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ABSTRACT

Vertical profiles of hydrometeor occurrence from the multiscale modeling framework (MMF) climate

model are compared with profiles observed by a vertically pointing millimeter wavelength cloud radar (lo-

cated in the U.S. southern Great Plains) as a function of the large-scale atmospheric state. The atmospheric

state is determined by classifying (or clustering) the large-scale (synoptic) fields produced by the MMF and a

numerical weather prediction model using a neural network approach. The comparison shows that for cold-

frontal and post-cold-frontal conditions the MMF produces profiles of hydrometeor occurrence that compare

favorably with radar observations, while for warm-frontal conditions the model tends to produce hydrome-

teor fractions that are too large with too much cloud (nonprecipitating hydrometeors) above 7 km and too

much precipitating hydrometeor coverage below 7 km. It is also found that the MMF has difficulty capturing

the formation of low clouds and that, for all atmospheric states that occur during June, July, and August, the

MMF produces too much high and thin cloud, especially above 10 km.

1. Introduction

Meaningful comparisons of climate model output with

observational data are sometimes difficult to achieve

because, unlike numerical weather prediction models,

climate models do not predict the specific sequence of

weather that any location is expected to experience. At

best a climate model simulation can be thought of as

representing one possible realization of future weather.

Thus comparisons of climate model output with obser-

vational data are inherently statistical. Typically, the

observational data are aggregated (e.g., averaged) over

a sufficiently long period of time that the influence of

individual weather events becomes small relative to the

average. The climate model output is then aggregated

over a similar time period, or in some cases, the outputs

from an ensemble of climate simulations are combined.

Either way, when differences between the aggregate

observations and aggregate model output are detected,

it can be difficult to determine the source of the differ-

ences (what physical processes or situations are not

sufficiently represented by the model) or to determine a

corrective action. This is particularly true for clouds and

precipitation whose occurrence and properties are com-

plex and highly variable in space and time.

One approach to dealing with this complexity and var-

iability is to aggregate both the observations and model

output in a way that provides insight into the interaction

between the atmospheric state and cloud properties. For

example, several recent papers have identify cloud re-

gimes by clustering joint histograms of cloud optical

depth and cloud top pressure produced by the Interna-

tional Satellite Cloud Climatology Project (ISCCP) in

combination with an instrument simulator to produce
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ISCCP-like histograms from model output (e.g., Gordon

et al. 2005; Jakob et al. 2005; Rossow et al. 2005; Williams

and Webb 2008). Comparing observational data and

model output as a function of the large-scale midtropo-

spheric (500 hPa) vertical pressure velocity has also been

used in a variety of recent studies including Bony and

Dufresne (2005), Bony et al. (2006), Lin and Zhang

(2004), Norris and Weaver (2001), Tselioudis and Jakob

(2002), and Wyant et al. (2006). In general, the identi-

fication of synoptic regimes using a variety of meteoro-

logical fields including surface pressure patterns and

geopotential heights at various altitudes has been the

focus of considerable research (see discussion in Coleman

and Rogers 2007; Fereday et al. 2008; Marchand et al.

2006; Smyth et al. 1999; Zivkovic and Louis 1992), and

such regimes have been used in compositing cloud

properties (e.g., Marchand et al. 2006; Tselioudis et al.

2000) and evaluating model output (e.g., Jung et al.

2005). In addition to providing insight into model be-

havior, evaluations of GCMs based on cloud regime or

atmospheric state have the potential to detect errors that

cannot easily be identified in temporal averages. For

example, Norris and Weaver (2001), Lin and Zhang

(2004), and Jakob et al. (2005) all demonstrated places

where errors in top-of-atmosphere fluxes tended to can-

cel out in temporal averages, reducing the apparent size

of model errors.

In this paper we compare hydrometeor (cloud and

precipitation) occurrence profiles observed by a verti-

cally pointing millimeter wavelength cloud radar with

similar profiles obtained from a climate model as a

function of the large-scale atmospheric state. By hy-

drometeor occurrence profile we mean the relative fre-

quency that clouds or other hydrometers, such as rain or

snow, are detected by the cloud radar at a given altitude

above ground level (or would be detected by a radar in

the case of the climate simulation). The cloud radar

observations are obtained from the U.S. Department of

Energy Atmospheric Radiation Measurement (ARM)

program at its primary Southern Great Plains (SGP) site

near Lamont, Oklahoma, while the model-simulated

radar profiles are obtained using the QuickBeam radar

simulator (Haynes et al. 2007; Marchand et al. 2009).

In this analysis the atmospheric state is determined by

classifying (or clustering) the large-scale (synoptic) fields

that are resolved by global climate models and numer-

ical weather prediction models. This is accomplished

using a neural network following the approach of

Marchand et al. (2006), hereafter M06. Specifically, we

used output (analysis data) from the Rapid Update

Cycle (RUC) model, which is run operationally at the

National Centers for Environmental Prediction (NCEP)

(Benjamin et al. 1991, 1996), to train the neural network

and obtain a time series of atmospheric states over the

ARM SGP site. We have made a number of improve-

ments and extensions to the approach described by M06

and these are described in detail in section 2.

