
Wave-mean flow interactions

David Randall

Interactions and non-interactions of gravity waves with the mean flow

We have seen how eddies can affect the mean flow, through eddy flux divergences and 
energy conversions. Despite the presence of such terms in the equations, however, it  turns out 
that under surprisingly general conditions the eddies are actually powerless to affect the mean 
flow. There are several related theorems that demonstrate this “non-interaction” of the eddies 
with the mean flow. They are called, reasonably enough, “non-interaction theorems.” The earliest 
such ideas were published by Eliassen and Palm (1961), and the following discussion is based on 
their paper. The same material is also discussed in more detail, and in somewhat more general 
form, in Chapter 8 of Lindzen’s (1990) book. 

Consider the equation of zonal motion in the simplified form

∂u
∂t

+ u ∂u
∂x

+ w ∂u
∂z

= −
1
ρ
∂p
∂x

.

(1)

We have omitted rotation, sphericity, friction, and meridional motions (i.e., v ) and variations 

(i.e., ∂
∂y

). Eq. (1) can apply, for example, to small-scale gravity  waves forced by  flow over 

topography. Let

u =U + ′u ,  U =U z( ),
w = ′w ,

p = p + ′p ,  p = p z( ),
ρ = ρ + ′ρ ,  ρ = ρ z( ) .

 

(2)

We interpret the primed quantities as small-amplitude wave-like perturbations with zero means. 
Recall that 
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ρ ∂U
∂t
~ − ∂

∂z
ρ ′w ′u . 

(3)

We are interested in what determines the wave momentum flux divergence, 
∂
∂z

ρ ′w ′u . 

Substitute (2) into (1) and linearize, to obtain

ρ ∂ ′u
∂t

= − ρU ∂ ′u
∂x

+ ρ ′w ∂U
∂z

+ ∂ ′p
∂x

⎛
⎝
⎜

⎞
⎠
⎟ .

(4)

Assume that the perturbations are steady, so that

∂ ′u
∂t

= 0 .

(5)

This implies both that the waves are neutral, i.e., neither amplifying or decaying, and also that 
they are stationary, i.e., their phase speed is zero. The latter assumption is reasonable, e.g., for 
mountain waves. Then (4) reduces to

0 = ρU ∂ ′u
∂x

+ ρ ′w ∂U
∂z

+ ∂ ′p
∂x

= ∂
∂x

ρU ′u + ′p( ) + ρ ′w ∂U
∂z
.

(6)

This is the form of the steady-state equation of motion that we will use.

Next, multiply (6) by ρU ′u + ′p( ) , to obtain

0 = ∂
∂x

ρU ′u + ′p( )2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ ρ 2U ∂U

∂z
′w ′u + ρ ∂U

∂z
′w ′p .

(7)

The term involving 
∂
∂x

 vanishes when integrated over the whole domain, leaving

∂U
∂z

U ρ ′w ′u dx
−∞

∞∫ + ′w ′p dx
−∞

∞∫( ) = 0 ,

(8)
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which can be simplified to

U ρ ′w ′u dx
−∞

∞

∫ + ′w ′p dx = 0
−∞

∞

∫ ,

(9)

provided that 
∂U
∂z

≠ 0 .

Eq. (9) is an important result. It shows that the wave momentum flux, ρ ′w ′u dx
−∞

∞

∫ , and 

the wave energy flux, ′w ′p dx
−∞

∞

∫ , are closely related. At a “critical” level, where U = 0 , the wave 

energy flux must vanish; the only other possibility  is that our assumptions, e.g., a steady  state 
with no friction, do not apply at the critical level. For a wave forced by flow over a mountain, the 
energy flux is, of course, upward, but (9) shows that it  goes to zero at a critical level. This means 
that the wave does not exist above the critical level. The upward propagation of the wave is 
blocked at the critical level. 

Eq. (9) also shows that a wave with an upward energy flux will produced a downward 
momentum flux in westerlies and an upward momentum flux in easterlies. In either case, the 
wave is driving the mean flow towards zero, i.e., it is exerting a drag on the mean flow.

Let eE  be the total eddy energy per unit mass associated with the wave (the sum of the 

eddy kinetic, eddy internal, and eddy potential energies). It can be shown that eE  satisfies

∂
∂x

ρeEU + ′p ′u( ) + ∂
∂z

′p ′w( ) = −ρ ′u ′w ∂U
∂z

.

(10)

The right-hand side of (10) is a “gradient production” term that represents conversion of the 
kinetic energy  of the mean state into the total eddy energy, eE . Eq. (10) simply says that the 

production term on the right-hand side is balanced by the transport terms on the left-hand side. 
Integration over the domain gives

∂
∂z

′p ′w dx
−∞

∞

∫ = −
∂U
∂z

ρ ′u ′w dx
−∞

∞

∫ .

(11)

This means that the wave energy flux divergence balances conversion to or from the kinetic 
energy of the mean flow.
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By combining (9) and (11) we can show that

U ∂
∂z

ρ ′u ′w dx
−∞

∞

∫
⎛

⎝⎜
⎞

⎠⎟
= 0 .

(12)

Therefore, when U ≠ 0 , the wave momentum flux ρ ′u ′w dx
−∞

∞

∫  is independent of height. This is 

very important because, as shown by (3), it implies that  the wave momentum flux has no effect 
on U z( ) , except at the critical level where U = 0 . The wave momentum flux is absorbed at the 

critical level. From (3), it follows that U  will tend to change with time at  the critical level, so U  
will become different from zero. Therefore, the critical level will move. 

If we allowed the phase speed c  to be non-zero, we would find U − c  everywhere in 
place of U . The momentum would be absorbed at the critical level where U = c .

Since (12) tells us that ρ ′u ′w dx
−∞

∞

∫  is independent of height (where U ≠ 0 ), we see from 

(9) that the wave energy flux is just proportional to U . Alternatively, we can combine (9) and 
(12) to write 

1
U

′w ′p dx
−∞

∞

∫ = constant.

(13)

The conserved quantity 
1
U

′w ′p dx
−∞

∞

∫  is called the “wave action.” Eq. (9) can be written as 

“wave action plus wave momentum flux = zero.”

Since the mid-1980s, there has been a lot of interest in the effects of gravity wave 
momentum fluxes on the general circulation; because the waves act to decelerate the mean flow, 
these interactions are referred to as “gravity wave drag” (McFarlane, 1987). Most of the 
discussion so far has been on gravity  waves forced by flow over topography, although recently 
gravity waves forced by  convective storms are receiving a lot of attention (e.g., Fovell et al., 
1992). 

Fig. 1 shows the deceleration of the zonally averaged zonal wind induced by gravity-
wave drag in a general circulation model, as reported by McFarlane (1987). Here the gravity 
wave drag has been parameterized using methods that we will not discuss, which are based on 
the assumption that the waves are produced by  flow over mountains. The plot shows the 
“tendency” of the zonally  averaged zonal wind due to this orographic gravity-wave drag, for 
northern-winter conditions. The actual response of the zonally  averaged zonal wind is shown in 
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Fig. 2. The changes are very large. In order for thermal wind balance to be maintained, there 
must be corresponding changes in the zonally  averaged temperature; these are shown in Fig. 3. 
The polar troposphere has warmed dramatically, to be consistent with the weaker westerly  jet. 
The changes shown in Fig. 2 and Fig. 3 make the model results more realistic than before, 

suggesting that gravity-wave drag is an important process in nature. 

Vertical propagation of planetary waves 

The following discussion is based on the famous paper by Charney and Drazin (1961), 
which deals with the vertically propagating planetary waves. Closely related work can be found 
in Dickinson (1968 a) and Matsuno (1970).

Let Τ S p( )  be a basic-state temperature profile, and define αS , θS , and ρS  accordingly. 

