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ABSTRACT

The isentropic system of equations has particular advantages in the numerical modeling of weather and

climate. These include the elimination of the vertical velocity in adiabatic flow, which simplifies the motion to

a two-dimensional problem and greatly reduces the numerical errors associated with vertical advection. The

mechanism for the vertical transfer of horizontal momentum is simply the pressure drag acting on isentropic

coordinate surfaces under frictionless, adiabatic conditions. In addition, vertical resolution is enhanced in

regions of high static stability, which leads to better resolution of features such as the tropopause. Negative

static stability and isentropic overturning frequently occur in finescale atmospheric motion. This presents a

challenge to nonhydrostatic modeling with the isentropic vertical coordinate. This paper presents a new

nonhydrostatic atmospheric model based on a generalized vertical coordinate. The coordinate is specified in

a manner similar to that of Konor and Arakawa, but ‘‘arbitrary Eulerian–Lagrangian’’ (ALE) methods are

used to maintain coordinate monotonicity in regions of negative static stability and to return the coordinate

surfaces to their isentropic ‘‘targets’’ in statically stable regions. The model is mass conserving and imple-

ments a vertical differencing scheme that satisfies two additional integral constraints for the limiting case

of z coordinates. The hybrid vertical coordinate model is tested with mountain-wave experiments including

a downslope windstorm with breaking gravity waves. The results show that the advantages of the isentropic

coordinate are realized in the model with regard to vertical tracer and momentum transport. Also,

the isentropic overturning associated with the wave breaking is successfully handled by the coordinate

formulation.

1. Introduction

Since the introduction of the quasi-Lagrangian system

of equations by Starr (1945), potential temperature (u)

has gradually become more widely used as a vertical

coordinate in numerical atmospheric models. The pri-

mary advantage of the u coordinate is that the vertical

velocity _u [ Du/Dt is zero for adiabatic processes, which

reduces the numerical error associated with vertical

advection. However, difficulties include negative static

stability, produced, for example, by the overturning of

isentropic surfaces and planetary boundary layer (PBL)

processes, and the intersection of isentropic surfaces

with the lower boundary. The latter issue has been

overcome in the successful development of various

quasi-static u-coordinate models (e.g., Eliassen and

Raustein 1968; Bleck 1984; Hsu and Arakawa 1990).

Hybrid vertical coordinates have been developed to

address the issues of lower-boundary coordinate inter-

section and the lack of vertical resolution in the PBL.

With this method, a terrain-following (s) coordinate

is used in the lowest model layers, while the free at-

mosphere is represented by u coordinates. Quasi-static

models using hybrid coordinates include Uccellini

et al. (1979), Zhu et al. (1992), Bleck and Benjamin

(1993), Johnson et al. (1993), Konor and Arakawa (1997),

Benjamin et al. (2004), Schaack et al. (2004), and

Dowling et al. (2006).

With advances in computer technology, large-domain

weather forecasting and global climate models are being

developed with high horizontal resolution (Dx & 10 km)

and nonhydrostatic dynamical cores that resolve fine-

scale atmospheric motions (e.g., Skamarock et al. 2005;

Davies et al. 2005; Satoh et al. 2008). On these scales,

isentropic overturning associated with wave breaking and

convection is a common feature. Because of this, using u

coordinates in nonhydrostatic models is a challenge.
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Only in the past decade have nonhydrostatic hybrid (u–s)

coordinate models been developed (e.g., Skamarock

1998; He 2002; Zängl 2007).

Skamarock (1998) and He (2002) extended the hybrid

coordinate method of Bleck and Benjamin (1993) to the

nonhydrostatic system. Their methods involve a re-

gridding algorithm in which minimum and maximum

layer-thickness requirements are imposed in order to

provide vertical resolution in statically unstable regions,

that is, where ›u/›z , 0. Under regridding, mass is ver-

tically exchanged to maintain layer separation. Spatial

smoothing is applied to coordinate surfaces, which helps

maintain layer separation and prevent surfaces from

becoming vertical. Successful two-dimensional moun-

tain wave-breaking experiments were achieved by both

Skamarock (1998) and He (2002). With the latter model,

a three-dimensional simulation of baroclinic wave growth

on a b plane was also performed.

Zängl (2007) developed a version of the nonhydro-

static Weather Research and Forecasting Model (WRF;

Skamarock et al. 2005) that uses an adaptive vertical grid.

The value of the terrain-following hydrostatic-pressure

vertical coordinate (Laprise 1992), used in the WRF

model, is calculated at each grid point using a prognostic

equation. This is a relaxation–diffusion equation that

nudges the coordinate toward a ‘‘target’’ field. The speci-

fication of the target field determines the nature of the

coordinate. Zängl specified the target field to be terrain

following near the surface and isentropic in the free

atmosphere. A diffusion term in the prognostic equa-

tion maintains an even layer spacing, smoothness in the

horizontal, and coordinate monotonicity in regions of

isentropic overturning.