The goal of the analysis is to evaluate to what degree

radar profiles of hydrometeor occurrence produced by

the multiscale modeling framework (MMF) climate

model match those observed by the ARM program when

aggregated by the objectively determined atmospheric

state. The MMF is a new type of GCM in which a two-

dimensional or small three-dimensional cloud resolving

model (CRM) is embedded into each grid cell of a

traditional GCM. The embedded CRM removes the

need for most of the cloud parameterizations used in

traditional GCMs; perhaps most significantly it re-

places the parameterization of deep convection. This

new approach is frequently called a multiscale modeling

framework but is also known as a cloud resolving con-

vection parameterization or a superparameterization

(Grabowski 2001; Randall et al. 2003). In section 3 we

give a brief description of the MMF model. We use the

high-resolution cloud resolving model output produced

by the MMF as input to the radar simulator to produce

hydrometeor occurrence profiles like those observed by

the ARM cloud radar.

In section 4 we present comparison results that show

that, for cold-frontal and post-cold-frontal conditions,

the MMF produces profiles of hydrometeor occurrence

that compare favorably with radar observations, while,

for warm-frontal conditions, the model tends to produce

hydrometeor fractions that are too large with too much

cloud (nonprecipitating hydrometeors) above 7 km and

too much precipitating hydrometeor coverage below

7 km. We also find that the MMF has difficulty capturing

the formation of low clouds and that, for all atmospheric

states that occur during June, July, and August, the

MMF produces too much high and thin cloud, especially

above 10 km (a result that appears to be a common

feature of the model in convective regions). Finally in

section 5 we close with some additional discussion and

remarks on our plans for future research.

2. Classification technique and dataset description

The idea of weather typing or weather regimes is not a

new one, but has been used extensively in meteorology.

In this investigation, we used a competitive neural net-

work (Haykin 1999; Kohonen 1995) to objectively iden-

tify patterns in just over 3 yr of analysis data from the

RUC model, from December 1998 through April 2002

(Benjamin et al. 1991, 1996). Analysis data are the inputs

that are used to initialize NWP computer model fore-

casts and are obtained through a data assimilation
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process that combines model output with a range of

observations.

The neural network is essentially a pattern recogni-

tion algorithm, into which we have put the relative hu-

midity, temperature, and winds at seven predetermined

(sigma) pressure levels along with the surface pressure

for 81 grid points. The grid points are arranged in a 9 3 9

grid centered on the ARM SGP site, each representing

an area of 28 3 2.58 (for a total of 2349 input variables at

each time step). Both the RUC and MMF datasets have

3-hourly resolution, with a total of approximately 9400

input vectors for the 31 years of RUC data analyzed.

The neural network has two modes of operation, a

training mode and an application mode. In this study

we use the RUC (and as explained later in this section

ARM) data to train the neural network and later apply

the neural network to the MMF output. In the training

mode, a set of input data is repeatedly fed into the net-

work until it converges on a set of N patterns, which we

call the atmospheric state definitions or simply the state

definitions, that best represent the input space. Figure 1,

for example, shows the state definition for one of the

states that we will use in our analysis in the next section.

To the neural network, the best representation of the

input space is defined to be the set of state definitions

such that the sum of the distances between each input

vector (i.e., each entry in the training set) and the closest

state definition is minimized. Here the distance is de-

fined as the sum of the absolute values of the input

vector elements minus the same elements in the state

definition relative to the standard deviation of each el-

ement (calculated from the entire input training set).

We note the value of N must be selected at the start of

the training processes. In general, trying to determine

how many states there should be is an issue for most

objective classification schemes and we will return to

this topic later in this section. Once the atmospheric

states are defined, the neural network can be applied to

obtain the state number (1 to N) associated with any

input vector (whether it comes from RUC output or

MMF output or some other model altogether) by finding

the state definition closest in distance (as defined above)

to the input. While the RUC model has a resolution of

about 40 km, we subsampled the RUC data (using a

nearest neighbor approach) to the same 28 3 2.58 grid

used by the MMF to ensure a common set of inputs. We

examined the effect of averaging (rather than sampling)

the RUC data onto the 28 3 2.58 grid and found it made

no significant difference in the results.

The approach to this point is essentially the same as

that given by M06, except using 31 years of RUC data

(rather than 17 months) and reducing the horizontal

resolution to match that of the MMF. In M06, the neural

network was used to classify the atmosphere as be-

longing to 1 of 25 possible states. Hydrometeor occur-

rence profiles were then created for each state by

aggregating ARM millimeter wavelength cloud radar

observations. The bulk of the M06 article focused on

evaluating the statistical stationarity of the hydrometeor

profiles. That is, to use the atmospheric states as a means

to compare ARM observations with climate model out-

put (or more generally, to view the atmospheric states

as a map from synoptic-scale atmospheric patterns to

smaller-scale cloud properties) the distribution of cloud

properties associated with any given state should be

stable such that properties of the state do not change

with time. This does not mean that every time some state

X occurs exactly the same set of clouds are observed.

Rather, it means that every time state X occurs the ob-

served clouds represent one possible realization drawn

from a fixed distribution.

In M06 the stability of the atmospheric states was

tested by creating and comparing two sets of hydrome-

teor occurrence profiles: one set based on radar obser-

vations only from winter 1997 and one set based on radar

observation only from winter 1998. While one expects

the occurrence profiles based on data from two different

years to be similar, they will not be identical. Figure 2, for

example, shows the hydrometeor occurrence profiles

obtained by aggregating the ARM millimeter wavelength

cloud radar observations according to the atmospheric

state (as determined by application of the competitive

neural network to the RUC analysis data) in two dif-

ferent years, 1999 and 2001. Results for 4 states are

shown. The percentage of time occupied by each state in

1999 and 2001 is shown above each panel. It is not sur-

prising that the percentage of time occupied by each

state can be different from year to year. In general, there

is considerable variability in many observed cloud

properties from year to year—which greatly hampers

the effort to compare GCM climate predictions with

observations and is part of the motivation behind this

research.