The quasi-geostrophic form of the potential vorticity equation is

Figure 1: The deceleration of the zonally  averaged zonal flow, induced by  orographically  forced 
gravity  waves, as simulated with a general circulation model. The units are m s-1 day-1. From 
McFarlane (1987).
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∂
∂t

+ Vg ⋅∇ p
⎛
⎝⎜

⎞
⎠⎟
q = 0 ,

(14)

where

q = f +ζg +
∂
∂p

f0
Sp

∂φ
∂p

⎛

⎝⎜
⎞

⎠⎟

(15)

is the quasi-geostrophic pseudo-potential vorticity, Sp ≡ −
αS

θS

∂θS

∂p
 is the static stability, and in 

the last term of (15) f  has been replaced by f0 . We are working on a β -plane, such that 

f = f0 + βy . Note that q is essentially determined by the absolute vorticity and the change of 

temperature with height, and that (14) does not contain a vertical advection term. [See Chapter 8 
of Holton (1992).]

From (14) we can derive

Figure 2: The actual change in the zonally averaged wind caused by  the introduction of gravity 
wave drag in a general circulation model, as inferred by  comparison with a control run. The units 
are m s-1. From McFarlane (1987).

! Revised Tuesday, April 24, 2012! 6

QuickStudies in Atmospheric Science
Copyright 2012 David A. Randall



∂
∂t

q[ ] = −
∂
∂y

vg
*q*⎡⎣ ⎤⎦ .

(16)

Exercise: Show that

vg
*q*⎡⎣ ⎤⎦ = vg

*ζ g
*⎡⎣ ⎤⎦ −

∂
∂p

Rf0
pSp

vg
*Τ *⎡⎣ ⎤⎦

⎛

⎝⎜
⎞

⎠⎟

= − ∂
∂y

ug
*vg
*⎡⎣ ⎤⎦ −

∂
∂p

Rf0
pSp

vg
*Τ *⎡⎣ ⎤⎦

⎛

⎝⎜
⎞

⎠⎟
.

(17)

As we will see later, the expression on the right-hand side of (17) is the divergence of the 
Eliassen-Palm flux. Eq. (17) expresses a very  important relationship. It says that the meridional 
eddy flux of potential vorticity is related to the convergence of the meridional eddy flux of zonal 

momentum, and to the rate of change with height of the meridional eddy sensible heat flux. 

Figure 3: The actual change in the zonally  averaged temperature caused by the introduction of 
gravity  wave drag in a general circulation model, as inferred by comparison with a control run. 
The units are K1. From McFarlane (1987).
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When we form the convergence of the eddy potential vorticity flux, i.e., −
∂ vg

*q*⎡⎣ ⎤⎦
∂y

, (17) will give 

us ∂
∂y

−
∂ ug

*vg
*⎡⎣ ⎤⎦

∂y

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. This affects the meridional shear of u[ ] . We will also get a term proportional 

to ∂
∂p

−
∂ vg

*Τ *⎡⎣ ⎤⎦
∂y

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. This affects the static stability.

We adopt the “log pressure” coordinate

z p( ) ≡ −
RΤ 0

g
⎛
⎝⎜

⎞
⎠⎟
ln p

p0

⎛
⎝⎜

⎞
⎠⎟

,

(18)

where Τ 0  is a constant reference temperature. With the use of (18), (15) can be rewritten as 

q = f +∇2ψ +
1
ρS

∂
∂z

ρS
f0
2

N 2

∂ψ
∂z

⎛
⎝⎜

⎞
⎠⎟

,

(19)

where

ψ ≡
φ
f0

(20)

is called the “geostrophic stream function,” and the Brunt-Vaisala frequency N , satisfies

N 2 ≡
g
θS

∂θS

∂z
.

(21)

Note that

vg =
∂ψ
∂x

 and ug = −
∂ψ
∂y

.

(22)

Linearizing (14) about the zonal-mean state gives
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∂
∂t

+ u[ ] ∂
∂x

⎛
⎝
⎜

⎞
⎠
⎟q* + vg

* ∂ q[ ]
∂y

= 0 .

(23)

We look for solutions of the form

ψ * = Re ψ̂ y, z( )eik x−ct( ){ } ,

(24)

q* = Re q̂ y, z( )eik x−ct( ){ } .

(25)

Substitution of (19), (24), and (25) into (23) gives

u[ ] − c( ) q̂ + ψ̂ ∂ q[ ]
∂y

= 0 ,

(26)

where

q̂ = −k2ψ̂ +
∂2ψ̂
∂y2

+
1
ρS

∂
∂z

ρS
f0
2

N 2

∂ψ̂
∂z

⎛
⎝⎜

⎞
⎠⎟

.

(27)

Using (27), we can rewrite (26) as

∂2ψ̂
∂y2

+ 1
ρS

∂
∂z

ρS
f0
2

N 2

∂ψ̂
∂z

⎛

⎝
⎜

⎞

⎠
⎟ = −

1
u[ ] − c

∂ q[ ]
∂y

− k2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ψ̂ .

(28)

This is a fairly general form of the quasi-geostrophic wave equation that we want to analyze, but 
we will simplify it considerably before doing so.

As wave energy propagates up  to higher levels, it  encounters decreasing values of ρS . 

The energy-density (energy per unit volume) scales like ρS kψ( )2 , so if the energy density is 

constant with height, ψ̂  must increase like 
1
ρS

. Because of this effect, the equations become 

simpler if we introduce a scaled value of ψ̂ :
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ψ ≡
ρS
N

ψ̂ .

(29)

Note that  here ψ  (no hat) is the scaled value; the meaning of ψ  now departs from that used in 

(20). We also note that

1
ρS

∂
∂z

ρS
f0
2

N 2

∂ψ̂
∂z

⎛

⎝
⎜

⎞

⎠
⎟ =

f0
2

ρS

∂
∂z

ρS

N
∂
∂z

ρS

N
ψ̂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−

ρS

N
ψ̂ ∂
∂z

ρS

N

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= f0
2

ρS

∂
∂z

ρS

N

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂
∂z

ρS

N
ψ̂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+

ρS

N
∂2

∂z2
ρSψ̂
N

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧
⎨
⎪

⎩⎪

− ∂
∂z

ρSψ̂
N

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂
∂z

ρS

N

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−

ρSψ̂
N

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂2

∂z2
ρS

N

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎫
⎬
⎪

⎭⎪

= f0
2

ρS

ρS

N
∂2

∂z2
ψ −ψ ∂2

∂z2
ρS

N

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

(30)

Substituting from (29) and (30), we can rewrite (28) as

∂2ψ
∂y2

+ f0
2

N 2

∂2ψ
∂z2

= − f0
2

N 2

n2

4H0
2

⎛

⎝
⎜

⎞

⎠
⎟ψ ,

(31)

where 

n2 ≡ 4N
2H0

2

f0
2

1
u[ ]− c

∂ q[ ]
∂y

− k2 − f0
2

ρS N
∂2

∂z2
ρS
N

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(32)

is called the “index of refraction.” Here H0 ≡
RΤ 0

g
, where Τ 0  is a reference temperature. Eq. 

(32) is a form of the quasi-geostrophic wave equation. When n2 > 0 , ψ is oscillatory 

(propagating), and when n2 < 0 , ψ  is “evanescent” (exponentially decaying away from the 

source of excitation).

Comparing (31) - (32) with (28), it  seems that the left-hand side of (31) has been 
simplified but the expression for the index of refraction is pretty  complicated. Through some 
idealizations we can simplify it drastically without altering the basic meaning. Consider an 

! Revised Tuesday, April 24, 2012! 10

QuickStudies in Atmospheric Science
Copyright 2012 David A. Randall



isothermal atmosphere with Τ S p( ) ≅Τ 0 = constant. This is not unrealistic for the lower 

stratosphere. For this case, we can show that N ≅ constant and ρS ~ e
−

z
H0 , so that (32) reduces to 

n2 ≅ 4N
2H0

2

f0
2

1
u[ ]− c

∂ q[ ]
∂y

− k2
⎛
⎝⎜

⎞
⎠⎟
−1 .

(33)

Inspection of (33) shows that u[ ] − c > 0  is necessary for n2 > 0 , i.e., for propagation.

