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Vorticity

David Randall

Introduction

The vorticity, ®, is a local measure of the angular velocity of a fluid. It plays a central

role in atmospheric science, and in many other applications of fluid dynamics. It is the curl of the
velocity:

w=VxV.

Because the vorticity is a curl, it is non-divergent:
V-0=0.
)

The absolute vorticity vector is @ +2€ , where € is the angular velocity vector

associated with the Earth’s rotation. We note that Q , like ®, is non-divergent:
V.-Q=0.
3)
The eastward velocity of a particle rotating with the Earth is e,Qrcos¢ , where e, is a unit

vector pointing toward the east, r is the distance from the center of the Earth, and ¢ is latitude.

The vorticity associated with this Earth rotation is given by

v (elQr cosq)) ) {0’ %%(rﬂrcos(l)), rccl)s(D {—%(Qrcoupcosw)}}

[0 2rQcosp  Qr

b
r rcosQ

(2cosq)sing0)}

= 2Q(e¢ cosp+e, sin(p) ,
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where e, is a unit vector pointing north, and e, is a unit vector pointing outward from the center

of the Earth. Note that the meridional component of Vx(e iQrcos(p) comes from the radial

derivative of r times e,Qrcos¢@.

The vorticity equation

The equation of motion can be written as

%—Y+(m+29)xV+V(%V-V+¢):—an—F.

(5)
Here both gravity and the centripetal acceleration are included in the gradient of ¢ , which is
defined by

2
>

¢=¢a—%|sz><r

(6)
where ¢, is the gravitational potential, and r is a position vector that points from the center of
the Earth to the point where (6) is applied. In other notation, o is the specific volume, p is

pressure, and and F is the friction vector. A derivation of (5) is given in the QuickStudy about
Motion on the Sphere.

The vorticity equation is derived by taking the curl of the equation of motion. The result
is

%(w+29)+Vx[(m+29)><V]:Vp><Voz—V><F .

Here we have assumed that €2 is independent of time, and used the identity

Vx(Vy)=0,
(8)

where ¥ is an arbitrary scalar, to eliminate the gradient terms of the momentum equation:
VX{V[%V-V)}=VX(V¢) =0.
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We have also used (8) and the identity
Vx(yA)=VyxA+y(VxA),
(10)
where A is an arbitrary vector, to write

~Vx(aVp)=-VaxVp
=VpxVa.

Stretching and twisting

It is conventional to manipulate (7) into an alternative form. The identity

Vx(AxB)=A(V-B)-B(V-A)—(A-V)B+(B-V)A.

where A and B are two arbitrary vectors, allows us to write
Vx[(0+2Q)xV]=(0+2Q)(V-V)- V[V (0+29Q)]|-[(0+29) V]V +(V-V)(0+29).
(13)
Using (2) and (3), Eq. (13) can be simplified to
Vx[(0+22)xV]=(0+29)(V-V)-[(0+29Q) - V]V+(V-V)(0+2Q).
(14)

After substitution from (14), we can write (7) as

Dﬂt(m+29)+(m+29)(V-V):[((0+29)-V:|V+Vp><Voc—V><F,

where

(16)

is the Lagrangian time derivative, and we assume that the Earth’s angular velocity is independent
of time.

Next, we use continuity in the form
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1 Da_

=V.V
o Dt

(17)
to eliminate V-V in (15). This gives
a2 (0+20)+(0+20)2% =0 {[(0+20) V]V + VpxVa-Vx(aV F)} .
(18)

Combining terms on the left-hand side of (18), we find that

Dﬂt[(m+29)a:|:a{[(m+29)~V]V+Vproc—V><F} .

(19)

The vector (o) + ZQ)oc is materially conserved when the right-hand side of (18) vanishes. If the

specific volume increases, the magnitude of the vorticity tends to decrease, and vice versa.