M06 developed a statistical hypothesis test based on a

moving-blocks bootstrap resampling technique to de-

termine if the difference between two radar profiles is

statistically significant (i.e., unlikely to be the result of

the finite sample size). The result of the profile similarity

test is a p value, which is an estimate of the likelihood

that the two profiles are two realizations from a common

parent population. We stress that no statistical test can

prove that two profiles do come from a common parent

population, we can only determine when it is unlikely to

be true. In Fig. 2, for example, the two states on the left-

hand side of the figure have p values much larger than

0.05, meaning we cannot reject the hypothesis—the two
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profiles may well come from a common parent. For the

upper-right panel, on the other hand, the p value is less

than 0.05, meaning that we can conclude that the profiles

are likely from different parent populations with a 95%

level of confidence.

Unfortunately, of the 18 states identified in M06 that

occur during the winter or early spring seasons, only 7

had sufficient data to make a robust comparison. And of

these 7 states, one state was found to be unstable. Part of

the reason that only 7 states contained sufficient data to

make a comparison was the small size of the test dataset

used (17 months), but part of the reason is also that some

of the identified states (while meteorologically distinct)

simply occur so infrequently (less than 1% of the time)

that many years of ground-based data would be needed

to obtain a good representation of the distribution of

FIG. 1. Example of an atmospheric state definition, state 1. (top left) The 1000-hPa temperature dewpoint (8C)

overlaid by contour plot of 1000-hPa geopotential heights. Arrows indicate wind direction and velocity. (middle left)

Surface pressure anomaly (hPa) with 500-hPa geopotential heights and winds. (bottom left) The 500-hPa relative

humidity (fraction) with 500-hPa geopotential heights and winds. (top right) The 1000-hPa temperature (8C) with

1000-hPa geopotential heights and winds. (middle right) The 875-hPa temperature (8C) with 875-hPa geopotential

height and winds. (bottom right) The 375-hPa relative humidity (fraction) with 375-hPa geopotential heights and

winds.
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hydrometeor properties. When we repeated the year-to-

year stability comparison with 3 yr of data, the results

were qualitatively similar. A few states were found to be

unstable, and even with 3 yr of data a few states did not

have sufficient data points to make a robust comparison.

As was suggested in M06, the finding of well-populated

and stable mappings from the large-scale to local-scale

cloud properties is useful for model–data comparisons,

even if less than 100% of all atmospheric conditions can

be mapped successfully. Nonetheless, an objective pro-

cess to modify the state definitions such that all identi-

fied states are stable is desirable. In M06, the decision to

define 25 states was chosen based on intuition, with a

preference for having too many rather than to few states.

It was hoped that by having too many states we would

find only 1) stable states or 2) states with too little data

such that we could then combine the data-poor states

with the stables states in an additive manner. Unfortu-

nately, as already mentioned, we found that some states

do end up having sufficient data and yet are not stable.

An examination of these unstable states suggested that

in fact the states are likely too broad, encompassing too

wide a range of atmospheric conditions.

We have therefore developed an iterative scheme to

refine the state definitions. This scheme is depicted in

Fig. 3. We begin by using the neural network to identify

25 states. We then analyze the stability of each state by

comparing the year-to-year similarity of the hydrome-

teor occurrence profiles. For the current dataset, this

means comparing 1999 to 2000, 1999 to 2001, and 2000 to

2001 for each state. A state is considered stable if the

p values for all year-to-year comparisons are greater

than 0.05. We identify the (up to) four least stable states

based on the median of the p values obtained from the

three year-to-year comparisons. If an unstable state

comprises more than 6% of the input dataset we divided

FIG. 2. Four examples (from starting 25-state set) comparing hydrometeor occurrence pro-

files observed by the ARM cloud radar for the years 1999 and 2001. The profile for 1999 is

shown in blue and 2001 is shown in red. The label at the top of each plot shows the fraction of

time occupied by each state, where, e.g., (R99)(0.02) means that 2% of the data from 1999 falls

within this state, along with the p value from the global similarity hypothesis test. The thin black

line on the right side of each plot indicates what levels have a sufficient number of samples to

make a robust comparison. Individual altitudes where the profiles do not appear to be different

at the 95% level of confidence are marked with an asterisk. (left) The global p value is larger

than 0.05 suggesting that the difference in the profiles is not significant at the 95% level of

confidence. These states are considered stable and kept in the first refinement iterations (see

text section 2). (top right) A case where the differences are significant, as given by the p value.

The missing asterisks highlight individual levels that are likely different (at the 95% level of

confidence). (bottom right) While the profiles appear relatively similar, there are insufficient

points at any altitude to make a robust comparison. Both states shown in the right column are

modified during refinement.

1 SEPTEMBER 2009 M A R C H A N D E T A L . 4561



the state into two states (thus increasing the total num-

ber of states by one) by running a second clustering al-

gorithm on only the elements in the unstable state. If the

unstable state comprised less than 6% of the dataset (or

had insufficient data to permit a stability comparison)

we removed the state from consideration (thus reducing

the total number of states by one). We then reassign

every input vector to its nearest state definition. The

reassignment allows new states (obtained by division) to

attract data points from neighboring states and forces

data points from deleted states to be assigned to neigh-

boring states. After reassignment, the state definitions

are again evaluated for stability and the process repeats

until all states are stable. For the data analyzed here, we

found that it only takes a few iterations (generally fewer

than 15) to converge and resulted in a total number of

states between about 15 and 20.