The designs of the vertical coordinate in these

nonhydrostatic models were influenced by arbitrary

Lagrangian–Eulerian (ALE) methods (Hirt et al. 1974)

and adaptive grid techniques (Dietachmayer and

Droegemeier 1992). With the ALE method, the three-

dimensional spatial arrangement of the model grid is

predicted in a Lagrangian manner. However, mass is

allowed to cross grid-cell walls, as necessary, to main-

tain grid regularity. In contrast, the hybrid coordinate

method of Konor and Arakawa (1997, hereafter KA97)

is not derivative of ALE or adaptive grid techniques. In

their model, the vertical coordinate is a specified func-

tion of u and s, with a smooth transition with height

toward isentropic coordinates. As a result, the combi-

nation of the quasi-Lagrangian (u) and Eulerian (s)

components is strictly prescribed at each model level.

In this paper, we describe a new nonhydrostatic, hy-

brid vertical coordinate atmospheric model based on

the vertical coordinate of KA97, but incorporating the

adaptive grid methods similar to those of the earlier

nonhydrostatic hybrid-coordinate models mentioned

above. Section 2 of this paper describes the continuous

system of equations based on a generalized vertical

coordinate, the specification of the vertical coordinate,

and the diagnosis of the generalized vertical velocity.

The methods used to smooth the grid are introduced

within the context of the continuous system. In section 3,

the vertical grid and the vertically discrete system of

equations are presented. Simulations of 2D mountain

waves are presented in section 4. These include an

idealized small-amplitude case, and a large-amplitude

case based on the 11 January 1972 Boulder, Colorado,

windstorm. A summary and conclusions are presented

in section 5.

2. The continuous system of equations

Our model is based on the compressible nonhydro-

static Eulerian equations of fluid motion in a general-

ized vertical coordinate. These are the primitive equa-

tions reviewed in Kasahara (1974), but with the vertical

acceleration term, Dw/Dt, restored in the vertical mo-

mentum equation. In this section, we present the gov-

erning equations used in the model. The vertical coor-

dinate is then presented, along with the method for

diagnosing the generalized vertical velocity. Finally, we

will analyze the vertical flux of horizontal momentum

in the generalized vertical coordinate. The resulting

expressions will be used to contrast the fluxes in the

model with Eulerian versus quasi-Lagrangian vertical

coordinates.

a. Governing equations

The material time derivative expressed in the gener-

alized vertical coordinate h is written as

D

Dt
5

›

›t
1 v � = 1 _h

›

›h
, (2.1)

where the partial time derivative and the horizontal-

gradient operator = are evaluated on constant-h sur-

faces, _h [ Dh/Dt is the generalized vertical velocity, and

v is the horizontal velocity.

The mass continuity equation is expressed in terms of

the pseudodensity m as

›m

›t
1 = � (mv) 1

›

›h
(m _h) 5 0, (2.2)

where

m [ r
›z

›h
. (2.3)
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Here, r is density and z is geopotential height. The

upper and lower boundaries are assumed to be material,

constant-h surfaces, so the boundary conditions are

(m _h)T 5 (m _h)S 5 0, (2.4)

where the subscripts T and S refer to the upper and

lower boundaries, respectively. The horizontal mo-

mentum equation is given by

Dv

Dt
1 f k 3 v 5 HPGF 1 F, (2.5)

where f is the Coriolis parameter, k is the vertical unit

vector, HPGF is the horizontal pressure-gradient force

vector, and F is the horizontal friction force. The hori-

zontal pressure-gradient force may be written in terms

of pressure (p) as

HPGF 5�1

r
=hp 1

1

mg

›p

›h
=hf, (2.6a)

or in terms of the Exner function (P) as

HPGF 5�u=hP 1 u
›P

›f
=hf, (2.6b)

where g is gravity, f 5 gz is the geopotential, the Exner

function is defined by

P [ cp
p

p0

� �k

, (2.7)

and u is the potential temperature given by

u 5
cpT

P
, (2.8)

where T is temperature. The vertical momentum equa-

tion is

Dw

Dt
5 VPGF� g 1 Fz, (2.9)

where w is the vertical velocity, VPGF is the vertical

pressure-gradient force, and Fz is the vertical compo-

nent of the friction force. The vertical pressure-gradient

force may be written in terms of pressure as

VPGF 5� 1

m

›p

›h
, (2.10a)

or in terms of the Exner function as

VPGF 5�gu
›P

›f
. (2.10b)

The lower boundary condition on w is given by

wS 5 vS � =zS. (2.11)

The thermodynamic energy equation can be written in

terms of the potential temperature as

›u

›t
1 v � =u 1 _h

›u

›h
5

Q

P
, (2.12)

where Q is the diabatic heating. Within the generalized

vertical coordinate framework, geopotential height is a

dependent variable. Using the definition w [ Dz/Dt, we

can write the tendency equation for z as

›z

›t
1 v � =z 1 _h

›z

›h
5 w. (2.13)

The atmosphere is assumed to be an ideal gas for which

the equation of state is given by

p 5 rRT, (2.14)

where R is the gas constant for dry air.

We define a terrain-following, height-based vertical

coordinate s as

s [
z�zS

zT �zS
, (2.15)

which is a variant of the coordinate introduced by Gal-

Chen and Somerville (1975).

