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1 Physical laws and coordinate systems

For the present discussion, we define a “coordinate system” as a tool for describing
positions in space. Coordinate systems are human inventions, and therefore are
not part of physics, although they can be used in a discussion of physics. For
obvious reasons, spherical coordinates are particularly useful in geophysics.

Any physical law should be expressible in a form that is invariant with respect
to our choice of coordinate systems; we certainly do not expect that the laws of
physics change when we switch from spherical coordinates to cartesian coordi-
nates! It follows that we should be able to express physical laws without making
reference to any coordinate system. Nevertheless, it is useful to understand how
physical laws can be expressed in different coordinate systems, and in particular
how various quantities “transform” as we change from one coordinate system to
another.

2 Scalars, vectors, and tensors

Tensors can be defined without reference to any particular coordinate system. A
tensor is simply “out there,” and has a meaning that is the same whether we hap-
pen to be working in spherical coordinates, or Cartesian coordinates, or whatever.
Tensors are, therefore, just what we need to formulate physical laws.

The simplest kind of tensor, called a “tensor of rank 0,” is a scalar, which is
represented by a single number – essentially a magnitude with no direction. An
example of a scalar is temperature. Not all quantities that are represented by a
single number are scalars, because not all of them are defined without reference
to any particular coordinate system. An example of a (single) number that is not
a scalar is the longitudinal component of the wind, which is defined with respect
to a particular coordinate system, i.e., spherical coordinates.

A scalar is expressed in exactly the same way regardless of what coordinate
system may be in use to describe non-scalars in a problem. For example, if some-
one tells you the temperature in Fort Collins, you don’t have to ask whether they
are using spherical coordinates or some other coordinate system, because it makes
no difference at all.

Vectors are “tensors of rank 1;” a vector can be represented by a magnitude
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and one direction. An example is the wind vector. In atmospheric science, vectors
are normally either three dimensional or two dimensional, but in principle they
have any number of dimensions. A scalar can be considered to be a vector in a
one-dimensional space.

A vector can be expressed in a particular coordinate system by an ordered list
of numbers, which are called the “components” of the vector. The components
have meaning only with respect to the particular coordinate system. More or less
by definition, the number of components needed to describe a vector is equal to
the number of dimensions in which the vector is “embedded.”

We can define “unit vectors” that point in each of the coordinate directions. A
vector can then be written as the vector sum of each of the unit vectors times the
“component” associated with the unit vector. In general, the directions in which
the unit vectors point depend on position.

Unit vectors are always non-dimensional; here we are using the word “dimen-
sion” to refer to physical quantities, such as length, time, and mass. Because the
unit vectors are non-dimensional, all components of a vector must have the same
dimensions as the vector itself.

Spatial coordinates may or may not have the dimensions of length. In the
familiar Cartesian coordinate system, the three coordinates, (x,y,z), each have
dimensions of length. In spherical coordinates, (λ ,ϕ,r), where λ is longitude,
ϕ is latitude, and r is distance from the origin, the first two coordinates are non-
dimensional angles, while the third has the dimension of length.

When we change from one coordinate system to another, an arbitrary vector
V transforms according to

V′ = MV. (1)

Here V is the representation of the vector in the first coordinate system (i.e., V is
the list of the components of the vector in the first coordinate system), V′ is the
representation the vector in the second coordinate system, and M is a “rotation
matrix” that maps V onto V′. The rotation matrix used to transform a vector
from one coordinate system to another is a property of the two coordinate systems
in question; it is the same for all vectors, but it does depend on the particular
coordinate systems involved, so it is not a tensor.
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The transformation rule (1) is actually part of the definition of a vector, i.e., a
vector must, by definition, transform from one coordinate system to another via a
rule of the form (1) . It follows that not all ordered lists of numbers are vectors.
For example, the list

(mass of the moon, distance from Fort Collins to Denver)

is not a vector.

Now let V be the a vector representing the three-dimensional velocity of a
particle in the atmosphere. The Cartesian and spherical representations of are

V = ẋi+ ẏj+ żk (2)

V = λ̇ r cosϕeλ + rϕ̇eϕ + ṙer (3)

Here a “dot” denotes a Lagrangian time derivative, i.e., a time derivative following
a moving particle, i, j, and k are unit vectors in the cartesian coordinate system,
and eλ , eϕ , and er are unit vectors in the spherical coordinate system. Eqs. (2)
and (3) both describe the same vector, V, i.e., the meaning of V is independent of
the coordinate system that is chosen to represent it.