One problem with this approach is that the fewer the

data points in any state, the less likely that a state that is

in fact unstable will be detected as such (assuming there

are a sufficient number of data points to permit a com-

parison of hydrometeor profiles; see M06 section 3.3c).

This is because the fewer the number of data points, the

larger the expected variability from year to year will

become and thus real differences become harder to

detect. So the technique (to this point) favors creating

states that are sparsely populated. Additionally, we also

noticed that many of the more sparsely populated states

tended to have hydrometeor occurrence profiles that

were similar to those of other states. It is also generally

possible to intentionally divide a stable state into two

states, both of which will pass the stability requirement

and not surprisingly tend to have very similar profiles of

hydrometeor occurrence.

Therefore, we extended the iteration scheme to con-

sider the distinctiveness of the hydrometeor occurrence

profiles. Once all the states are found to be stable, we

compare the occurrence profiles in each state with every

other state (using the same statistical comparison test) and

count the number of states that appear to have similar

FIG. 3. Depiction of scheme used to generate objective atmospheric states.
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profiles. If all states are pairwise completely distinct

from one another, we are done and have a final set of

states. If not, we then do a similar adjustment process as

we did previously, choosing (up to) the four states with

the highest similarity count and dividing or removing

them based on whether they contain above or below 6%

of the total number of elements. The distinctiveness

criteria therefore drive the iteration process to find the

minimum number of states needed to represent the hy-

drometeor occurrence profiles.

We ran the full iteration scheme four times. In two of

the runs the iterative process converged completely

(passing through both the stability and distinctiveness

tests), while in the other two runs the stability test con-

verged many times but the distinctiveness test never

passed completely. In these two nonconverging runs the

algorithm would remove two states with similar occur-

rence profiles, causing the data points from these states

to be assigned to other nearby states. The nearby states

were destabilized by the additional points and subse-

quently divided, which led to the regeneration of the

states that produced the nondistinct occurrence profiles

in the first place. While the two nondistinct states had

similar occurrence profiles, they were sufficiently me-

teorologically different that removing these states did

not cause the points to be merged into a single neighbor.

At this point we stopped the iteration processes, which

was effectively in an infinite loop.

The four runs all produced 11 or 12 states. A summary

of the 12 states from one of the four runs (which we will

use as a basis for analysis in section 4) is provided in

Table 1. Also, a discussion on how the 25 states identi-

fied in M06 map into this new 12-state set is provided in

the appendix.

The states from each run have strong one-to-one

correspondences such that most of the data points as-

sociated with a given state in one run tend to map into a

very similar state in a different run. Nonetheless, the

state definitions are certainly not unique or perfectly

reproduced given the same training set. Perhaps the

most noteworthy difference between the four test runs is

that the two runs that produced 11 states (rather than 12

final states) effectively combined the two summertime

states with the hottest surface temperatures occurring in

the runs with 12 total states into a single large state.

Other differences included a tendency to split state 6 (in

our analysis set), which features a post-cold-frontal con-

ditions, into two slightly different states and combine

two of the frontal states (states 1 and 3) into a single

larger state. We will discuss the nonuniqueness of the

states further in section 5.

We stress that, while the cloud radar–derived hydro-

meteor profiles are used in the iterative process to identify

atmospheric states, the state definitions depend only on

the large-scale pressure, temperature, relative humidity

(RH), and winds. As a result, once the states are defined

they can be applied to any climate model or numerical

weather prediction model that produces a similar set of

large-scale atmospheric fields (by determining which

state definition most nearly matches any given set of

large-scale fields) and no hydrometeor profiles are

needed to determine the state. Later in this article we

compare simulated hydrometeor profiles from the MMF

climate model with ARM observed profiles. We do this

because we are interested in evaluating the MMF’s

ability to predict hydrometeors, not because we require

the hydrometeor profiles to determine the atmospheric

state in the MMF. We could have, for example, com-

pared ARM observations of downwelling surface

shortwave fluxes with MMF simulated fluxes (as a

function of the atmospheric state) even though such

fluxes are not used in developing the state definitions in

any way. In fact, we eventually plan to expand the cur-

rent comparison of ARM data and MMF output to in-

clude a variety of additional data, including distributions

of surface shortwave and longwave fluxes.

3. The MMF and radar simulator

This study uses the MMF as developed by Marat

Khairoutdinov (Stony Brook) and David Randall (at

Colorado State University). It consists of the National

Center for Atmospheric Research (NCAR) Community

Atmosphere Model, version 3.0 (CAM3.0), and an em-

bedded 2D cloud resolving model. The details of the

MMF configuration are given by Khairoutdinov and

Randall (2001) and Khairoutdinov et al. (2005) and are

only briefly described here. CAM is the atmospheric

component of the Community Climate System Model

(CCSM) (Collins et al. 2006). In our version of the MMF,

CAM is run with the finite-volume dynamical core and

has 26 vertical layers and a horizontal resolution of

28 latitude and 2.58 longitude. The dynamical time step

of the CAM is 20 min. Details of the CAM physics can

be found in Collins et al. (2006). The embedded CRM

within each CAM grid cell has 64 columns at 4-km

spacing and 24 layers in the vertical, which coincide with

the lowest 24 levels of the CAM (Khairoutdinov and

Randall 2003). The CRM domain is aligned in the east–

west direction with cyclic lateral boundary conditions.