Neglecting diabatic heating and frictional forces, the

set of equations given by (2.2)–(2.15) is one equation

short of being a closed system. The remaining relation

to be specified is that for the dependent variable _h, the

generalized vertical velocity, which is discussed in the

following subsection.

b. Specification of the vertical coordinate and
diagnosis of the generalized vertical velocity

1) THE VERTICAL COORDINATE

The above system of governing equations can be

closed by specifying the vertical coordinate as a function

of any combination of the dependent variables, as long

as that function is monotonic in height. This leads to the

determination of the generalized vertical velocity _h. For

example, choosing h 5 z leads to _h 5 _z 5 w, while

choosing h 5 u leads to _h 5 _u 5 Q/P. We employ an

alternative approach, which is to reverse this process by

specifying the generalized vertical velocity, and apply it

in the vertical advection terms of the prognostic equa-

tions. As a result, h is not necessarily defined in terms of

the dependent variables, yet it still serves as the vertical

coordinate as long as it remains monotonic in height.

This condition is met as long as the height field, deter-

mined by (2.13), remains a monotonic function of h. If
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this condition is violated, then the generalized vertical

velocity may be respecified to maintain monotonicity.

This approach is reminiscent of the ALE method of Hirt

et al. (1974). Within the ALE framework, the general-

ized vertical velocity would be specified as zero until the

height field becomes nonmonotonic, at which point an

adjustment would be made. Lin (2004) employs a sim-

ilar method.

As a further example of the approach described above,

if h were initially specified as the quasi-Lagrangian

isentropic coordinate, then choosing _h 5 Q/P would

automatically satisfy ›u/›t 5 0 through (2.12), which

maintains u 5 h. Similarly, if h were initially specified to

be the geopotential height, then choosing _h 5 w would

satisfy ›z/›t 5 0 through (2.13), maintaining z 5 h. In the

first example, the vertical coordinate is the ‘‘target value’’

for the potential temperature, while in the latter, it is the

target value for the height.

The vertical coordinate in our model is based on the

hybrid s–u coordinate developed by KA97. It is the

terrain-following s coordinate near the surface and

transitions to u coordinates with height. The coordinate

serves as a target field for a specified function F(u, s).

Therefore, the generalized vertical velocity diagnosis

primarily follows KA97, but is modified in order to

maintain coordinate monotonicity as well as specific

requirements on the spatial distribution, or ‘‘smooth-

ness,’’ of coordinate isosurfaces, to be described below.

The maintenance of monotonicity near the surface is

provided by the s contribution to the vertical coordi-

nate, while in the free atmosphere, where the coordi-

nate is primarily u, monotonicity is maintained by an

adaptive grid method (e.g., Skamarock 1998; He 2002;

Zängl 2007). While this method is typically associated

with the discrete grid framework, here we formulate it

in the continuous system.

The target relationship for the variables u and s is

F(u, s) 5 f (s) 1 g(s)u, (2.16)

where the functions f(s) and g(s) are chosen such that

g(s)! 0;
f (s)! 0, g(s)! 1;

s ! sS

s ! sT

�
. (2.17)

The form of g(s) that we use in the model is

g(s) 5 1� (1� s)r, (2.18)

where r is a constant greater than unity. This choice

satisfies (2.17), and the thickness of the s-like domain

near the surface can be controlled by the value of r: the

larger its value, the nearer the surface the coordinate

becomes fully isentropic. In KA97, the requirement

›F/›h . 0 is satisfied by choosing f(s) from

df

ds
1

dg

ds
umin 1 g

›u

›s

� �
min

5 0, (2.19)

where umin and (›u/›s)min are suitably chosen parame-

ters representing the lower bounds of the potential

temperature and static stability, respectively. In the

model, we specify (›u/›s)min 5 0. This means that the

condition ›F/›h . 0 is not necessarily met for statically

unstable profiles. However, unlike KA97, in which h [ F,

we allow F to depart from its time-independent target

value h in order to maintain the requirement ›h/›s . 0,

as shown below.

The time tendency of F is given by

›

›t

� �
h

F(u, s) 5
h�F(u, s)

trel
� _hS

›F

›h
, (2.20)

where trel is a relaxation time constant, and _hS is the

smoothing contribution to the generalized vertical ve-

locity to be described below. The first term on the rhs

of (2.20) is a Newtonian relaxation term that relaxes

F toward its target value h. The second term is an

advective adjustment to F required to satisfy two

smoothness criteria for coordinate isosurfaces, as de-

scribed below. Note that in KA97, for which h 5 F by

definition, the rhs of (2.20) is identically zero.