The first term on the right-hand side of (19) represents both (i.e., the combination of)
stretching and tilting. It can be written as

|:(0)+29)-V:|V:|co+29|aa—‘;,
(20)
where s is a curvilinear coordinate that points in the direction of @+2LQ . We can divide
lo+29) %—‘S] into two parts:

s

Stretching, given by | +2€) ai(VseS) , where V. is the component of V in the direction
s

of ®+2€2, and e_ is a unit vector parallel to @+ 2€. See Fig. 1. Positive stretching

(% > O) favors @ > 0. The effects of stretching on the vorticity can be understood in
N t

terms of conservation of the angular momentum of a rotating cylinder that is oriented
parallel to the vorticity vector. Positive stretching is due to divergence along the axis of
the cylinder, which pulls mass in towards the axis. Angular momentum conservation then
leads to an increase in the cylinder’s angular velocity. Negative stretching does the same
thing in reverse.
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\% \% Figure 1: The components of the velocity normal and tangent to the
n $ vorticity vector, and the stretching and twisting processes associated
\ / with these velocity components. The vorticity vector is shown in red.
w+2Q

~ where V, is the vector portion of V that lies in the plane normal

oV
ds

Twisting, |@+2€

to m+ 2L . Twisting changes the direction of @, but not its magnitude.

The effects of density variations

The term VpxVa on the right-hand side of (19) vanishes if the density is spatially

uniform, in which case the pressure drops out of the vorticity equation altogether. For the
interpretation of VpxVa , it is very useful to distinguish between horizontal and vertical

derivatives. We write

VpxVo = (V,p+a—pe,jx(vra+a—aerj
or or

= (V,prra)+(Vrpx%—aer +g—per eroz) :

r r

(21)

On the second line of (21), there is no term involving the product E;_Otg_p , because e, xe =0.
r or

The first term on the second line is oriented vertically, and the second and third terms lie in the

. d .
horizontal plane. The term —pe, XV a can represent the effects of buoyancy. To see this, use

r

: : . : d .
the hydrostatic approximation in the form a—pz—é . We can then write
r (04
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dap gV,o

Eer XVrOC =-e. X

of the density, in the presence of gravity. This is what happens on the side of a buoyant thermal
or plume.

, which shows that vorticity can be generated by horizontal variations

The vertical component of the vorticity, and the horizontal vorticity vector

It is useful to separate the three-dimensional vorticity vector into the horizontal vorticity
vector, denoted by 1, and the vertical component of the vorticity, denoted by ¢ :

0o=VxV=n+{le,.

(22)
From (2), we know that
1d
V., n+-——(r{)=0.
al ror (r¢)
(23)
Similarly, we can separate  into horizontal and vertical vectors:
Q=0 +Q , where Q, =(Qcosp)e, and Q =(Qsing)e, .
(24)

Finally, we separate the velocity vector into the horizontal velocity vector, denoted by V, , and

the vertical component of the velocity, denoted by w :

V=V, +we,.
(25)
It can be shown that
N=e, x(%—vrw) ,
or
(26)
and
{=e, -0
=e (V,xV,).
(27)

We now rewrite the second term on the left-hand side of (7) as
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Vx[(0+2Q)xV]=Vx{[(n+ge,)+2(Q, +2e,)]x(V,+we,)}
:Vx{[(n+29h)+(cj+2_Q,)e,]><(Vh +we,_)}
=Vx[(n+29,)xV, +(n+2Q,)x(we,)+({ +22, )e, xV, ]
=Vx[(n+2Q,)xV, [+ Vx[(n+2Q,)x(we,) |+ VX[ ({ +20,)e,xV, |.
(28)

To go further, we use the identity (12) to expand the second term on the right-hand side of (28) as

Vx[(n+2Q,)x(we,)]

)
=(n+2Q,)[V-(we,)]-(we,)[V-(n+2Q,)]-[(n+2K,)-V |(we,)+[ (we,)-V](n+22,)
0

= (n+29,) 22~ (we, [V (n+22,)]-[(1+20,)- V owe, )+ w-(n+29,)

%[W(ﬂ"’ 29,)]~(we,)[ V-(n+29,)]-[(n+29,)-V |(we,)

= %[W(TH 20,)]-(we,)[V-(n+29,)]-¢ [(n+2R,)-V]w-w[(n+22,)-V]e,
:{%[w(mzgh)]_w[(ngh).v]e,}_e,{w[v, (n+22,)]+[(n+29,)-V]w}

:{%[W(mzgh)]_w[(ngh).v]e,}—e,v, Tw(n+2e,)]

It can be shown that

[(n+29h)-v]erzw.

r

Using (30) in (29), we finally obtain

vXUn+2g»x@m)]:{g{w«n+zgﬁ]+&£11§%g

}_e,v, [w(n+29,)]

L0 ne29,)] e, Lu(ne 2]

r

(31)

On a plane, with vertical coordinate z and vertical unit vector k , we would find in place of (31)
that
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Vx[(n+2Q,)x(wk)]= a%[w(m 2Q,)]-kV, - [w(n+29,)].