The CRM runs continuously with its own 15–20-s dy-

namical time step. Radiation calculations using the CAM

radiative transfer code are performed on each CRM

column every 10 min. The CRM predicts the total non-

precipitating water (vapor 1 liquid 1 ice) and total

precipitating water (rain 1 snow 1 graupel). The CRM
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uses the same optical property parameterizations and

radiation code as the CAM, although no overlap ap-

proximation is needed.

As described in section 2, the atmospheric state of the

MMF output is determined by finding the state defini-

tion closest in distance (see section 2) to the MMF output.

The state definition does not depend on the hydrome-

teor profile; however, we want to know whether the

MMF produces the correct the hydrometeor profile in

each state. Radar returns were therefore obtained from

the model output using the QuickBeam radar simulation

package (Haynes et al. 2007). QuickBeam takes vertical

profiles of cloud and precipitation mixing ratios pro-

duced by a cloud resolving model and converts them

into equivalent radar reflectivities as would be viewed

from a satellite passing over the model domain or from

a ground-based radar. Details on application of the

QuickBeam simulator to the MMF output are given by

Marchand et al. (2009), who compare global zonally,

monthly averaged profiles for hydrometeor occurrence

(as well as joint histograms of radar reflectivity with height

for select regions) from the MMF with National Aero-

nautics and Space Administration (NASA) CloudSat

(94-GHz spaceborne radar) observations. The MMF has

also been the focus of several evaluation studies including

Khairoutdinov and Randall (2001), Khairoutdinov et al.

(2005), Ovtchinnikov et al. (2006), DeMott et al. (2007),

McFarlane et al. (2007), and Zhang et al. (2008).

4. Results

In this section we discuss the 12 synoptic patterns

obtained from the classification scheme described in

section 2 (and summarized in Table 1) and their asso-

ciated simulated and observed profiles of hydrometeor

occurrence. Figures 4 and 5 show the profiles for each

atmospheric state. The observations (RUC 1 ARM) are

in blue and the simulated (MMF) profiles are in red.

Figure 4 shows the occurrence profiles using a radar

reflectivity threshold of 240 dBZe, while in Fig. 5 a

threshold of 225 dBZe is used. That is, Fig. 4 shows how

often hydrometeors with a reflectivity of 240 dBZe or

larger are observed (at each altitude) and how often it is

simulated. The 240-dBZe threshold is well within the

sensitivity limit the ARM radar in the upper tropo-

sphere (where the radar sensitivity is poorest) and is

sufficient to detect most though not all cloud condensate

(Clothiaux et al. 2000). Changing the threshold from

240 dBZe to 225 dBZe shows the degree to which low-

reflectivity clouds (those with both low amounts of

condensate and small particles) are contributing to the

total occurrence. As in Fig. 2, the percent of time each

state occupies and the p value (the estimated probability
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that the observed and simulated profile could be two

realizations from a common parent population) are given

for each state. Also as in Fig. 2, the black line and as-

terisks in Figs. 4 and 5 denote altitudes where compar-

isons were possible and where the p value is greater than

5%, respectively.

To begin our description of the atmospheric states, we

first group the states by the surface-wind direction and

follow this with additional comments on the represen-

tation of fronts.

a. Southerlies

States 2, 4, 9, 10, and 12 all have surface southerlies.

This is typical in the summertime and in return-flow

situations in the transition seasons when moisture from

the Gulf of Mexico is advected northward through the

plains.

States 9 and 10 are summertime states, with among the

hottest surface temperatures. State 9 has the hottest

surface and is associated with weak 500-hPa flow and

little moisture in the upper troposphere, while state 10

features more northwesterly flow (with stronger ridging

to the southwest) and somewhat higher relative humidity.

In Fig. 4, the ARM observations for both states 9 and 10

show low fractional occurrence that increases with alti-

tude from near the surface until at least 10 km above

ground level. In state 9, the observations show slightly

less fractional coverage than in state 10 and with a peak

FIG. 4. Comparison of MMF simulated profiles of hydrometeor occurrence at 240 dBZe with ARM cloud radar observations at

240 dBZe. MMF shown in red, ARM (via RUC) in blue. Other lines and symbols as per Fig. 2.
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in cloud occurrence that is slightly higher in altitude. In

both states, the MMF produces profiles with a similar

overall shape to the observations but with occurrence

fractions that are too large, especially above 10 km. The

simulated occurrence profiles in states 9 and 10 are more

similar to each other than observed profiles. In state 9,

the comparison test (the p value) unambiguously indi-

cates that the MMF occurrence fraction is too large

relative to the observations between 5 and 15 km. In

state 10 the MMF profile is more similar to the obser-

vations, though clearly the high-cloud peak is too high.

Examination of states 9 and 10 in Fig. 5 (threshold

225 dBZe) shows that much of overestimate in occur-

rence is due to thin cloud. In particular, the MMF and

ARM profiles for state 10 compare very favorably at the

225-dBZe threshold. We also note that state 9 occurs

23% of the time in the MMF (the most of any state)

compared with about 11% in the observations. We will

discuss this further in the next section.

States 2, 4, and 12 are largely transition-season states.

State 4 has the coolest surface temperatures and (unlike

the other two states) does sometimes occur during Jan-

uary and February. The ARM observations in Fig. 4

show few hydrometeors below 5 km (with perhaps a

rather weak low-cloud peak near 1 km) and a high-cloud

peak just above 10 km. At the 240-dBZe threshold, the

MMF appears to capture the overall shape well but with

occurrence fractions that are too large. The difference

appears to be statistically significant between 3 and 6 km.