Vectors are considered to be tensors of rank one, and scalars are tensors of
rank zero. The number of directions associated with a tensor is called the “rank”
of the tensor. In principle, the rank can be arbitrarily large, but we rarely meet
tensors with ranks higher than two in atmospheric science.

A tensor of rank 2 that is important in atmospheric science is the flux of mo-
mentum . The momentum flux, also called a “stress,” and equivalent to a force per
unit area, has a magnitude and “two directions.” One of the directions is associ-
ated with the force vector itself, and the other is associated with the normal vector
to the unit area in question. The momentum flux tensor can be written as , where
is the density of the air, is the wind vector, and is the “outer” or “dyadic” product
that accepts two vectors as input and delivers a rank-2 tensor as output.

Like a vector, a tensor of rank 2 can be expressed in a particular coordinate
system, i.e., we can define the “components” of the tensor with respect to a partic-
ular coordinate system. The components of a tensor of rank 2 can be arranged in
the form of a two-dimensional matrix, in contrast to the components of a (column
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or row) vector, which form an ordered one-dimensional list. When we change
from one coordinate system to another, a tensor of rank 2 transforms according to

T′ = MTM−1 (4)

where T is the representation of a rank-2 tensor in the first coordinate system, T′

is the representation of the same tensor in the second coordinate system, M is the
matrix introduced in Eq. (1) above, and M−1 is its inverse.

3 Differential operators

Several familiar differential operators can be defined without reference to any co-
ordinate system. These operators are more fundamental than, for example, ∂/∂x,
where x is a particular spatial coordinate. The coordinate-independent operators
that we need most often for atmospheric science (and for most other branches of
physics too) are:

• the gradient, denoted by ∇A, where A is an arbitrary scalar;

(5)

• the divergence, denoted by ∇ ·V, where V is an arbitrary vector;

(6)

• the curl, denoted by ∇×V, and

(7)

• the Laplacian, given by ∇2A = ∇ · (∇A) .

(8)
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Note that the gradient and curl are vectors, while the divergence is a scalar. The
gradient operator accepts scalars as “input,” while the divergence and curl opera-
tors consume vectors.

In discussions of two-dimensional motion, it is often convenient to introduce
an additional operator called the Jacobian, denoted by

J (α,β )≡ k · (∇α×∇β )

= k ·∇× (α∇β )

=−k ·∇× (β∇α) .

(9)

Here the gradient operators are understood to produce vectors in the two-dimensional
space, α and β are arbitrary scalars, and k is a unit vector perpendicular to the
two-dimensional surface. The second and third lines of (9) can be derived with
the use of vector identities found in a table later in this QuickStudy.

A definition of the gradient operator that does not make reference to any co-
ordinate system is:

∇A≡ lim
S→0

 1
V

∮
S

nAdS

 , (10)

where S is the surface bounding a volume V , and n is the outward normal on S.
Here the terms “volume” and “bounding surface” are used in the following gen-
eralized sense: In a three-dimensional space, “volume” is literally a volume, and
“bounding surface” is literally a surface. In a two-dimensional space, “volume”
means an area, and “bounding surface” means the curve bounding the area. In a
one-dimensional space, “volume” means a curve, and “bounding surface” means
the end points of the curve. The limit in (10) is one in which the volume and the
area of its bounding surface shrink to zero.

As an example, consider a Cartesian coordinate system on a plane, with unit
vectors and in the and directions, respectively. Consider a “box” of width ∆x and
height ∆y, as shown in Figure 1. We can write
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∇A≡ lim
(∆x,∆y)→0

{
1

∆x∆y

[
A
(

x0 +
∆x
2
,y0

)
∆yi+A

(
x0,y0 +

∆y
2

)
∆xj

−A
(

x0−
∆x
2
,y0

)
∆yi−A

(
x0,y0−

∆y
2

)
∆xj
]}

=
∂A
∂x

i+
∂A
∂y

j .

(11)

This is the answer that we expect.