Now we concentrate on stationary waves, for which the phase speed,c , is zero. This type 
of wave can be forced by orography, for example, as discussed in Chapter 8. Then (31) and (33) 
become

Figure 4: The square of the index of refraction for summer and winter, averaged between 30º and 
60ºN, for waves of different wavelengths, L. The short-dashed lines correspond to L = 6,000 km, 
the long-dashed lines correspond to L = 10,000 km, and the solid lines correspond to L = 14,000 
km. From Charney and Drazin (1961).
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∂2ψ
∂y2

+ f0
2

N 2

∂2ψ
∂z2

= − f0
2

N 2

n2

4H0
2

⎛

⎝
⎜

⎞

⎠
⎟ψ ,

(34)

n2 = 4N
2H0

2

f0
2

1
u[ ]

∂ q[ ]
∂y

− k2
⎛
⎝⎜

⎞
⎠⎟
−1 .

(35)

To simplify n2  even further, note from (19) that

∂ q[ ]
∂y

= β −
∂2 u[ ]
∂y2

− 1
ρS

∂
∂z

ρS
f0
2

N 2

∂ u[ ]
∂z

⎛

⎝
⎜

⎞

⎠
⎟ ,

(36)

where β ≡
df
dy

. When the meridional and vertical shears of u[ ]  are not too strong,

∂ q[ ]
∂y

≅ β ≥ 0 . 

(37)

Using (37), we finally obtain

n2 ≅ 4N
2H0

2

f0
2

β
u[ ] − k

2⎛
⎝⎜

⎞
⎠⎟
−1 .

(38)

From (38), we see the following:

• To have vertical propagation (n2 > 0 ), we need β / u[ ] > 0 . Because β > 0 , u[ ]  must be 

positive (westerly). Stationary Rossby waves cannot exist in easterlies, simply because 
they propagate westward relative to the air, so that easterlies cannot hold them in one 
place, as discussed in Chapter 8. Recall that the summer hemisphere stratosphere is 
dominated by easterlies, while the winter hemisphere stratosphere is dominated by 
westerlies. Note, however, that large positive u[ ]  also makes n2 < 0 . Stationary waves 

cannot propagate through very strong westerlies, because they would be swept 
downstream. Fig. 4, from Charney and Drazin (1961), shows the vertical distribution of 
n2  for summer and winter, averaged over the Northern Hemisphere middle latitudes, for 
stationary waves with three different wavelengths. 
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• Even when β / u[ ] > 0 , for a given u[ ]  waves with large k  (i.e., sufficiently short 

wavelength) cannot propagate. Short waves are, therefore, “trapped” near their excitation 
levels. Since u[ ]  has a maximum near the tropopause in middle latitudes, many short 

waves are trapped in the troposphere, even in winter. Only longer waves can propagate to 
great heights. This suggests that long waves will dominate in the stratosphere and 
mesosphere even more than they do in the troposphere.

• A level where u[ ] = 0  is called a “critical level” for stationary waves. Suppose that 

u[ ] > 0 below a critical level, and u[ ] < 0  above. Then, for waves excited at the lower 

boundary (e.g., by flow over topography), upward propagation is completely blocked at 
the critical level. 
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Figure 5: These Northern Hemisphere data were collected during the International Geophysical 
Year. Geopotential heights for July  15, 1958 are shown on the left, and those for January  15, 1959 
are shown on the right. The levels plotted are 500 mb, 100 mb, and 10 mb. From Charney (1973).

July 15, 1958, 500 mb January 15, 1959, 500 mb

July 15, 1958, 100 mb

July 15, 1958, 10 mb

January 15, 1959, 100 mb

January 15, 1959, 10 mb
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Fig. 5 provides evidence that the theory  is correct. It shows the geopotential height fields 
at 500 mb, 100 mb, and 10 mb, for Northern Hemisphere summer and winter. In winter, 
planetary  waves clearly  propagate upward to the 10 mb level, while in summer they do not. Note 
that the apparent horizontal scale of the dominant eddies increases upward, in winter. This is 
consistent with the theory, which predicts that the shorter modes are trapped at lower levels while 
longer modes can continue to propagate upward to great heights. 

Waves can also be trapped at critical latitudes where u[ ] = 0 . We could therefore define 

critical surfaces in the y-z plane.

If we allowed c ≠ 0 , we would find that the critical surfaces are those for which 
u[ ]− c = 0 .

Matsuno (1970) used  for the Northern Hemisphere winter to compute 
∂ q[ ]
∂ϕ

, the index of 

refraction, and the energy  flow in the latitude-height plane for zonal wave number 1. His results 
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are shown in Fig. 6. The upward-propagating waves are directed equatorward by the variations 
of the index of refraction.

Figure 6: a) An idealized basic state zonal wind distribution (in m s-1) for the Northern Hemisphere 
winter. b) The refractive index square n2 , for the k = 0  wave. c) The latitudinal gradient of the 
potential vorticity, ∂ q[ ] / ∂ϕ , expressed as a multiple of the Earth’s rotation rate. d) Computed 

distribution of energy  flow in the meridional plane associated with zonal wave number 1. From 
Matsuno (1970).

a b

c d
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Vertical and meridional fluxes due to planetary waves

Now we investigate under what conditions planetary waves can transport energy and 
momentum. The quasi-geostrophic form of the thermodynamic energy equation is (e.g., Holton, 
1992)

∂
∂t

+Vg ⋅ ∇
⎛
⎝
⎜

⎞
⎠
⎟
∂φ
∂p

+ Spω = 0 .

(39)

Here Vg is the geostrophic wind, which is important for the following discussion, and ∇  is ∇ p . 

Eq. (39) can be written as

∂
∂t

+Vg ⋅ ∇
⎛
⎝
⎜

⎞
⎠
⎟ψz +

N 2

f0
w = 0 ,

(40)

where w  is defined by −ω / ρSg( ) . Here ψ z ≡ ∂ψ / ∂z , and z  is the “log-p” coordinate defined 

by (18). Linearizing (40) gives

∂
∂t

+ u[ ] ∂
∂x

⎛
⎝⎜

⎞
⎠⎟ψ z

* − v* ∂ u[ ]
∂z

+ N
2

f0
w* = 0 .

(41)

Here we have used the thermal wind equation. Multiplying (41) by  ψ z
* , we obtain a form of the 

“temperature variance equation:” 

∂
∂t

+ u[ ] ∂
∂x

⎛
⎝⎜

⎞
⎠⎟
1
2
ψ z

*( )2⎧
⎨
⎩

⎫
⎬
⎭
− v*ψ z

* ∂ u[ ]
∂z

+
N 2

f0
w*ψ z

* = 0 .

(42)

Note the two gradient production terms. 

Take the zonal mean of (42), so that the u[ ] ∂
∂x

 term drops out. Rearrange to isolate the 

meridional energy flux by itself on the left-hand side:

v*ψ z
*⎡⎣ ⎤⎦
∂ u[ ]
∂z

=
∂
∂t

1
2
ψ z

*( )2⎡
⎣⎢

⎤
⎦⎥
+ N 2 w*ψ z

*

f0

⎡

⎣
⎢

⎤

⎦
⎥ .

(43)
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Note that w*ψ z
*⎡⎣ ⎤⎦ / f0 > 0  implies an upward temperature flux, in either hemisphere. Also 

v*ψ z
*⎡⎣ ⎤⎦ > 0  implies a poleward temperature flux, in either hemisphere.

First, consider a baroclinically  amplifying wave, for which 
∂
∂t

ψ z
*( )2⎡

⎣
⎤
⎦ > 0  and the wave 

temperature flux is upward. From (43), we see that a baroclinically amplifying wave produces a 

poleward temperature flux (in either hemisphere) when 
∂ u[ ]
∂z

> 0 , i.e., when the temperature is 

decreasing towards the pole. Such a temperature flux is downgradient, so the gradient-
production term is positive. 

Next, consider a neutral wave of the form eik x−ct( ) , for which 
∂
∂t

= −c ∂
∂x

, where c  is real. 

Multiply (41) by ψ*  and take the zonal mean, to obtain

u[ ] − c( ) v*ψz
*⎡⎣ ⎤⎦= N

2 w*ψ*

f0

⎡

⎣
⎢

⎤

⎦
⎥ .

(44)

Note that w*ψ *⎡⎣ ⎤⎦ / f0 > 0  means an upward propagation of wave energy in either hemisphere. 