(32)
Similarly, we expand the third term on the right-hand side of (28) as
Vx[(£+29Q,)e,xV,]
=(¢+22)e,(V-V,)-V,[V-((+2Q,)e, |-[((+22)e, -V ]V, +(V,-V)[({ +22,)e, |
=(§+2Q,)e,(v-vh)—vh%(c+2:2,_)—(§+2Q,)%+(Vh V)[(E+22))e, ]

=—%[Vh(§+2_(2,)]+(§+2Qr)e,,(v-v,1)+(vh V)[(C+22)e, ]

= —%[Vh(Zj+2£2r)]+(§+2Q,)e,(V-Vh)+e,(Vh V)(E+29Q,)+(¢+22,)(V,-V)e,
-2V 6 +20) ]+ +22)(3, Ve e [(€+22)(V-V)+(V, V)¢ +22,)]

(2120120, e e [ c+20)]

It can be shown that

Using (34) in (33), we finally obtain

(C+2Q))V,

r

Vx[(£+29Q,)e,xV, = {—%[Vh(é’+2!)z)]— }+e,v, [V, (¢+20)]

L2y e2a)]rey, [V r20)]

r

On a plane, we would find in place of (35) that

0
Vx[(£+20Q,)e,xV, = —a—Z[Vh(§+2Qz)]+kV-[Vh(§+2Q,)] :
Substituting from (32) and (35), we can write (28) as
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Vx[(0+2Q)x V]
=V><[(n+2Qh)xVh]+%%[rw(n+29h)—th(C+2Qz)]+e,V, [V, (¢+29,)-w(n+29,)].
(37)

Using (37) and (21), we can separate the three-dimensional (3D) vector vorticity equation, (7),
into a two-dimensional (2D) equation that governs the horizontal vorticity vector, and a second
equation for the vertical component of the vorticity. The results are:

J (n+29h)+V><[(n+29h)><Vh]—%%{r[Vh(C+29,)—w(n+29h)]}

o
_ dor L 9P _
_(Vrpx 5 e + > e,era) (VXF), ,
(38)
0
O (112047, [V, (£+202)-wln+22, ] e [(V,pxV,0)~(VxF)]
(39)

Eq. (39) is attractive because it involves only a horizontal divergence on its left-hand side and the
vertical component of the curl of the forces on its right-hand side. Eq. (38) is also pleasingly
simple. The non-divergence of the 3D vorticity vector implies that the horizontal divergence of

(38) is equivalent to minus lai[r()] applied to (39).
ror

In (38), the term V x [(n+ 29h)>< Vh] is the curl of the cross product of two horizontal
vectors; it is, therefore, the curl of a vertical (i.e., radial) vector, which we will call de, , so that

V x [(T]+ 2Q,)xV, ] =V x(de, ). From the form of the curl in spherical coordinates, we see that

Vx[(n+2Q,)xV, |=-e x(V,d).

Potential vorticity

Let A be a scalar, such that

We can write
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of (w+ 29)-V:|%/: = a(w+29Q)- [%ﬁ/‘)}+a{[(m+ 2Q)-V|V}-VA,

(41)

which can be rearranged to

D(VA DA
a(w+29)-{%}=—a{[(m+29)‘V:|V}-VA+05|:((0+29)-V:|E.
(42)
We now use (40) to eliminate %/: in (42), giving
a(m+29)-{%fﬂ:—a{[(m+29)-V:|V}-VA+05[((0+29)-V:|SA.
(43)

When we add (43) to (VA)- (19), the stretching-twisting terms on the right-hand side of
(19) cancel with the corresponding terms on the right-hand side of (43), and we obtain

D[ a(w+2Q)-(VA)]
Dt

=a(VA)-(VpxVa)-a(VA)-(VxF)+a[ (0+29)-V]s,.
(44)

The pressure-gradient term of (19) is still visible in (44). However, if we choose A to be a
thermodynamic function that depends only on & and p, then

(VA)-(VpxVa)=0,

and (44) reduces to

D[ a(w+2Q)-(VA)]
Dt

=-0(VA)-(VxF)+o[(0+29)-V]S, .
(46)

Here a(+2R)-(VA) is the potential vorticity, which is materially conserved when there is no
friction and S, =0 . The most common choice is A=0 , the potential temperature. With that

choice, (46) can be written as
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%:a{-(V@)-(V><F)+|:(u)+29)-V]9},

where

g=oa(0+2RQ)-Vo|.