As an example, consider a Cartesian coordinate system x, y( )  on a plane, with unit  vectors 

i  and j  in the x  and y  directions, respectively. Consider a “box” of width Δx  and height Δy , 

as shown in Figure 1. We can write 

∇A ≡ lim
Δx,Δy( )→0

1
ΔxΔy

⎧
⎨
⎩

A x0 +
Δx
2
, y0

⎛
⎝
⎜

⎞
⎠
⎟Δyi+ A x0 , y0 +

Δy
2

⎛
⎝
⎜

⎞
⎠
⎟Δxj

⎡
⎣⎢

−A x0 −
Δx
2
, y0

⎛
⎝
⎜

⎞
⎠
⎟Δyi − A x0 , y0 −

Δy
2

⎛
⎝
⎜

⎞
⎠
⎟Δxj

⎤
⎦⎥
⎫
⎬
⎭

= ∂A
∂x
i+ ∂A

∂y
j .

(11)

This is the answer that we expect. 

Definitions of the divergence and curl operators that do not make reference to any 
coordinate system are:

 
∇⋅Q ≡ lim

S→0

1
V

n ⋅QdS
S
!∫

⎡

⎣
⎢

⎤

⎦
⎥ ,

(12)

 
∇×Q ≡ lim

S→0

1
V

n×QdS
S
!∫

⎡

⎣
⎢

⎤

⎦
⎥ .

(13)

Figure 1: Diagram illustrating a rectangular box in a planar two-dimensional space, with center at 
x0 , y0( ) , width Δx , and height Δy .

Δx

Δy
x, y( ) = x0 , y0( )

x

y
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Figure 1: A rectangular box in a planar two-dimensional space, with center at (x0,y0), width ∆x,
and height ∆y.

Definitions of the divergence and curl operators that do not make reference to
any coordinate system are:

∇ ·Q≡ lim
S→0

 1
V

∮
S

n ·QdS

 (12)

∇×Q≡ lim
S→0

 1
V

∮
S

n×QdS

 (13)

It is possible to work through exercises similar to (11) for these operators too. You
might want to try it yourself, to see if you understand.
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Finally, the Jacobian on a two-dimensional surface can be defined by

J (A,B) = lim
A→0

[∮
C

A∇B · tdl
]
, (14)

where t is a unit vector that is tangent to the bounding curve C.

4 Vector identities

Many useful identities relate the divergence, curl, and gradient operators. Most of
the following identities can be found in any mathematics reference manual, e.g.,
Beyer (1984). As before, let α and β be arbitrary scalars, let V, A, B, and C be
arbitrary vectors, and let T be an arbitrary tensor of rank 2. Then:

∇× (∇α) = 0 (15)

∇ · (∇×V) = 0 (16)

A×B =−B×A (17)

∇ · (αV) = α (∇ ·V)+V ·∇α (18)

∇ · (A×B) = (∇×A) ·B− (∇×B) ·A (19)

∇× (αV) = ∇α×V+α (∇×V) (20)

A · (B×C) = (A×B) ·C = B · (C×A) (21)

A× (B×C) = B(C ·A)−C(A ·B) (22)
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∇× (A×B) = A(∇ ·B)−B(∇ ·A)− (A ·∇)B+(B ·∇)A (23)

∇(A ·B) = (A ·∇)B+(B ·∇)A+A× (∇×B)+B× (∇×A) (24)

J (α,β )≡ k · (∇α×∇β ) = k ·∇× (α∇β )

=−k ·∇× (β∇α)

=−k · (∇β ×∇α)

(25)

∇
2V≡ (∇ ·∇)V = ∇(∇ ·V)−∇× (∇×V) (26)

∇ · (A⊗B) = (A ·∇)B+(B ·∇)A (27)

∇ · (αT) = (∇α) ·T+α (∇ ·T) (28)

In (27), ⊗ denotes the outer or dyadic product of two vectors, which yields a
tensor of rank 2.

A special case of (24) is

1
2

∇(V ·V) = (V ·∇)V+V× (∇×V) (29)

This identity is used to write the advection terms of the momentum equation in
alternative forms.

Identity (26) says that the Laplacian of a vector is the gradient of the diver-
gence of the vector, minus the curl of the curl of the vector. The first term involves
only the divergent part of the wind field, and the second term involves only the
rotational part. Eq. (26) can be used, for example, in a parameterization of mo-
mentum diffusion.
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5 Spherical coordinates

5.1 Vector operators in spherical coordinates

The gradient, divergence, curl, Laplacian, and Jacobian operators can be ex-
pressed in spherical coordinates as follows:

∇α =

(
1

r cosϕ

∂α

∂λ
,

1
r

∂α

∂ϕ
,

∂α

∂ r

)
(30)