Recall also that u[ ]− c > 0  is needed in order for the wave to propagate. It follows that an 

upward-propagating neutral wave transports energy poleward. Such a wave might be forced, for 
example, by flow over mountains. 

In summary, poleward energy transport is produced by either a baroclinically  amplifying 

wave with 
∂ u[ ]
∂z

> 0  or a neutral wave that propagates upward.

Applying the eddy PV equation (23) to a neutral wave gives 

u[ ]− c( ) ∂q*
∂x

+ v*
∂ q[ ]
∂y

= 0 .

(45)

Multiply (45) by ψ*  and take the zonal mean to show that

v*q*⎡⎣ ⎤⎦= 0  except where u[ ] = c
(46)
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(a critical line). This very important result shows that neutral waves produce no potential 
vorticity  flux except at  a critical line. It  follows from (16) that neutral waves do not  affect  q[ ]  

except at a critical level or critical latitude. This is a non-interaction theorem for planetary 
waves, analogous to the non-interaction theorem for gravity  waves obtained by Eliassen and 
Palm (1961). 

From (17), v*q*⎡⎣ ⎤⎦ = 0  means

−
∂ u*v*⎡⎣ ⎤⎦
∂y

+ f0
2

ρS

∂
∂z

ρS

N 2 v*ψz
*⎡⎣ ⎤⎦

⎛
⎝
⎜

⎞
⎠
⎟ = 0 .

(47)

As mentioned earlier, the expression equal to zero in (47) is the divergence of the Eliassen-Palm 
flux. Vertically integrate (47) through the depth of the atmosphere to obtain

−
∂
∂y

u*v*⎡⎣ ⎤⎦
dp
g

= f0
2 ρS
N 2 v*ψ z

*⎡⎣ ⎤⎦S
0

pS

∫
(48)

for the neutral waves. The left-hand side represents the vertically integrated convergence of 
meridional momentum flux, and the right-hand side represents the near-surface value of the eddy 
meridional energy flux. Recall from (44) that an upward propagating neutral wave produces a 
poleward energy flux, i.e. v*ψ z

*⎡⎣ ⎤⎦ > 0 . It follows from (48) that

−
∂
∂y

u*v*⎡⎣ ⎤⎦
dp
g0

pS

∫ > 0 .

(49)

This means that the vertically integrated meridional momentum flux convergence tends to 
accelerate the vertically integrated u[ ] . In other words, the eddies feed the jet! This is consistent 

with the observation that ΚE→ΚZ . If the waves are also transporting temperature poleward, 
they  will tend to reduce the meridional temperature gradient and so tend to reduce the strength of 
the westerlies. The momentum flux and heat flux thus have opposing effects on the mean flow.

An upward propagating neutral wave in westerly shear tends to produce a downward 
momentum flux at the Earth's surface. To see this, consider the angular momentum equation, 

∂M
∂t

+ ∂
∂x

uM( ) + ∂
∂y

vM( ) + 1
ρS

∂
∂z

ρSwM( ) = − ∂φ
∂λ

.

(50)
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We have neglected the metric term and assumed no friction above the boundary  layer. Taking the 
zonal mean of (50) gives

∂ M[ ]
∂t

+ ∂
∂y

v*M *⎡⎣ ⎤⎦ +
1
ρS

∂
∂z

ρS w*M *⎡⎣ ⎤⎦( ) = 0 .

(51)

Here advection of M[ ]  by v[ ]  and w[ ]  is neglected; this is justified in the midlatitude winter. To 

the extent that v[ ]  is geostrophic, it vanishes anyway. Now assume that 
∂ M[ ]
∂t

= 0 , which is 

consistent with 
∂ q[ ]
∂t

= 0 . This leads to

∂
∂y

v*M *⎡⎣ ⎤⎦ = − 1
ρS

∂
∂z

ρS w*M *⎡⎣ ⎤⎦( ) .

(52)

Integrating (52) vertically with respect to mass, and employing (49), we find that

∂
∂z

ρS w*M *⎡⎣ ⎤⎦( )dz
0

∞

∫ > 0 .

(53)

We know that ρS w*M *⎡⎣ ⎤⎦  must vanish at great height, so we conclude that

ρS w*M *⎡⎣ ⎤⎦S < 0 .

(54)

This shows that, near the lower boundary, friction and/or mountain torque must carry angular 
momentum into the Earth's surface, in the presence of an upward propagating planetary wave. 
An alternative interpretation is that frictional and/or mountain torque, in a belt of westerlies 
where (54) is satisfied, will produce an upward-propagating planetary wave that transports 
energy poleward. 

Compare (49) and (54). The meridional momentum flux accelerates the westerlies, while 
the vertical momentum flux decelerates them.

Eliassen-Palm Theorem-Reprise

Previously we discussed non-interaction theorems for pure gravity  waves and for quasi-
geostrophic waves on a β -plane. It was discovered during the 1970’s that non-interaction 
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theorems can be derived for very general balanced flows. The following discussion provides an 
example. The discussion is based on Andrews et al. (1987).

The zonally averaged momentum equations in spherical coordinates can be written as

∂ M[ ]
∂t

+ v[ ]∂ M[ ]
∂ϕ

+ w[ ]∂ M[ ]
∂z

− Fx[ ]acos2ϕ = −1
cosϕ

∂
∂ϕ

v*M *⎡⎣ ⎤⎦cosϕ( )− 1
ρS

∂
∂z

ρS w*M *⎡⎣ ⎤⎦( )
(55)

∂ v[ ]
∂t

+ 1
a
v[ ]∂ v[ ]

∂ϕ
+ w[ ]∂ v[ ]

∂z
+ u[ ] f +

u[ ] tanϕ
a

⎛

⎝
⎜

⎞

⎠
⎟+
1
a
∂ φ[ ]
∂ϕ

− Fy⎡⎣ ⎤⎦

= −1
acosϕ

∂
∂ϕ

v*( )2⎡
⎣⎢

⎤
⎦⎥cosϕ( ) − 1

ρS

∂
∂z

ρS v
*w*⎡⎣ ⎤⎦( ) −

u*( )2⎡
⎣⎢

⎤
⎦⎥tanϕ

a
.

(56)

Here z ≡ −H log p / p0( )  is the vertical coordinate, and w ≡ Dz / Dt . The scale height H  is 

RΤ 0

g
, where Τ 0  is a constant. The zonally averaged thermodynamic energy equation is

∂ θ[ ]
∂t

+
v[ ]
a

∂ θ[ ]
∂ϕ

+ w[ ]∂ θ[ ]
∂z

− Q[ ] = −1
acosϕ

∂
∂ϕ

θ*v*⎡⎣ ⎤⎦cosϕ( ) − 1
ρS

∂
∂z

ρS w
*θ*⎡⎣ ⎤⎦( )

(57)

Here Q  represents a heating process. Finally, we will need the zonally  averaged continuity 

equation,

1
acosϕ

∂
∂ϕ

ρS v[ ]cosϕ( ) + ∂
∂z

ρS w[ ]( ) = 0 ,

(58)

and hydrostatics: 

∂ φ[ ]
∂z

−
R θ[ ]
H

e
−
κ z
H = 0 .

(59)

In the above equations, ρS z( ) ≡ ρ0e
−
z
H , where ρ0  is a constant. We assume that (56) can be 

approximated by gradient wind balance, so that it simplifies drastically to
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u[ ] f + u[ ] tanϕ
a

⎛
⎝⎜

⎞
⎠⎟
+
1
a
∂ φ[ ]
∂ϕ

= 0  .

(60)

This assumed balance is essential to the following argument.

We define a “residual mean meridional circulation” 0,V ,W( )  by

V ≡ v[ ]− 1
ρS

∂
∂z

ρS v*θ *⎡⎣ ⎤⎦
∂ θ[ ]

∂z

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,

(61)

W ≡ w[ ]+ 1
acosϕ

∂
∂ϕ

v*θ *⎡⎣ ⎤⎦cosϕ
∂ θ[ ]

∂z

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .

(62)

In the absence of eddies, V = v[ ]  and W = w[ ] . Substitution shows that V  and W  satisfy a 

continuity  equation analogous to (58). Use of (61) and (62) to eliminate v[ ]  and w[ ]  in favor of 

V  and W  allows us to rewrite (55) and (57) as:

ρS
∂ M[ ]
∂t

+V ∂ M[ ]
∂ϕ

+W ∂ u[ ]
∂z

− acosϕ Fx[ ]⎧
⎨
⎩

⎫
⎬
⎭
= ∇⋅EPF ,

(63)

and

∂ θ[ ]
∂t

+ V
a
∂ θ[ ]
∂ϕ

+W
∂ θ[ ]
∂z

− Q[ ] = −1
ρS

∂
∂z

∂ θ[ ]
∂z

⎛

⎝
⎜

⎞

⎠
⎟
−1

ρS v
*θ*⎡⎣ ⎤⎦

1
a
∂ θ[ ]
∂ϕ

+ ρS w
*θ*⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

(64)

respectively, where 

EPF ≡ 0, EPF( )ϕ , EPF( )z⎡⎣ ⎤⎦
(65)

is the “Eliassen-Palm flux,” whose components are
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EPF( )ϕ ≡ ρS
∂ M[ ]
∂z

⋅
v*θ *⎡⎣ ⎤⎦

∂ θ[ ]
∂z

− M *v*⎡⎣ ⎤⎦

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪
,

(66)

and

EPF( )z ≡ −ρS
1
a
∂ M[ ]
∂ϕ

⎧
⎨
⎩

⎫
⎬
⎭

v*θ *⎡⎣ ⎤⎦
∂ θ[ ]

∂z

+ M *w*⎡⎣ ⎤⎦

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .

(67)

In (66), the M *v*⎡⎣ ⎤⎦  term is dominant, and in (67) the v*θ *⎡⎣ ⎤⎦  term is dominant. Compare (66) 

and (67) with (17) and (47). When the EPF points upward, the meridional energy flux is in 
control. When it  points in the meridional direction, the meridional flux of zonal momentum is in 
control. From (63) we see that a positive Eliassen-Palm flux divergence tends to increase M[ ] .

The preceding derivation appears to be nothing more than an algebraic shuffle. We wrote 
down (61) and (62) without  any explanation or motivation. What is the point of all this? The 
point is that for steady linear waves with Fx = Fy = 0  and Q = 0 , it can be shown that

∇ ⋅ EPF( ) = 0 .

(68)

Recall that this follows essentially from v*q*⎡⎣ ⎤⎦ = 0 . It  turns out that the eddy term of (64) is zero 

under the same conditions, i.e.,

1
ρS

∂
∂z

∂ θ[ ]
∂z

⎛
⎝⎜

⎞
⎠⎟

−1

ρS v*θ*⎡⎣ ⎤⎦
1
a
∂ θ[ ]
∂ϕ

+ ρS w*θ*⎡⎣ ⎤⎦
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0 .

(69)

This follows essentially  from our assumptions that: 1) u[ ]  does not change, and 2) thermal wind 

balance is maintained. 

For the case of steady, linear waves, in the absence of friction and heating, our system of 
equations reduces to
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∂ M[ ]
∂t

+V M[ ]+W ∂ M[ ]
∂z

= 0,

u[ ] f + u[ ] tanϕ
a

⎛
⎝⎜

⎞
⎠⎟ +

1
a
∂ φ[ ]
∂ϕ

= 0,

∂ θ[ ]
∂t

+ V
a
∂ θ[ ]
∂ϕ

+W ∂ θ[ ]
∂z

= 0,

1
acosϕ

∂
∂ϕ

ρSV cosϕ( ) + ∂
∂z

ρSW = 0,

∂ φ[ ]
∂z

− H −1R θ[ ]e
−κ z
H = 0 .

(70)

This system has the following steady solution:

∂ M[ ]
∂t

= 0  , u   in gradient-wind balance,

V = 0,  W = 0,

∂ θ[ ]
∂t

= 0 , θ[ ]   specified from the past history or radiative-convective equilibrium.

(71)

From the definitions of V  and W , we can find the mean meridional circulation implied by 
V = 0  and W = 0 :

ρS v[ ] = ∂
∂z

ρS

v*θ *⎡⎣ ⎤⎦
∂ θ[ ]

∂z

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,

(72)

w[ ] = − 1
acosϕ

∂
∂ϕ

v*θ *⎡⎣ ⎤⎦cosϕ
∂ θ[ ]

∂z

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .

(73)

Consider two scenarios. First, suppose we have a solution with no eddies at  all. “No 
eddies” certainly  qualify as “steady linear waves.” The above argument therefore applies, so we 
can get u[ ]  and θ[ ] , and from (72) and (73) we conclude that the mean meridional circulation 

(MMC) will vanish. 
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In the second scenario, add steady  linear eddies, so that ∇ ⋅ EPF( )  continues to be zero. 

Then exactly  the same u[ ]  and θ[ ]  will satisfy the equations! Of course, V  and W  will be 

different, i.e., the MMC will be different. In fact, the MMC will have to be whatever it takes to 
ensure that V =W = 0 , i.e., to satisfy (72) and (73). This MMC is said to be “induced by” the 
eddies. The system produces this MMC in order to prevent the eddies from disrupting the 
thermal wind balance. Perhaps a better way to say  this is that the processes that act to maintain 
thermal wind balance (i.e., geostrophic and hydrostatic adjustment) accomplish this feat by using 
the “wave-induced” MMC as a tool. 

The interpretation of this amazing result is that if you try to modify  u[ ]  and θ[ ]  by 

applying eddy forcing such that ∇ ⋅ EPF( ) = 0  (no potential vorticity flux), you will be 

disappointed! All that  will happen is that the MMC will change, in such a way that V  and W  
continue to be zero. In effect, the eddies will induce an MMC that exactly  cancels the direct 
effects of the eddies on u[ ]  and θ[ ] .

When the eddies are not steady, the residual circulation is different from zero, and u[ ]  

and θ[ ]  are modified by the combined effects of the eddies and/or the eddy-induced MMC. 

Cancellation of the effects of the eddies and the MMC still tends to occur, but the cancellation is 
incomplete.

Edmon et al. (1980) discussed the quasi-geostrophic form of the non-interaction theorem, 
and used it to analyze the data of Oort and Rasmussen (1971). As a reminder [see (47)], the 
meridional component of the quasi-geostrophic EPF  is 

EPF( )ϕ = −acos ϕ( ) u * v *⎡⎣ ⎤⎦ ,

(74)

and the vertical component is

EPF( )p = facos ϕ( )
v*θ *⎡⎣ ⎤⎦
∂θ

∂p
.

(75)

[Note: Compare (74) and (75) with (66) and (67), respectively.] Fig. 10 shows the contribution of 
the transient eddies to the Eliassen-Palm fluxes. First consider the winter results, shown in the 
upper panel. Near the surface in middle latitudes, we see arrows pointing strongly upward, 
indicating an intense poleward potential temperature flux. Near the tropopause, the arrows curve 
over and become horizontal, pointing towards the tropics. This indicates a strong poleward eddy 
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momentum flux. The contours in the figure show the divergence of the Eliassen-Palm flux. Keep 

in mind that ∇ ⋅EPF > 0  means 
∂ M[ ]
∂t

> 0 , i.e., a positive EPF divergence favors westerly 

acceleration. The negative divergence (i.e., convergence) near 200 mb at about 30° N indicates 
that the net effect of the eddies is to decelerate the jet. In fact, the westerlies are being 

Figure 10: Contribution of transient eddies to the seasonally  averaged Eliassen-Palm cross 
sections for the troposphere: (a) 5-year average from Oort and Rasmusson (1971) for winter; (b) 
the same for summer. The contour interval is 20 x 1015 m3 for (a), and 1 x 1015 m3 for (b). The 
horizontal arrow scale for the horizontal component in units of m3 is indicated at bottom right; 
note that it is different from diagram to diagram. A vertical arrow of the same length represents 
the vertical component, in m3 kPa, equal to that for the horizontal arrow multiplied by  80.4 kpa. 
From Edmon et al. (1980).