We prescribe two smoothness criteria for the spatial

arrangement of coordinate isosurfaces: a horizontal

criterion to maintain

=4z
�� ��, (=4z)max, (2.21)

and a vertical criterion to maintain

FIG. 1. Three discrete points along a continuous profile of z as a

function of h. Used to derive the mathematical form of the ‘‘ver-

tical smoothness parameter.’’
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›2z

›h2

›z
›h

��������
��������,

›2z

›h2

›z

›h

0BB@
1CCA

max

, (2.22)

where the ()max values in the above equations are spec-

ified maximum limits. The horizontal criterion (2.21) is

designed to limit the existence of sharp horizontal gra-

dients and their associated truncation errors in the dis-

crete model. The vertical criterion (2.22) eliminates the

possibility of h from becoming nonmonotonic with

height, and in the discrete model, it prevents the relative

difference in the thickness of adjacent layers from be-

coming too large. It basically serves to keep the distri-

bution of layer thicknesses in a model column evenly

distributed. This can be seen by considering a represen-

tative continuous relationship between z and h, as shown

in Fig. 1. Three points are shown along the curve that

represent discrete model positions. The relative differ-

ence in the thickness of adjacent layers is expressed by

the nondimensional parameter

d2z

dz
[

(z3 �z2)� (z2 �z1)

1

2
(z3 �z1)

, (2.23)

where the d2 operator refers to the difference operator d

recursively applied twice. Applying a Taylor series ex-

pansion to (2.23), we obtain

where the subscript ‘‘2’’ denotes continuous derivatives

at the discrete point ‘‘2’’, (dh)A [ h2 2 h1, and (dh)B [

h3 2 h2. For (dh)A 5 (dh)B 5 (dh), and truncating the

Taylor series, we have

d2z

dz
ffi

›2z

›h2

� �
›z

›h

� � (dh), (2.25)

which is the basis of the vertical smoothness parameter

in (2.22).

In short, the formulation of the vertical coordinate

involves two groups of ‘‘tunable’’ coefficients: 1) the

KA97 parameters r, umin, and (›u/›s)min; and 2) the

smoothness parameters associated with the adaptive

grid method. Optimal values for these mainly depend

on the spatial scales of the atmospheric phenomena

under investigation (which drive the choice of the

smoothness parameters), the height above the surface

above which the coordinate becomes isentropic, the

time scale to return to the target value of F(u, s), and

the expected lower bound for the potential tempera-

ture in the domain. So far we have tested the model

in limited-area case studies, and it provides good re-

sults for a wide range of parameter values. However,

when the model is extended to the global domain, the

optimal values will vary in space and time. It may then

be desirable to add the flexibility of having the pa-

rameters vary in order to optimally represent the var-

ious atmospheric regimes encountered globally and

seasonally.

2) DIAGNOSIS OF THE GENERALIZED VERTICAL

VELOCITY

Equation (2.20) serves as the starting point for the

diagnosis of the generalized vertical velocity. Note that

when the rhs of (2.20) is zero, the vertical velocity has

the same form as in KA97. For convenience, we express

the generalized vertical velocity as the sum of two

contributions; that is,

_h 5 _hT 1 _hS, (2.26)

where _hT is the ‘‘target seeking’’ contribution that main-

tains F(u, s) at (or relaxes it toward) its target value h

and _hS is the smoothing contribution, introduced in

(2.20), which provides the advective adjustment needed

to maintain the spatial smoothness of the coordinate

isosurfaces.

(i) ‘‘Target seeking’’ contribution to the
generalized vertical velocity

Considering _hS equal to zero in (2.20), and applying

the chain rule of differentiation to the lhs of (2.20), we

can write

›F

›u

� �
s

›u

›t
1

›F

›s

� �
u

›s

›t
5

h�F(u, s)

trel
. (2.27)

d2z

dz
5

1

2

›2z

›h2

� �
2

[(dh)2
B 1 (dh)2

A] 1
›z

›h

� �
2

[(dh)B � (dh)A] 1 � � �

›z

›h

� �
2

1

2
[(dh)B 1 (dh)A] 1

1

4

›2z

›h2

� �
2

[(dh)2
B � (dh)2

A] 1 � � �
, (2.24)
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Combining (2.12), (2.13), (2.15), and (2.27), and solving

for the generalized vertical velocity, we obtain

_hT 5
›F

›h

� ��1
›F

›u

� �
s

Q

P
� v � =u

� ��
1

›F

›s

� �
u

1

H
(w� v � =z) 1

F(u, s)� h

trel

�
, (2.28)

where

H [ zT �zS, (2.29)

which is the column height, and we used

›F

›h
5

›u

›h

›F

›u

� �
s

1
1

H

›z

›h

›F

›s

� �
u

. (2.30)

For F 5 h, (2.28) expresses the generalized vertical

velocity of KA97. When F 6¼ h, (2.28) has a singularity

for ›F/›h 5 0, which occurs in neutrally stable envi-

ronments and F ’ u. Therefore, we must modify the

generalized vertical velocity to avoid this singularity. A

straightforward method is to ‘‘freeze’’ the coordinate

isolines in space, such that ›z/›t 5 0, as ›F/›h ap-

proaches zero, as well as for ›F/›h , 0. In other words,

the coordinate becomes a stationary, Eulerian coordi-

nate in regions of negative static stability. From (2.13),

we then write

_hT 5
›z

›h

� ��1

(w�v � =z) for
›F

›h
# 0. (2.31)

For ›F/›h $ b, we use (2.28), where b is a parameter

with a value between 0 and 1. For 0 , ›F/›h , b, we use

a linear combination of (2.31) and (2.28) evaluated with

›F/›h 5 b; that is,

_hT 5 1�1

b

›F

›h

� �
rhs eqn. (2.31)½ �

1
1

b

›F

›h
rhs eqn. (2.28) with

›F

›h
5 b

� �
for 0 ,

›F

›h
, b. (2.32)

The result is

(ii) Smoothing contribution to the generalized
vertical velocity

The generalized vertical velocity contribution re-

quired to advectively adjust the geopotential height

field, per the horizontal and vertical smoothness criteria

described above, is calculated from

_hS 5� ›z

›t

� �
smoothing,
horiz

1
›z

›t

� �
smoothing,
vert

" #
›h

›z
, (2.34)

where the two terms in brackets are the height ten-

dencies due to horizontal and vertical smoothing.

