direction in the (x, y) plane.

Continuing in an analogous manner, the second total differential of f; i.e., the total
differential of the first total differential of f, is
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Note the cross-derivative. In general,
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For convenient reference, we note that
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Here the subscripts denote differentiation.

We can now write the Taylor series expansion of f(x,y) for a point in the
neighborhood of the point (a, b):
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