∇ ·V =
1

r cosϕ

∂Vλ

∂λ
+

1
r cosϕ

∂

∂ϕ

(
Vϕ cosϕ

)
+

1
r2

∂

∂ r

(
Vrr2) (31)

∇×V=

{
1
r

[
∂Vr

∂ϕ
− ∂

∂ r

(
rVϕ

)]
,

1
r

∂

∂ r
(rVλ )−

1
r cosϕ

∂Vr

∂λ
,

1
r cosϕ

[
∂Vϕ

∂λ
− ∂

∂ϕ
(Vλ cosϕ)

]}
(32)

∇
2
α =

1
r2 cosϕ

[
∂

∂λ

(
1

cosϕ

∂α

∂λ

)
+

∂

∂ϕ

(
r2 cosϕ

∂α

∂ r

)]
(33)

J (α,β ) =
1

r2 cosϕ

(
∂α

∂λ

∂β

∂ϕ
− ∂β

∂λ

∂α

∂ϕ

)
(34)

Here α is an arbitrary scalar, and V is an arbitrary vector.

5.2 Horizontal and vertical vectors in spherical coordinates

The unit vectors in spherical coordinates are denoted by eλ pointing towards the
east, eϕ pointing towards the north, and er pointing outward from the origin (in
geophysics, outward from the center of the Earth).

A useful result that is a special case of (23) is

er · [∇× (er×H)] = ∇ ·H, (35)
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where er is the unit vector pointing upward, and H is an arbitrary horizontal vector.
In words, the curl of er×H is equal to the divergence of H. Similarly, a useful
special case of (19) is

∇ · (er×H) =−er · (∇×H) (36)

This means that the divergence of er×H is equal to minus the curl of H.

If V is separated into a horizontal vector and a vertical vector, as in

V = Vh +Vrer, (37)

then (32)) can be written as

∇× (Vh +Vrer) = ∇r×Vh + er×
[

1
r

∂

∂ r
(rVh)−∇rVr

]
. (38)

In case V is the velocity, the first term on the right-hand side of (38) is the vertical
component of the vorticity, and the second term is the horizontal vorticity vector.
Eq. (38) shows that the curl of a purely vertical vector is minus er crossed with
the horizontal gradient of the magnitude of that vector. The three-dimensional
curl of a purely horizontal vector has both a vertical part, given by ∇r×Vh, and a
horizontal part, given by er×

[
1
r

∂

∂ r (rVh)−∇rVr

]
. The two-dimensional curl of a

horizontal vector has only a vertical component, namely ∇r×Vh.

5.3 Derivation of the gradient operator in spherical coordinates

Consider how the two-dimensional version of (30) can be derived from (10). Fig-
ure 2 illustrates the problem. Here we have replaced r by a, the radius of the
Earth. The angle θ depicted in the figure arises from the gradual rotation of eλ

and eϕ , the unit vectors associated with the spherical coordinates, as the longitude
changes; the directions of eλ and eϕ in the center of the area element, where ∇A
is defined, are different from their respective directions on either east-west wall of
the area element. Inspection of Figure 2 shows that θ satisfies
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Consider how the two-dimensional version of (32) can be derived from (10). Fig. 2 
illustrates the problem. Here we have replaced r by  a, the radius of the Earth. The angle θ  
depicted in the figure arises from the gradual rotation of eλ  and eϕ , the unit vectors associated 

with the spherical coordinates, as the longitude changes; the directions of eλ  and eϕ  in the 

center of the area element, where ∇A  is defined, are different from their respective directions on 

either east-west wall of the area element. Inspection of Fig. 2 shows that θ  satisfies

tanθ =
− 1
2
acos ϕ + dϕ( ) − acosϕ⎡⎣ ⎤⎦dλ

adϕ

→− 1
2

∂
∂ϕ
cosϕ

⎛

⎝
⎜

⎞

⎠
⎟dλ

= 1
2
sinϕdλ

≅ sinθ .
(38)

The angle θ  is of “differential” or infinitesimal size. Nevertheless, it  is needed in the derivation 
of (32). The line integral in (10) can be expressed as

Figure 2: A patch of the sphere, with longitudinal width 
acosϕdλ , and latitudinal height adϕ .

acosϕdλ

acos ϕ + dϕ( )dλ

adϕ
θ

eϕ

eλ

A1

A2

A3
A4

! Revised April 11, 2017 1:48 PM! 9
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Figure 2: A patch of the sphere, with longitudinal width acosϕdλ , and latitudinal height adϕ .

sinθ =
−1

2 [acos(ϕ +dϕ)−acosϕ]dλ

adϕ

→− 1
2

(
∂

∂ϕ
cosϕ

)
dλ

=
1
2

sinϕdλ .