The horizontal smoothing tendency is quantified in

the form of a ‘‘del-4’’ diffusion equation given by

where khoriz is a constant diffusion coefficient. The

smoothing tendency is nonzero only when |=4z| .

(=4z)max. The vertical smoothing tendency is similarly

expressed using second-order diffusion. The vertical

smoothing tendency is given by

_hT 5 1� 1

b

›F

›h

� �
›z

›h

� ��1

(w� v � =z) 1
1

b2

›F

›h

›F

›u

� �
s

Q

P
� v � =u

� �
1

›F

›s

� �
u

1

H
(w� v � =z) 1

F(u, s)� h

trel

� �
for 0 ,

›F

›h
, b. (2:33)

›z

›t

� �
smoothing,
horiz

5 �(maxf0, khoriz[j=4zj � (=4z)max]gsgn(=4z)), (2.35)

›z

›t

� �
smoothing,
vert

5 max 0, kvert
›2z

›h2

���� ����� ›z

›h

›2z
›h2

›z

›h

0BB@
1CCA

max

2664
3775

8>><>>:
9>>=>>;sgn

›2z

›h2

� �
, (2.36)
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where kvert is a constant diffusion coefficient. Vertical

diffusion only acts when the absolute value of the ratio

of the second and first derivatives of z with respect to h

exceeds the specified limit.

c. Vertical flux of horizontal momentum in a
generalized vertical coordinate

In this section we derive a time tendency equation for

the zonally averaged zonal velocity for the purpose of

diagnosing the vertical momentum flux in the model.

This is done to test the model’s accuracy and to contrast

the form of the fluxes within the s- and hybrid-vertical

coordinate frameworks. In the derivation, we determine

an expression for the Eliassen–Palm (EP) flux in a gen-

eralized vertical coordinate. The derivation follows

Andrews (1983), who derived the EP flux in isentropic

coordinates for quasi-static flow.

Combining (2.1), (2.3), (2.5), and (2.6a), the zonal

momentum equation can be written

›u

›t
1 u

›u

›x
1 y

›u

›y
1 _h

›u

›h
�f y

5
1

m
� ›

›x
p

›z

›h

� �
1

›

›h
p

›z

›x

� �� �
1 Fx, (2.37)

where u and y are the zonal and meridional velocity

components, respectively, and Fx is the zonal compo-

nent of the friction force. Combining (2.37) with the

continuity equation (2.2), the zonal momentum equa-

tion in flux form can be written as

›

›t
(mu) 1

›

›x
(muu) 1

›

›y
(muy) 1

›

›h
(mu _h)�fmy

5� ›

›x
p

›z

›h

� �
1

›

›h
p

›z

›x

� �
1 mFx. (2:38)

The zonal average of a given property a may be defined as

a [
1

L

ðL/2

�L/2

adx, (2.39)

where L is the length of the domain in the zonal di-

rection. Applying (2.39) to (2.38), we obtain

›

›t
(mu)1

›

›y
(muy)1

›

›h
(mu _h)�f my5

›

›h
p

›z

›x

� �
1mFx,

(2.40)

where we used

›

›x
( ) 5 0. (2.41)

In a similar manner, the zonally averaged continuity

Eq. (2.2) is

›

›t
m 1

›

›y
(my) 1

›

›h
(m _h) 5 0. (2.42)

Now divide the fluid properties into mean and per-

turbation components so that

a 5 a 1 a9, (2.43)

where the prime notation represents perturbations from

the mean. Under Reynolds averaging, we have

a9 5 0 (2.44)

and

ma 5 m a 1 m9a9. (2.45)

Combining (2.40) and (2.42), and applying (2.45), we

can write the zonally averaged zonal momentum ten-

dency equation as

Following Andrews (1983), the mass-weighted ‘‘resid-

ual’’ mean velocities are defined as

y* [
my

m
(2.47)

and

_h* [
m _h

m
. (2.48)

Applying (2.47) and (2.48) in (2.46), we obtain

›

›t
u 1

my

m

›

›y
u� f

� �
1

m _h

m

›

›h
u 5

1

m
� ›

›y
(my)9u9 1

›

›h
p9

›z9

›x
� (m _h)9u9

" #
� ›

›t
(m9u9)

( )
1

mFx

m
. (2.46)

›

›t
u 1 y*

›

›y
u� f

� �
1 _h*

›

›h
u 5

1

m
=(h) � F(h) � ›

›t
(m9u9)

� �
1

mFx

m
, (2.49)
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where F(h) [ [0, F (h)
y , F (h)

h ] is the EP flux vector in gen-

eralized vertical coordinates, which has the meridional

and vertical components

F(h)
y 5 (my)9u9 (2.50)

and

F(h)
h 5 p9

›z9

›x
� (m _h)9u9, (2.51)

respectively. Equation (2.49) shows that the EP flux is

nondivergent for steady-state, uniform, frictionless flow.