At the 225-dBZe threshold (Fig. 5), the ARM obser-

vations show the high-cloud peak is largely due to rel-

atively thin cloud and the upper-level peak lowers to

FIG. 5. As in Fig. 4, but using a 225-dBZe threshold.
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around 8 km. The MMF captures the general trend, but

the upper-level peak drops too much. Figure 4 also

shows that the overprediction of hydrometeor occur-

rence below 5 km is not due to thin cloud.

State 2 features warmer surface temperatures than

state 4 with an approaching trough and southwesterly

flow at 500 hPa. The ARM observations in Fig. 4 show

that state 2 features a low-cloud peak near 2 km and a

high-cloud peak just below 10 km. At the 240-dBZe

threshold, the MMF seems to capture the upper peak

reasonably well, but the low-cloud peak is poorly cap-

tured. The MMF does appear to have a low-cloud peak,

but it is too weak and too low (near 1 km). The ARM

observations in Fig. 4 show that in state 2 the position of

the upper-cloud peak does not change markedly when the

radar minimum reflectivity threshold is increased from

240 to 225 dBZe (unlike state 4). However, the peak in

the MMF occurrence profile does drop in altitude.

State 12 features warmer surface temperatures than

either state 2 or 4, zonal flow at 500 hPa, and somewhat

lower relative humidity at 500 and 375 hPa. Figure 4

shows significant hydrometeor occurrence throughout

the troposphere, with a low-cloud peak near 2 km, a

weak midlevel peak just above 5 km, and a high-cloud

peak just above 10 km. Figure 4 shows that much of this

condensate is relatively thick cloud and precipitation,

including the condensate above 10 km. The MMF does a

good job of capturing the high-level hydrometer occur-

rence in this state, but the low- and midlevel hydrome-

teors are largely missing.

b. Northerlies

States 6, 7, and 8 have northern surface winds. State 6

represents post-cold-frontal conditions at the ARM site,

with the cold front located in the southeast corner of the

domain. This state features cold to cool surface tem-

peratures, high surface pressure in the north of the do-

main, and moist conditions throughout the troposphere.

Figures 4 and 5 show that state 6 has significant hydro-

meteor coverage starting near the surface and extending

to near 10 km, with a peak in hydrometeor occurrence

below 5 km. Overall the MMF appears to capture the

observed profile well. While the model shows hydro-

meteor occurrence profiles that are larger than observed

below about 3 km, somewhat surprisingly, the difference

does not appear to be statistically significant at the 95%

level of confidence.

States 7 and 8 both feature dry conditions throughout

the troposphere (especially state 8), high surfaces pres-

sures, and northwesterly flow at 500 hPa. While state 7

features (weak) northwesterly surface winds and state 8

northerly winds, the more salient difference between the

two states is likely the surface temperature, which is

much warmer in state 8. Not surprisingly, Figs. 4 and 5

show both states have low hydrometeor coverage, with

state 8 having more high thin cloud. The MMF appears

to capture state 8 reasonably well, although (as with

most of the summertime states) there is a statistically

significant tendency to overpredict the amount of high

thin cloud above 10 km. State 7 is not as well simulated.

While the hydrometeor occurrence is low, the model

nonetheless appears to be underpredicting the amount

of hydrometeor with reflectivities larger than 225 dBZe.

c. Weak surface winds

State 11 features weak surface winds and warm sur-

face temperatures. Of the four states that occur during

June, July, and August this state has the coolest surface

temperatures and is the only state that does not feature a

strong southerly or southwesterly winds at 875 hPa near

the ARM site (that is across the center of the analysis

domain; see, for example, Fig. 1). State 12 is the most

similar state to 11 overall, though we note state 11 has

higher relative humidity at 500 and 375 hPa than state

12. The observed profile of hydrometeor occurrence in

state 11 is quite similar to that of state 12. The most

notable difference between the observed profiles for

these two states is that state 12 has more hydrometeor

coverage above 10 km. As Figs. 4 and 5 show, the MMF

produces a hydrometeor coverage profile with consid-

erably too much thin cloud above 5 km, while at the

225-dBZe threshold the simulated profile matches the

observed profile quite well—even below 5 km.

d. Fronts

States 1, 3, and 5 feature fronts. All three feature

colder air to the north and warmer and moister air to the

south. States 1 and 3 are likely cold season warm fronts.

State 1 (shown in Fig. 1) has surface easterlies over much

of the domain (including at the ARM site), strong low

pressure at the surface in the southwestern part of the

domain, and very moist southwesterly flow at 500 and

375 hPa. The observed cloud occurrence profiles in Figs.

4 and 5 show large fractional coverage from near the

surface to about 9 km, suggesting deep ascending air. At

the 240-dBZe threshold, the MMF produces cloud oc-

currence profiles that are larger than observed. For the

most part, however, the difference does not exceed the

95% confidence level. At the 225-dBZe threshold there

is a notable drop in the simulated occurrence relative to

the observations above about 7 km, while the occur-

rence fraction below 7 km remains too large (likely be-

cause of excessive precipitation).