(39)

The angle θ is of “differential” or infinitesimal size. Nevertheless, it is needed in
the derivation of (30). The line integral in (10) can be expressed as

1
Area

∮
Andl =

1
a2 cosϕdλdϕ

[
−eϕA1acosϕdλ + eλ A2 cosθadϕ + eϕA2 sinθadϕ

+ eϕA3acos(ϕ +dϕ)− eλ A4 cosθadϕ + eϕA4 sinθadϕ
]

=eλ

(A2−A4)cosθ

acosϕdλ

+eϕ

{
[A3 cos(ϕ +dϕ)−A1 cosϕ]dλ +(A2 +A4)sinθdϕ

acosϕdλdϕ

}
(40)
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Note how the angle θ has entered here. Put cosθ → 1 and sinθ → 1
2 sinϕdλ to

obtain

1
Area

∮
αndl =eλ

(A2−A4)

acosϕdλ
+ eϕ

{[
A3 cos(ϕ +dϕ)−A1 cosϕ

acosϕdϕ

]
+

(
A2 +A4

2

)
sinϕ

acosϕ

}
→eλ

1
acosϕ

∂A
∂λ

+ eϕ

[
1

acosϕ

∂

∂ϕ
(Acosϕ)+

Asinϕ

acosϕ

]
=eλ

1
acosϕ

∂A
∂λ

+ eϕ

1
a

∂A
∂ϕ

,

(41)

which agrees with the two-dimensional version of (30).

Similar (but more straightforward) derivations can be given for (31) - (34).

5.4 Applying vector operators to the unit vectors in spherical coordinates

Using (15) - (17), we can prove the following about the unit vectors in spherical
coordinates:

∇ · eλ = 0, (42)

∇ · eϕ =− tanϕ

r
, (43)

∇ · er =
2
r
, (44)

∇× eλ =
eϕ

r
+

tanϕ

r
er, (45)

∇× eϕ =−eλ

r
, (46)

∇× er = 0. (47)
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The following relations are useful when working with the momentum equa-
tion in spherical coordinates:

(Vh ·∇)eλ =
usinϕ

r
eϕ −

ucosϕ

r
er , (48)

(Vh ·∇)eϕ =− usinϕ

r
eλ −

vsinϕ

r
er, (49)

(Vh ·∇)er =
Vh

r
. (50)

Here Vh is the horizontal wind vector.

6 Solid body rotation

As an example of the application of (32), the vertical component of the vorticity
is

ζ =
1

r cosϕ

[
∂v
∂λ
− ∂

∂ϕ
(ucosϕ)

]
(51)

For the case of pure solid body rotation of the atmosphere about the Earth’s axis
of rotation, we have

u = λ̇ r cosϕ and v = 0, (52)

where λ̇ is independent of ϕ . Substitution of (53) into (51) gives

ζ =
−1

r cosϕ

∂

∂ϕ

(
λ̇ rcos2

ϕ

)
=2λ̇ sinϕ .

(53)

This is the expected form of the vorticity associated with the vertical component
of the Earth’s rotation vector. In the conventional notation, λ̇ is replaced by Ω .
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7 Formulas that are useful for two-dimensional flow

Consider the special case of two-dimensional flow. Two useful identities are

∇r× (er×∇rA) = er∇
2
r A, (54)

and

∇r · (er×∇rA) = 0. (55)

Also for two-dimensional flow, the Laplacian of a vector can be written in a
very simple way. Let ζ er ≡ ∇r×Vh and ∆ ≡ ∇rVh. Then (26) reduces to

∇
2
r Vh = ∇r∆ −∇r× (ζ er) (56)

Using (32), we can write

∇r× (ζ er) =

{
1
r

∂ζ

∂ϕ
, − 1

r cosϕ

∂ζ

∂λ
, 0
}

=− er×∇rζ .

(57)

Then (56) becomes

∇
2
r Vh = ∇r∆ + er×∇rζ . (58)

8 Conclusion

This brief overview is intended mainly as a refresher for students who learned
these concepts once upon a time, but may have not thought about them for awhile.
We have also included many useful equations that are not readily available else-
where, even on the Web.
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