The vertical component of the EP flux given by (2.51)

is the vertical flux of the horizontal momentum. In z

coordinates, the first term on the rhs is zero, which leaves

the eddy flux term �(rw)9u9 as the means of vertical

momentum transport. In u coordinates, for adiabatic

conditions, _h9 5 _u9 5 0, which means the vertical mo-

mentum transport occurs through the first term on the

rhs of (2.51), that is, the pressure form drag on coordi-

nate (material) surfaces. This is consistent with the fact

that the zonal average of the ‘‘mountain torque’’ term in

[(A.1), see the appendix], which is the pressure form

drag on the lower (material) boundary, represents the

momentum flux across the earth’s surface. Klemp and

Lilly (1978) also noted the equivalence of the pressure

drag and momentum flux in isentropic coordinates.

3. Vertical discretization

The vertically discrete governing equations presented

in this section form the basis of the scheme used in the

model. Centered vertical differences are shown in the

analysis, although upstream-weighted advection schemes

(Takacs 1985) for mass and potential temperature are

actually used in the model. Details of these schemes can

be found in Toy (2008).

a. Vertical grid

The vertical staggering of the prognostic variables of

the model, shown in Fig. 2, is based on the Charney–

Phillips (CP) grid (Charney and Phillips 1953) devel-

oped for hydrostatic p-based coordinate models. This

grid is also the basis of the generalized vertical coordi-

nate model of KA97. With the CP grid, the potential

temperature is staggered with respect to the horizontal

velocity. Another commonly used staggering is the

Lorenz (L) grid (Lorenz 1960) in which the potential

temperature is carried at the same levels as the horizontal

velocity. The advantages of the CP grid over the L grid

in quasi-static modeling have been analyzed in various

papers (e.g., Arakawa and Moorthi 1988; Arakawa and

Konor 1996). Thuburn and Woollings (2005), Toy and

Randall (2007), and Toy (2008) have pointed out similar

advantages to the CP grid in nonhydrostatic z-based

coordinate models. These include the avoidance of ver-

tical computational modes as well as improved accuracy

in the representation of vertical wave propagation.

The grid indexing used in the vertical discretization

is shown in Fig. 2. There are K layers in the model

numbered from bottom to top. Layer centers are

numbered by whole integers, k, and layer edges by

half-integers.

b. Continuity equation

The discretized form of the continuity Eq. (2.2) is

given by

FIG. 2. Vertical grid used in the model.
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›mk

›t
1 = � (mv)k 1

(m _h)k11/2 � (m _h)k�1/2

(dh)k

5 0

for k 5 1, 2, � � � , K, (3.1)

where the difference operator d is defined as (d a)k [

ak11/2 2 ak21/2. Since the top and bottom model bound-

aries are material as well as coordinate surfaces, the

boundary conditions are

_h1/2 5 _hK11/2 5 0. (3.2)

Note that the model conserves mass due to the flux form

of the continuity Eq. (3.1).

c. Pressure-gradient forces

From (2.10b), the discrete VPGF is given by

(VPGF)k11/2 5�guk11/2
Pk11 �Pk

~fk11 � ~fk

for k 5 1, 2, � � � , K � 1, (3.3)

and

(VPGF)1/2 5�gu1/2
P1 � P̂1/2

~f1 � f1/2

, (3.4)

where the layer-center geopotential is interpolated as

~fk [
1

2
(fk11/2 1 fk�1/2) for k 5 1, 2, � � � , K. (3.5)

From (2.6b), the discrete horizontal pressure-gradient

force (HPGF) is given by

(HPGF)k 5 �~uk=Pk 1
1

g

e
gu

›P

›f
=f

 !
k

for k 5 1, 2, � � � , K, (3.6)

where

e
gu

›P

›f
=f

 !
k

5�1

2
[(VPGF)k11/2=fk11/2

1 (VPGF)k�1/2=fk�1/2]

for k 5 1, 2, � � � , K � 1, (3.7)

e
gu

›P

›f
=f

 !
K

5 �1

2
[(VPGF)K�1/2=fK�1/2], (3.8)

and

~uk 5
1

2
(uk11/2 1 uk�1/2) for k 5 1, 2, � � � , K. (3.9)

In the appendix, we show that the averaging used in

(3.5) and (3.9) is necessary to satisfy an integral con-

straint on the total energy conservation.

The upper boundary is assumed to be a constant-

height surface; therefore, wK11/2 5 0. The vertical ve-

locity at the lower boundary is diagnosed from

w1/2 5
1

g
(v1 � =f1/2), (3.10)

which comes from the boundary condition (2.11). Using

(3.10), the horizontal and vertical tendencies are related

by

›w1/2

›t
5

1

g

›v1

›t
� =f1/2

� �
. (3.11)

From (2.9), we express the tendency of w1/2 as

›w1/2

›t
5 (VPGF)1/2 � g 1 (Fz)1/2 � v � =w 1 _h

›w

›h

� �
1/2

.