State 3 differs from state 1 in that the surface low

pressure is located to the northwest of the ARM site
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rather than to the southwest. Surface winds are weaker

(at the ARM site) and 500-hPa flow is much drier and

more westerly. These differences are reflected in the

hydrometeor profiles, which show lower overall hydro-

meteor fractions in state 3 than state 1 and more dis-

tinctive warm air/cloud overrunning. Like state 1, the

MMF produces a hydrometeor occurrence profile with a

shape that is similar to the observed profile at 240 dBZe

but with hydrometeor fractions that are too large. Also

like state 1, the simulated hydrometeor fraction above

7 km drops dramatically at the 225-dBZe threshold,

while the hydrometeor fractions below 7 km remain too

large.

State 5 shows a surface cold or stationary front, ori-

ented southwest–northeast across the domain. Schultz

(2004) presents a detailed discussion of patterns that

look like this. While 500- and 375-hPa relative humidity

is high in the north of the domain (60%–80%), values

over most of the domain (including the ARM site) are

relatively modest at about 50%. Figures 4 and 5 show

hydrometer fractions of about 10% rising from near the

surface to near 5 km and then dropping to near 0% at

10 km. The MMF simulates the hydrometeor profile for

this state remarkably well, especially at the 225-dBZe

threshold.

e. Annual cycle

The percentage of time each state in the RUC analysis

and MMF output occupies is shown at the top of each

panel in Figs. 4 and 5. With a couple of exceptions dis-

cussed earlier, the percentages are similar for most

states. Figure 6 provides a more detailed look, showing

the annual cycle of the atmospheric states found in the

RUC model (Fig. 6a) and MMF (Fig. 6b). In this figure,

occurrence is normalized to 1 for each month (i.e., each

column). The overall pattern of the two is similar. Both

models show states 9 through 12 dominating the summer

months June to August (months 6 to 8), with states

1 through 8 occurring throughout much of the rest of the

year. Both models also show some states occurring more

in the transition seasons (e.g., states 2 and 8) and others

states more in the winter (e.g., states 3 and 7). While

broadly similar, the patterns are not identical, as high-

lighted in Fig. 6c. Throughout most of the year, the

differences in state occurrence are relatively small (ap-

proximately 610%). However, a few of the differences

are almost certainly significant. In particular, state 9, the

atmospheric state with the hottest surface temperatures,

occurs about 23% of the time in the MMF compared

with about 11% of the time in the RUC analysis and, as

FIG. 6. Depiction of the annual cycle of states for

the (a) RUC model and (b) MMF. (c) Difference,

RUC 2 MMF. The frequency of occurrence is

normalized to 1 for each month (i.e., each column).
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shown in Fig. 6, occurs an unduly large fraction of the

time throughout the summer. An examination of the

MMF output shows that it overestimates summertime

near-surface air temperatures (relative to the RUC),

and it appears likely that this bias favors the identifica-

tion of states with warmer surfaces temperatures. In

general, biases in either the RUC or MMF output have

the potential to lead to problems in the classification. In

the future, we hope to use other numerical weather

prediction analysis datasets to help assess the degree to

which potential biases may be influences our results. We

also plan to evaluate the effect of redefining the neural

network inputs such that only differences relative to in-

dividual model mean values are used in the classification.

5. Discussion and conclusions

In section 4, we used objectively identified atmospheric

states as a basis to compare profiles of hydrometeor oc-

currence produced by the multiscale modeling frame-

work climate model with cloud radar observations from

the U.S. Department of Energy (DOE) ARM program

Southern Great Plains Site. The comparison shows that

1) For cold-frontal and post-cold-frontal conditions

(states 5 and 6), the MMF produces profiles of cloud

occurrence that compare favorably with radar obser-

vations (using either a 240- or 225-dBZe threshold).

There is some indication that low-level (less than 3 km)

hydrometeor fractions in post-cold-frontal condi-

tions may be overpredicted.

2) For warm-frontal conditions (as represented by

states 1 and 3), the MMF tends to produce hydro-

meteor fractions that are too large below 7 km (using

either a 240- or 225-dBZe reflectivity threshold).

Comparison of MMF output with CloudSat observed

reflectivity height joint histograms has shown that the

MMF tends to produce precipitating hydrometeor

coverage that is too large in the midlatitude storm

tracks (Marchand et al. 2009) in agreement with this

finding.

3) Comparisons in states 1 and 3 also indicate that the

hydrometeor fractions are likely too large above

7 km using a 240-dBZe threshold and yet too small

using a 225-dBZe threshold. It may be that the total

amount of condensate is about right but spread out

over too large a volume (perhaps because of the

model’s limited vertical resolution). States 2 and 4

may also contain some warm-frontal conditions and

also display too much low-reflectivity cloud relative

to the total hydrometeor coverage above 7 km.

4) The MMF does not appear to correctly capture the

formation of low clouds in those states where low-

level moisture is being advected from the Gulf of

Mexico over the ARM site (states 2 and 12).

5) In several states, including state 8 and the four states

that occur during June, July, and August (states 9, 10,

11, and 12), the MMF produces too much high and

thin cloud, especially above 10 km. This result ap-

pears to be a common feature of the model in con-

vective regions (Ovtchinnikov et al. 2006; Zhang et al.

2008). In all of these states, the MMF produces hy-

drometeor occurrence profiles that compare more fa-

vorably with observations using a 225-dBZe threshold

than a 240 dBZe-threshold.