Winter

Summer

a

b
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decelerated throughout middle latitudes, except near the surface. Note that this EPF convergence 
results mainly from the upward decrease of the upward component of the flux, i.e., it  is mainly 
due to the energy flux. 

The results for summer are quite similar, except that the action is generally  weaker, and 
shifted poleward.

Figure 11: Contribution of stationary eddies to the seasonally averaged Eliassen-Palm cross 
sections for the troposphere: (a) 5-year average from Oort and Rasmusson (1971) for winter; (b) 
the same, respectively, for summer. The contour interval is 1 x 1015 m3 for both panels. The 
horizontal arrow scale in units of m3 is indicated at bottom right. From Edmon et al. (1980).

Winter

Summer

a

b
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Fig. 11 shows the corresponding results for the stationary  waves. In winter, the “strong” 

arrows are pointing nearly  straight up  everywhere, indicating that the poleward eddy  potential 
temperature flux is playing a much more important role than the eddy momentum flux. The 
westerlies are decelerated aloft, near 50° N, but they are accelerated near the surface. In summer 

Figure 12: Total (transient  plus stationary) Eliassen-Palm cross sections for the troposphere: (a) 
5-year average from Oort and Rasmusson (1971) for winter; (b) the same, respectively, for 
summer. The contour interval is 2 x 1015 m3 for (a), and 1 x 1015 m3 for (b). The horizontal arrow 
scale in units of m3 is indicated at bottom right. From Edmon et al. (1980).

Winter

Summer

a

b
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the arrows point downward. The eddy momentum flux is important near the summer tropopause, 

but again the eddy potential temperature flux is more important overall. The westerlies are 
strongly decelerated near the surface in the subtropics, and they  are actually accelerated at 200 
mb near 35° N.

Fig. 12 shows the combined effects of the transient and stationary eddies. Note that the 
transient eddies dominate, in both seasons. Finally, Fig. 13 shows the residual circulation, 

Figure 13: The stream function of the seasonally  averaged residual meridional circulations. (a) 5-
year average from Oort and Rasmusson (1971) for winter, and (b) the same for summer. The 
contour interval is 7.5 x 1016 m2 s Pa. From Edmon et al. (1980).

Winter

Summer

a

b
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V ,W( ) , for summer and winter. In winter, the residual circulation looks suspiciously  like a giant 

Hadley  Cell, extending from the tropics to the poles. This is reminiscent of the mean meridional 
circulation as seen in isentropic coordinates. In summer, we seem to see the northern edge of a 
Hadley  Cell extending into the Southern Hemisphere. Clearly, we can regard the residual 
circulation as a response to heating. 

The Eliassen-Palm theorem in isentropic coordinates

The Eliassen-Palm theorem is somewhat simpler and easier to interpret when we use 
isentropic coordinates. Following Andrews (1983), we begin with the flux form of the angular 
momentum equation in isentropic coordinates, neglecting friction:

 

∂
∂t

ρθM( ) + 1
acosϕ

∂
∂λ

ρθuM( ) + ∂
∂ϕ

ρθvM cosϕ( )
⎡

⎣
⎢

⎤

⎦
⎥= −ρθ

∂s
∂λ

− ∂
∂θ

ρθ
θM( ) .

(76)

Here ρθ  is the pseudo-density:

ρθ = −
1
g
∂p
∂θ

,

(77)

and

s ≡ cpT + gz
=Πθ + gz ,

(78)

where

Π ≡ cp
p
p0

⎛
⎝⎜

⎞
⎠⎟

κ

(79)

is the Exner function. Using the hydrostatic equation in isentropic coordinates, i.e., 

∂s
∂θ

= Π ,

(80)

we obtain
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ρθ
∂s
∂λ

= − 1
g
∂p∂s
∂θ∂λ

= − 1
g

∂
∂θ

p ∂s
∂λ

⎛
⎝
⎜

⎞
⎠
⎟+

p
g

∂
∂λ

∂s
∂θ
⎛
⎝
⎜

⎞
⎠
⎟

= − 1
g

∂
∂θ

p ∂
∂λ

Πθ + gz( )⎧
⎨
⎩

⎫
⎬
⎭
+ p
g
∂Π
∂λ

= − 1
g

∂
∂θ

θ p ∂Π
∂λ

+ pg ∂z
∂λ

⎛
⎝
⎜

⎞
⎠
⎟+

p
g
∂Π
∂λ

= − 1
g

∂
∂θ

θ p ∂Π
∂λ

⎛
⎝
⎜

⎞
⎠
⎟+

p
g
∂Π
∂λ

− ∂
∂θ

p ∂z
∂λ

⎛
⎝
⎜

⎞
⎠
⎟

= − 1
g

∂
∂θ

p ∂Π
∂λ

⎛
⎝
⎜

⎞
⎠
⎟−

∂
∂θ

p ∂z
∂λ

⎛
⎝
⎜

⎞
⎠
⎟ .

(81)

Substituting back, the angular momentum equation becomes

 

∂
∂t

ρθM( ) + 1
acosϕ

∂
∂λ

ρθuM( ) + ∂
∂ϕ

ρθvM cosϕ( )⎧
⎨
⎩

⎫
⎬
⎭
= ∂

∂θ
p
g
∂Π
∂λ

⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂θ

p ∂z
∂λ

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭
− ∂
∂θ

ρθ
θM( ) .

(82)

When we take the zonal mean of (82), the first term on the right-hand side vanishes (Why?) and 
we are left with

 

∂
∂t

ρθM[ ] + 1
acosϕ

∂
∂ϕ

ρθvM[ ]cosϕ( )
⎧
⎨
⎩

⎫
⎬
⎭
= ∂
∂θ

p* ∂z
*

∂λ
⎡

⎣
⎢

⎤

⎦
⎥−

∂
∂θ

ρθ
θM⎡⎣ ⎤⎦ .

(83)

The pressure-gradient term of (83) has a very simple and interesting form: It is proportional to 
the change with θ  of the zonal mean of the product of the pressure and the slope of the height  of 

the isentropic surface. The expression p* ∂z
*

∂λ
⎡

⎣
⎢

⎤

⎦
⎥  can be interpreted as form drag on the isentropic 

surface, analogous to the form drag on mountains discussed earlier in the course. Here the 
“mountains” are upward bulges of the isentropic surfaces, associated with blobs of cold air at  a 
given pressure level; the “valleys” are downward bulges of the isentropic surfaces, associated 
with blobs of warm air at a given pressure level. We can say that

upward flux of zonal momentum due to the wave = − p* ∂z
*

∂λ
⎡

⎣
⎢

⎤

⎦
⎥ .

(84)
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This shows that, from the perspective of isentropic coordinates, the upward flux of zonal 
momentum is associated with the pressure force, rather than with a covariance between the 
“vertical velocity” (which vanishes in isentropic coordinates in the absence of heating) and the 
zonal velocity. A layer of air confined between two isentropic surfaces will feel two momentum 
fluxes associated with the pressure force: one on its underside, and a second on its upper side. It 
is the difference between these two forces that tends to produce a net  acceleration of the layer. 

That is why we see 
∂
∂θ

p* ∂z
*

∂λ
⎡

⎣
⎢

⎤

⎦
⎥  in (83). This form of the vertical momentum flux was discussed 

by Klemp and Lilly (1978).

The analogy between the form drag on a “wavy” isentropic surface and the form drag on 
topography  is a very powerful aid to physical intuition. The form drag on a wavy isentropic 
surface is expected to be different from zero when the isentropic surface is moving relative to the 
mean flow, i.e., when u[ ] − c ≠ 0 , where c  is the phase speed of the wave relative to the Earths’ 

surface. This is analogous to the fact that a form drag on topography is expected when there is a 
low-level mean flow relative to the Earth’s surface. A wavy isentropic surface moving to the east 
relative to the mean flow is expected to experience a form drag that pushes it back towards the 
west, i.e., that  tries to slow it down relative to the mean flow. This corresponds to an upward flux 
of westerly momentum, because the air above the wavy surface is being pushed towards the east. 
Similarly, a wavy isentropic surface moving towards the west relative to the mean flow is 
expected to experience a form drag that pushes it back towards the west, and this corresponds to 
a downward flux of westerly momentum. The sign of the (positive upward) wave momentum flux 
is therefore expected to be opposite to the sign of u[ ] − c . Based on this argument, Kelvin waves 

are expected to produce an upward flux of westerly momentum, and Rossby waves are expected 
to produce a downward flux of westerly momentum.