(3.12)

As mentioned above, w1/2 is a diagnosed quantity; there-

fore, (3.12) is not used as a prognostic equation in the

model. Instead, it is used to diagnose the surface pres-

sure. Equations (3.4), (3.7), (3.11), and (3.12) can be

solved for the unknown (VPGF)1/2 (see Toy 2008). The

surface pressure is then diagnosed from (3.4) by way of

the surface Exner function.

d. Thermodynamic energy equation

The vertically discrete prognostic equation for u is

based on (2.12), except with the vertical advection term

expressed as (mP)21[›(m _hPu)/›h 2 u ›(m _hP)/›h].

This term is written in centered form in the discrete

equation, which is given by

›uk11/2

›t
1

(mPvdh)k11/2

(mPdh)k11/2

� =uk11/2 1
(m _h)k11(P~u)k11 � (m _h)k(P~u)k

(mPdh)k11/2

� uk11/2
Pk11(m _h)k11 � Pk(m _h)k

(mPdh)k11/2

5
(mQdh)k11/2

(mPdh)k11/2

for k 5 1, 2, � � � , K � 1, (3.13)

JULY 2009 T O Y A N D R A N D A L L 2313



›u1/2

›t
1

(mv)1

m1
� =u1/2 1

(~u1 � u1/2)(m _h)1

m1/2(dh)1/2

5
Q1/2

P1
,

(3.14)

and

›uK11/2

›t
1

(mv)K

mK
� =uK11/2 1

(uK11/2 � ~uK)(m _h)K

mK11/2(dh)K11/2

5
QK11/2

PK
, (3:15)

where

(mPdh)k11/2 [
1

2
[(mP)k(dh)k 1 (mP)k11(dh)k11]

for k 5 1, 2, � � � , K � 1, (3:16)

and

(mPvdh)k11/2 [
1

2
[Pk(mv)k(dh)k

1 Pk11(mv)k11(dh)k11]

for k 5 1, 2, � � � , K � 1. (3.17)

Note that this form of the thermodynamic equation is

similar to that of KA97. It is dictated by the CP-grid

staggering and total energy conservation considerations

discussed in the appendix.

e. Geopotential tendency equation

The tendency equation for the geopotential is written as

›fk11/2

›t
1

(mv)k11/2

mk11/2
� =fk11/2 1 _hk11/2

~fk11 � ~fk

(dh)k11/2

5 gwk11/2 for k 5 1, 2, � � � , K � 1, (3.18)

where the layer-edge horizontal mass fluxes are given by

(A.12) in the appendix.

f. Diagnostic relations

The density at layer centers is diagnosed from the

pseudodensity and geopotential using the discrete form

of (2.3) given by

rk 5
mkg(dh)k

fk11/2 � fk�1/2

for k 5 1, 2, � � � , K. (3.19)

The diagnostic equation for temperature at layer centers

is obtained from (2.8) and is based on the potential

temperature interpolated to layer centers. It is written as

Tk 5
~ukPk

cp
for k 5 1, 2, � � � , K. (3.20)

The ideal gas law, which relates layer-center state var-

iables, is written as

pk 5 rkRTk for k 5 1, 2, � � � , K, (3.21)

and the Exner function is given by

Pk 5 cp
pk

p0

� �k

for k 5 1, 2, � � � , K. (3.22)

Given the density from (3.19), the temperature, the

pressure, and the Exner function are solved simulta-

neously from (3.20)–(3.22).

g. Diagnosis of the generalized vertical velocity

The generalized vertical velocity is diagnosed through

a multistep process. The first step is to calculate the

target-seeking contribution _hT from the discrete forms

of (2.28), (2.31), and (2.33), given by

( _hT)k11/2 5

(dh)k11/2

(dF)k11/2

›F

›u

� �
s

Q

P
� v � =u

� �
1

›F

›s

� �
u

1

H
(w� v � =z)

� �
k11/2

�

1
F(uk11/2, sk11/2)� hk11/2

trel

�
, for

(dF)k11/2

(dh)k11/2

$ b;

1� 1

b

(dF)k11/2

(dh)k11/2

� �
(dh)k11/2

(dz)k11/2
(w� v � =z)k11/2 1

1

b2

(dF)k11/2

(dh)k11/2

›F

›u

� �
s

Q

P
� v � =u

� ���

1
›F

›s

� �
u

1

H
(w� v � =z)

�
k11/2

1
F(uk11/2, sk11/2)� hk11/2

trel

�
, for 0 ,

(dF)
k11/2

(dh)
k11/2

, b;

(dh)k11/2

(dz)k11/2

(w� v � =z)k11/2, for
(dF)k11/2

(dh)k11/2

, 0.

:

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

(3.23)
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The next step is to calculate the smoothing contribu-

tion _hS which is based on the parameters (=4z)k11/2 and

(d2z/dz)k11/2, given by (2.23). The discrete form of

(2.34) is used, which is

Note that the smoothing contribution is generally zero

except where it is necessary to advectively adjust the

position of coordinate surfaces to maintain the smooth-

ness criteria.