It is not immediately clear why the MMF should rep-

resent cold-frontal conditions better than warm-frontal

conditions. We speculate that the two-dimensional na-

ture of the cloud resolving model and its east–west ori-

entation may be a factor. While the comparison

presented here provides some insight into possible

sources of error in the MMF clouds and precipitation

structure, in the future we hope to use the atmospheric

states to directly study the cloud resolving model used in

the MMF. We plan to run the CRM using the atmo-

spheric states (or more precisely composites of the

MMF output including advective tendencies) to see if

we can reproduce the MMF cloud occurrence profiles. If

running the CRM with composite conditions does re-

produce the MMF occurrence profiles (among other

observations), the composite states might well be

used to test improvements in the CRM (e.g., micro-

physics or subgrid-scale turbulence schemes) or the

model configurations (e.g., grid resolution, 2D versus

3D, etc.) without having to run the full MMF. Alterna-

tively, the time series of states from the RUC analysis

might be used to obtain representative case studies. As

with all case studies, this latter approach will require

constructing advective tendencies and other forcings

from numerical weather prediction analysis or other data

sources.

The atmospheric states developed here are complex

patterns tailored for the ARM SGP site and this set

cannot be applied to other areas. Naturally, this might

lead one to question why we used an objective classifi-

cation technique rather than, for example, using our

knowledge of Oklahoma weather patterns to design a

set of atmospheric states that captures characteristics

that we know are important for this location. The answer

is that we eventually hope to apply the classification

technique to obtain a customized set of atmospheric

states for many (if not every) grid cell in the GCM—a

process that needs to be fully automated. Our hope is

that this technique will prove sufficiently robust that a

customized set can be generated for any location.
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However, the classification scheme may not be as ef-

fective in identifying distinct profiles of hydrometeor

occurrence during convectively dominant atmospheric

conditions because the synoptic fields may not contain

sufficient information to effectively capture factors that

influence convective initiation or efficiency. We plan to

test this hypothesis by applying the classification scheme

to other locations including the ARM tropical western

Pacific sites and also plan eventually to test the tech-

nique using satellite observations [e.g., from the NASA

CloudSat, Cloud-Aerosol Lidar and Infrared Path-

finder Satellite Observation (CALIPSO), Multiangle

Imaging Spectroradiometer (MISR) sensors] rather

than ground-based radar.

One of the difficulties faced by all objective classifi-

cation schemes is how to determine the optimal number

of states. Our solution is to initially choose too many

classes and then allow the local-scale data (radar profiles

of cloud occurrence in the present analysis), which are

not used in the state definition, to drive the determination

of what is or is not a useful class. This process ensures that

the identified states are associated with statistically

meaningful differences in cloud occurrence (at the local

scale) and that the differences are also statistically stable

and can therefore be useful for comparisons of obser-

vations with model output. Because the hydrometeor

profiles are only used to help guide the identification of

states and are not used in actually defining the state,

once the state definition is constructed it can be applied

to any model that produces the needed large-scale fields

(without having to simulate profiles of hydrometeor

occurrence).

While effective, this process will tend to force atmo-

spheric states that produce similar profiles of hydro-

meteor occurrence to merge, even if the hydrometeors

happen to be generated by different processes. Another

weakness of the classification approach is that the neural

network state definitions (as described in section 4) are

essentially composites of all inputs assigned to a given

state (during the network training phase). Individual

meteorological conditions may not fit into any of the

definitions very well, with the effect that these misfits

increase the within-state variance of the observed or

simulated data and reduce the effectiveness of com-

parisons. We know the distance of each input to the state

definition and could potentially remove inputs that are

far from any state definition in the data analysis. It is

possible that such filtering could reduce the net within-

state variability and thus improve comparisons with

model output. It is also possible that analysis of the

within-state distances could be used to help determine if

a state has multiple internal clusters that might serve as

additional states and thereby help address the potential

problem of overmerging. We hope to research these and

other technique improvements in the future.
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APPENDIX

Relationship to Previous 25-State Set

Many of the states (10, 11, 12, 13, 15, 16, 19, and 25)

in the original 25-state set (M06) featured north-

northwesterly surface winds and were associated with

cold-frontal systems or postfrontal conditions. These

states are distinguished by factors such as differences in

the surface temperature, strength of the surface high

pressure, or the amount of upper- and midlevel moisture

(see discussion in M06). While in some sense meteoro-

logically distinct, many of the states are were poorly

populated with ARM data. In the current classification,

these states have been combined into states 5, 6, and

7—as listed in Table A1. This highlights that the neural

networks classifier returns the ‘‘best match’’ to each input

pattern and so state 5, whose composite shows a clear cold

or stationary front at the ARM site, will naturally include

radar observations from some prefrontal and postfrontal

conditions. If a longer (more than 3 yr) dataset was used,

it is likely that more states could be identified (with stable

and distinct hydrometeor occurrence profiles), repre-

senting more varied frontal conditions.

Some of the 25 M06 states have a very close match in

the new 12-state set. For example, M06 states 1 and 8 are

very similar to new states 12 and 8, respectively. How-

ever, some features in the 25 states are no longer captured

distinctly. For example, M06 state 7 is a summertime

cool-front case (enough to relieve the heat with some

cooler air, but certainly not a good blast of cold air). This

state has no direct analog in the new set. The cases that

would have gone in M06 state 7 are primarily split be-

tween new states 10 and 11 (neither of which is a very

good fit). Similarly, several of the original states, for

example, M06 states 5 and 6, featured easterly surface
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winds. The cases that would have gone into these states

are now contained in the new states 11 (weak winds) and

12 (weak, southerly winds), respectively. Table A1 shows

how the M06 states map into the new 12-state set. Those

M06 states listed in Table A1 that list two destinations

are states that are not well captured by any single state in

the new set.
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