(48)

According to (48), the potential vorticity depends on the component of w+2€2  that is
perpendicular to the isentropic surface. It does not involve the part of @+ 2€ that is parallel to
the isentropic surface.

In view of (2) and (3), we can rewrite (48) as
g=aV-[6(0+29)].
(49)

Finally, we use vector identities to write the heating and friction terms of (47) as
divergences, following Haynes and Mclntyre (1987):

(VO)-(VXxF)=V-(VOxF)+F-(¥x¥0 )

=V-(VOxF),
(50)
[(0+22)V]§=V [(0+22)8]-6| V-(0+29) |
=V -[(0+29Q)6].
(51)
Then (47) becomes
&zav-[(oHZQ)G—VGxF].
Dt
(52)
This is the potential vorticity equation. The flux form corresponding to (52) is
0 .
5(pq;)+V-[pvqy+ve><F—(mzsz)@]=o .
(53)
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This says that the time rate of change of the mass-weighted potential vorticity is due only to the
divergence of a flux.

The potential enstrophy equation can be obtained by multiplying (52) by ¢ . The result
can be written as
Dla)_ ocV-{q[(oH29)9—V@xF]}—a[(m+29)é—V6xF]qu :
Dt 2
(54)

Potential vorticity in isentropic coordinates

We can think of ¢, given by (49), as the sum of a “horizontal” part and a “vertical” part:

q= 0{(1] + e¢2Qcosg0)-V,0+ ¢+ ZQsin(p)g—e} .
r
(55)
Recall from (26) and (27) that 1 and { were defined using horizontal derivatives on surfaces of

constant r . It is useful to transform (55) into a form that involves horizontal derivatives along
surfaces of constant 6 . Keep in mind that the meanings of V, , w, and the various unit vectors

are exactly the same in radial coordinates and 6 -coordinates.

As a first step, we note that, for an arbitrary scalar A,

V,A=V,A- a—AVBr ,
or

(56)

and for an arbitrary horizontal vector H
V. xH=V, ><H+a—H><V9r .
or

(57)

For the special case A=6, (56) reduces to
Vo=- 9% V,r.
r
(58)

Use of (58) in (55) gives
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q= O![—(T]+ e(p2.Qcosg0)-V9r+ ¢+ ZQsinq))]g—f.
(59)

Although (56) and (57) are valid for an arbitrary coordinate transformation (in which 6

can be any vertical coordinate, not necessarily potential temperature), Eq. (59) applies only to the
case in which 6 is the same thermodynamic variable used in the definition of ¢ .

Eq. (59) is not very convenient because it involves horizontal derivatives on both r -
surfaces (to compute { and M from the winds) and 6 -surfaces (to compute V,r ). To obtain a

more useful expression for ¢, use (57) in (27) to obtain

C=e (V,xV,)

=e, -(Ve XV, + ath X Ver)

r

=C9+er'(%xver] ,

(60)
where
Co=e, '(Ve XVh) :
(61)
A vector identity can be used to show that
aV, aV,
o (Goess o)
(62)
which allows us to write
§=§9+(e,x%)-v9r .
or
(63)
Similarly, we can use (56) in (26) to write
aV, ow
n=e, X(a—rh—VGW‘ngerj.
(64)
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Substitute (63) and (64) into (59), to obtain

14

g=o4—|e X %%—V9w+a—wver +e,2Qcosq |- V,r+| {,+ erX%% -V,r+2Qsing 9%
r or ¢ r or

= Oc{e, X(Vew—%—errj—e¢2!2005(p}-vor+(ge +2Q sin(p)}g—e .
r r

This can be simplified using

and the definition

s =—¢€ XV wl.

We finally obtain

q= Ot[—('flg +eq,2.QCOS(0)-V9r+(C9 +2.Qsingo)]g—f .

(68)

When the isentropic surfaces are “flat” in the sense that V,r=0 , Eq. (68) reduces to

g=a(g, +2!2sin(p)39

r

Use of (67) allows us to rewrite (64) as

Jor or

T]=T]9+e,,><(%+a—wvgrj .
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