Before completing our discussion of the Eliassen-Palm theorem in isentropic coordinates, 
it is useful to recall the form of the mechanical energy equation in isentropic coordinates, which 
was given earlier in the course and is repeated here for your convenience:

 

∂
∂t

ρθK( )⎧
⎨
⎩

⎫
⎬
⎭θ

+∇θ ⋅ ρθV K +φ( ){ }+ ∂
∂θ

ρθ
θ K +φ( ){ }+ ρθα∇ ⋅ F ⋅V( )

= − ∂
∂θ

−z ∂p
∂t

⎛
⎝
⎜

⎞
⎠
⎟
θ

⎧
⎨
⎩

⎫
⎬
⎭
− ρθωα − ρθδ

(85)

The first-term on the right-hand side of (85) represents the vertical transport of energy  via 
“pressure-work.” The zonally  averaged upward flux of wave energy is, therefore, given by 
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−z* ∂p*

∂t
⎛
⎝⎜

⎞
⎠⎟θ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. Recall that for a neutral wave propagating zonally and vertically, with zonal 

phase velocity c , we can write 
∂
∂t

=
u[ ]− c
acosϕ

⎛
⎝⎜

⎞
⎠⎟
∂
∂λ

. It follows that 

upward wave energy flux =
u[ ]− c
acosϕ

⎛
⎝⎜

⎞
⎠⎟
p* ∂z*

∂λ
⎛
⎝⎜

⎞
⎠⎟θ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

(86)

Comparing (83) with (86), we conclude that 

upward wave energy flux = −
u[ ]− c
acosϕ

⎛
⎝⎜

⎞
⎠⎟

 times the upward wave angular momentum flux.

(87)

This shows that, for neutral waves propagating towards the east relative to the air, i.e.,  
− u[ ] − c( ) > 0 , the momentum flux and the energy flux have the same sign, while for neutral 

waves propagating towards the west relative to the air, i.e., − u[ ] − c( ) < 0 , the momentum and 

energy fluxes have opposite signs. As we know, Rossby waves always propagate west relative to 
the air, so for Rossby waves the momentum flux is always opposite in direction to the energy 
flux.

Now we relate the preceding analysis to the Eliassen-Palm theorem, following Andrews 
(1983) and Andrews et al. (1987). Recall that

ρθA[ ] = ρθ[ ] A[ ] + ρθ
*A*⎡⎣ ⎤⎦ ,

(88)

for an arbitrary variable A . Using (88) in the time-rate-of-change term of (83), we obtain

 

∂
∂t

ρθ[ ] M[ ]( ) + 1
acosϕ

∂
∂ϕ

ρθvM[ ]cosϕ( )⎧
⎨
⎩

⎫
⎬
⎭
= − ∂

∂t
ρθ
*M *⎡⎣ ⎤⎦ +

∂
∂θ

p* ∂z
*

∂λ
⎡

⎣
⎢

⎤

⎦
⎥ −

∂
∂θ

ρθM θ⎡⎣ ⎤⎦ .

(89)

Here the “eddy part” of the time-rate-of-change term has been moved to the right-hand-side of 
the equals sign; this will be discussed later. We want to derive an “advective form” of (89), so we 
bring in the zonally  averaged continuity equation in isentropic coordinates, which can be written 
as
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∂ ρθ[ ]
∂t

+ 1
acosϕ

∂
∂ϕ

ρθv[ ]cosϕ( ) = −
∂ ρθ
θ⎡⎣ ⎤⎦

∂θ
.

(90)

In order to obtain an “advective form,” we subtract M[ ]  times (90) from (89), to obtain 

 

ρθ[ ]∂ M[ ]
∂t

+ 1
acosϕ

∂
∂ϕ

ρθvM[ ]cosϕ( )
⎧
⎨
⎩

⎫
⎬
⎭
−

M[ ]
acosϕ

∂
∂ϕ

ρθv[ ]cosϕ( )

= −
∂ ρθ

*M *⎡⎣ ⎤⎦
∂t

+ ∂
∂θ

p* ∂z
*

∂λ
⎡

⎣
⎢

⎤

⎦
⎥+ M[ ]

∂ ρθ
θ⎡⎣ ⎤⎦

∂θ
−
∂ ρθM θ⎡⎣ ⎤⎦

∂θ
.

(91)

We cannot yet combine terms to obtain an advective form. One more step  is needed first. What 
we need to do is introduce a mass-weighted zonal mean, defined by

Â⎡⎣ ⎤⎦ ≡
ρθA[ ]
ρθ[ ]

.

(92)

Using the definition (92), we can write 

ρθA = ρθA[ ] + ρθA( )*

= ρθ[ ] Â⎡⎣ ⎤⎦+ ρθA( )* ,
(93)

and

ρθAB[ ] = ρθA[ ] B[ ] + ρθA( )* B*⎡
⎣

⎤
⎦

= ρθ[ ] Â⎡⎣ ⎤⎦ B[ ] + ρθA( )* B*⎡
⎣

⎤
⎦ ,

(94)

where B  is a second arbitrary variable. As special cases of (94), we can write the zonally 
averaged meridional and vertical fluxes of B  as

ρθvB[ ] = ρθv[ ] B[ ] + ρθv( )* B*⎡
⎣

⎤
⎦

= ρθ[ ] v̂[ ] B[ ] + ρθv( )* B*⎡
⎣

⎤
⎦ ,

(95)
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and

 

ρθ
θB⎡⎣ ⎤⎦= ρθ

θ⎡⎣ ⎤⎦ B[ ] + ρθ
θ( )* B*⎡

⎣⎢
⎤
⎦⎥

= ρθ[ ] ̂θ⎡⎣⎢
⎤
⎦⎥ B[ ] + ρθ

θ( )* B*⎡
⎣⎢

⎤
⎦⎥ .

(96)

The “eddy  meridional mass flux,” ρθv( )* , obviously  has a zonal mean of zero. This means that it 

does not transport any mass on the average. It  is a “mixing” or “diffusive” or “sloshing” mass 
flux. A similar comment applies to the eddy vertical mass flux, 

 
ρθ
θ( )* . 

Using (95) and (96), we can rewrite (91) as 

 

ρθ[ ]∂ M[ ]
∂t

+ 1
acosϕ

∂
∂ϕ

ρθ[ ] v̂[ ] M[ ] + ρθv( )*M *⎡
⎣

⎤
⎦( )cosϕ{ }− M[ ]

acosϕ
∂
∂ϕ

ρθ[ ] v̂[ ]cosϕ( )

= −
∂ ρθ

*M *⎡⎣ ⎤⎦
∂t

+ ∂
∂θ

p* ∂z
*

∂λ
⎡

⎣
⎢

⎤

⎦
⎥+ M[ ] ∂

∂θ
ρθ[ ] ̂θ⎡⎣⎢

⎤
⎦⎥( ) − ∂

∂θ
ρθ[ ] ̂θ⎡⎣⎢

⎤
⎦⎥ M[ ] + ρθ

θ( )*M *⎡
⎣⎢

⎤
⎦⎥{ } .

(97)

The meridional and vertical derivatives can now be combined. We also divide by ρθ[ ] , simplify, 

and rearrange, obtain

 

∂ M[ ]
∂t

+
v̂[ ]
a

∂ M[ ]
∂ϕ

+ ̂θ⎡⎣⎢
⎤
⎦⎥
∂ M[ ]
∂θ

= − 1
ρθ[ ]

∂ ρθ
*M *⎡⎣ ⎤⎦
∂t

+ 1
ρθ[ ]

∂
∂θ

p* ∂z
*

∂λ
⎡

⎣
⎢

⎤

⎦
⎥

− 1
ρθ[ ]cosϕ

∂
∂ϕ

ρθv( )*M *⎡
⎣

⎤
⎦cosϕ{ }− 1

ρθ[ ]
∂
∂θ

ρθ
θ( )*M *⎡

⎣⎢
⎤
⎦⎥ .

(98)

Here all of the eddy terms have been collected on the right-hand side, and the non-eddy terms 
have been collected on the rather simple-looking left-hand side.

Now define the isentropic Eliassen-Palm flux as

EPF ≡ 0,EPFϕ ,EPFθ( ) ,

where
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EPFϕ ≡ − ρθv( )*M *⎡
⎣

⎤
⎦ , and 

 
EPFθ ≡ p* ∂z

*

∂λ
⎡

⎣
⎢

⎤

⎦
⎥− ρθ

θ( )*M *⎡
⎣⎢

⎤
⎦⎥ .

(99)

The meridional component is minus the eddy angular momentum flux. The vertical component is 
minus the “total” vertical eddy angular momentum flux, due to the combination of isentropic 
form drag and the vertical mass flux associated with heating. The divergence of the isentropic 
Eliassen-Palm flux is given by

 
∇ ⋅EPF = −1

acosϕ
∂
∂ϕ

ρθv( )*M *⎡
⎣

⎤
⎦cosϕ{ }+ ∂

∂θ
p* ∂z

*

∂λ
⎡

⎣
⎢

⎤

⎦
⎥− ρθ

θ( )*M *⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

,

(100)

where it is understood that the meridional derivative is taken along an isentropic surface. With 
these definitions, (98) can be written as

 

∂ M̂⎡⎣ ⎤⎦
∂t

+
v̂[ ]
a

∂ M[ ]
∂ϕ

+ ̂θ⎡⎣⎢
⎤
⎦⎥
∂ M[ ]
∂θ

= 1
ρθ[ ]

−
∂ ρθ

*M *⎡⎣ ⎤⎦
∂t

+∇ ⋅EPF
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ .

(101)

Consider a steady  state (or time average) with no heating. Then the continuity  equation 
(90) reduces to

∂
∂ϕ

ρθv[ ]cosϕ( ) = 0 , for steady flow without heating or friction.

(102)

Since ρθv[ ]cosϕ = 0  at both poles, we conclude that 

ρθv[ ] = 0  for all θ  and ϕ , for steady flow without heating or friction,

(103)

from which it follows that

v̂[ ] = 0  for all θ  and ϕ , for steady flow without heating or friction.
(104)

This means that for steady flow with no heating the meridional advection term of (101) vanishes, 
which is quite amazing. Naturally the tendency and vertical advection terms of (101) are also 
zero in this case. It follows that for steady flow in the absence of heating, the Eliassen-Palm flux 
is non-divergent:
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∇θ ⋅EPF = 0  for steady flow without heating or friction.
(105)

Another way of saying this is that, for steady  flow in the absence of heating, the zonally 
averaged meridional angular momentum transport is due only to the eddies, and is balanced by 
the form drag on isentropic surfaces. This beautifully simple result is pretty nearly exact. It is a 
statement of the Eliassen-Palm theorem. 

With the isentropic system, there is no need to define a “residual” circulation, because the 
true zonally averaged circulation as seen in isentropic coordinates is the residual circulation. This 
circulation vanishes for a steady state (or time average) with no heating, even when friction is 
present. The time-averaged mean meridional circulation in isentropic coordinates is due entirely 
to heating.

Potential vorticity fluxes

Consider the momentum equation in isentropic coordinates:

 

∂V
∂t

+ k × ηV( ) +∇θ K + s( ) + θ ∂V
∂θ

+F = 0 .

(106)

Here s  is the Montgomery Stream Function, 

η ≡ ζ + f
(107)

is the absolute vorticity, where

ζ ≡ k ⋅ ∇θ × V( ) ,
(108)

and F  is the friction vector. Note that ζ  is the vorticity computed by taking derivatives of the 

horizontal wind along isentropic surfaces. 

To derive the vorticity equation, we apply k ⋅∇θ ×  to (106). Starting from standard 

vector identities, we can show that

k ⋅ ∇ × k ×A( ){ } = ∇ ⋅A ,

(109)

and
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k ⋅ ∇ ×A( ) = −∇ ⋅ k ×A( ) ,

(110)

where A  is an arbitrary horizontal vector. With these relations, and using the fact that the 
Coriolis parameter is independent of time, we can show that

 

∂η
∂t

+∇θ ⋅ Vη( ) = ∇θ ⋅ k × θ ∂V
∂θ

+ F⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

.

(111)

Notice that the vertical advection term of (106) now appears inside a horizontal divergence 
operator! This comes from the use of (110). We now define 

q ≡ η
ρθ

(112)

as the Ertel potential vorticity. Here 

ρθ ≡ −
1
g
∂p
∂θ

> 0  

(113)

is the pseudo-density. Then (111) becomes

 

∂ ρθq( )
∂t

+∇θ ⋅ ρθVq( ) = ∇θ ⋅ k × θ ∂V
∂θ

+ F⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

.

(114)

This equation was derived and discussed by Haynes and McIntyre (1987). According to (114), 
the average over the sphere of the mass-weighted potential vorticity on an isentropic surface 
cannot change, even in the presence of heating and friction. This amazing conclusion, that 
neither vertical advection of momentum nor friction can alter the mass-weighted average PV on 
an isentropic surface, is called the “impermeability theorem.” For further discussion, see 
Bretherton and Schär (1993).

The zonal average of (114) gives

 

∂
∂t

ρθq[ ]+ 1
acosϕ

∂
∂ϕ

ρθvq[ ]cosϕ( ) = −1
acosϕ

∂
∂ϕ

θ ∂u
∂θ

+ Fλ
⎡
⎣⎢

⎤
⎦⎥
cosϕ⎛

⎝⎜
⎞
⎠⎟

.

(115)

Using (88), (93) and (94), we can rewrite (115) as
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∂
∂t

ρθq[ ] + 1
acosϕ

∂
∂ϕ

ρθ[ ] v̂[ ] q[ ] + ρθv( )* q*⎡
⎣

⎤
⎦( )cosϕ⎡

⎣⎢
⎤
⎦⎥=

−1
acosϕ

∂
∂ϕ

θ ∂u
∂θ

+ Fλ
⎡
⎣⎢

⎤
⎦⎥
cosϕ

⎛

⎝
⎜

⎞

⎠
⎟ .

(116)

For a steady state, (116) can be written as

 

∂
∂ϕ

ρθ[ ] v̂[ ] q[ ] + ρθv( )* q*⎡
⎣

⎤
⎦+
θ ∂u
∂θ

⎡
⎣⎢

⎤
⎦⎥
+ Fλ[ ]

⎛

⎝
⎜

⎞

⎠
⎟cosϕ

⎧
⎨
⎩

⎫
⎬
⎭
= 0 .

(117)

The quantity in curly braces is independent of latitude. It is zero at both poles, because of the 
factor of cosϕ . Therefore it must be zero at every latitude, i.e., 

 
ρθ[ ] v̂[ ] q[ ] + ρθv( )* q*⎡

⎣
⎤
⎦+
θ ∂u
∂θ

⎡
⎣⎢

⎤
⎦⎥
+ Fλ[ ] = 0  for all θ  and ϕ , for steady flow.

(118)

This is equation (3.4) of Haynes and McIntyre (1987). All three terms on the left-hand side  
vanish at the poles. With no heating or friction, and using (102), this reduces to

ρθv( )* q*⎡
⎣

⎤
⎦ = 0  for all θ  and ϕ , for steady flow without heating or friction.

(119)

Compare with (16), which was derived using the quasi-geostrophic approximation.

Summary

Waves and other eddies produce important effects on the large-scale circulation of the 
atmosphere. Important fluxes are associated with a wide variety  of waves, including gravity 
waves, Rossby waves, and Kelvin waves. Momentum fluxes and temperature fluxes can tend to 
produce mutually  counteracting effects, so that the mean zonal flow and temperature may  not be 
altered. The appreciable effects of the eddies on the mean flow are typically associated with 
developing or decaying eddies, rather than steady, equilibrated eddies. 
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