The final steps are to predict provisional values of the

potential temperature and geopotential height based on

the sum of the vertical velocity contributions given by

(3.23) and (3.24). Following this, the function F (u, s) is

calculated using these provisional values, and it is

compared to the target F field for the current time step.

A final vertical advective adjustment is then calculated

to bring F to its target through an iterative procedure

similar to that used by KA97. We refer to the general-

ized vertical velocity contribution from this adjustment

procedure as _hADJ. It is generally a small, residual

contribution that results from the vertical discretization

and reduces to zero for infinite resolution.

The provisional values for u and z are calculated

from

u*k11/2 5 un
k11/2 1 Dt

Q

P
�v � =u� ( _hT 1 _hS)

›u

›h

� �
k11/2

(3.27)

and

z*k11/2 5 zn
k11/2 1 Dt w�v � =z� ( _hT 1 _hS)

›z

›h

� �
k11/2

,

(3.28)

where the superscript asterisks (*) refer to the pro-

visional values, n refers to the current time step, and

Dt is the time-step length. Euler forward time stepping

is shown for simplicity. From these values, we calcu-

late

F*k11/2 [ F(u*k11/2, s*k11/2), (3.29)

where

s*k11/2 5
z*k11/2 �zS

zT �zS
. (3.30)

The target value for F at time step n 1 1 is calculated

from the prognostic equation

Fn11,TARGET
k11/2

5 Fn
k11/2 1 (Dt)

hk11/2 �Fn�1
k11/2

trel
, (3.31)

which is based on (2.20) with _hS set to zero. Equation

(3.31) is designed to relax Fn11,TARGET
k11/2

toward the ver-

tical coordinate value hk11/2. The difference between

the provisional and target values of F is then defined as

(Dh)k11/2 [ F*k11/2 �Fn11, TARGET
k11/2

. (3.32)

The purpose of ( _hADJ)k11/2 is to bring (Dh)k11/2 to zero,

which, at each iteration, is solved from

(Dh)k11/2 5 Dt
›F*

›u*

� �
s

� �
k11/2

( _hADJ)k11/2

(du)k11/2

(dh)k11/2

�
1

›F*

›s*

� �
u

� �
f k11/2

( _hADJ)k11/2

(ds)k11/2

(dh)k11/2

)
.

(3.33)

The result is used to update u* and s* from

( _hS)k11/2 5� ›z

›t

� �
smoothing,
horiz

1
›z

›t

� �
smoothing,
vert

" #
k11/2

(dh)k11/2

(dz)k11/2

, (3.24)

where, from (2.35) and (2.36), we use

›z

›t

� �
smoothing,
horiz

" #
k11/2

5�maxf0, khoriz[ =4z
�� ��

k11/2
� (=4z)max]gsgn(=4z)k11/2 (3.25)

and

›z

›t

� �
smoothing,
vert

" #
k11/2

5 max 0, kvert
d2z

dz

���� ����
k11/2

� d2z

dz

� �
max

� �� �
sgn

d2z

dz

� �
k11/2

. (3.26)

JULY 2009 T O Y A N D R A N D A L L 2315



u*k11/2 5 u*k11/2 � Dt( _hADJ)k11/2

(du)k11/2

(dh)k11/2

(3.34)

and

s*k11/2 5 s*k11/2 � Dt( _hADJ)k11/2

(ds)k11/2

(dh)k11/2

. (3.35)

Equations (3.29) and (3.32)–(3.35) are iterated until

Dh becomes sufficiently small. The final value of

_hADJð Þk11=2 is the cumulative value calculated in each

iteration. The resulting values of u* and s* are the final

n 1 1 values.

Finally, the generalized vertical velocity is given by

_hk11/2 5 ( _hT)k11/2 1 ( _hS)k11/2 1 ( _hADJ)k11/2. (3.36)

Note that in the continuous limit, _hADJbecomes zero,

and (3.36) reduces to (2.26).

4. Results

In this section, we compare the results of the model

run with the Eulerian s coordinate versus the hybrid

vertical coordinate for two-dimensional mountain-wave

simulations. These tests include an idealized isothermal

case, and a simulation of the 11 January 1972 Boulder,

Colorado, windstorm. The two coordinate systems are

compared with regard to processes such as vertical

momentum and passive tracer transport, as well as

wave breaking. In terms of computational overhead, we

found that the hybrid-coordinate model takes approxi-

mately 15% longer to run than with the s coordinate for

a given number of time steps. This is due to the addi-

tional expense associated with coordinate smoothing

and diagnosis of the vertical velocity within the hybrid-

coordinate framework.

a. Small-amplitude mountain waves in an
isothermal atmosphere

A simple test case is presented to demonstrate the

ability of the model to represent small-amplitude gravity

waves. Smith (1979) provides a review of mountain-

wave theory that includes linear analytical solutions

with which the model results can be compared. In the

experiment, the flow is initially isothermal with a tem-

perature of T 5 287K and is purely horizontal with

zonal wind speed u 5 20 m s21. (Overbars represent

the basic state.) The buoyancy frequency, given by

N 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(g/u)›u/›z

q
, a constant for isothermal atmos-

pheres, is 0.0183 s21. Following Queney (1948), the

mountain is an isolated barrier whose profile is pre-

scribed as a witch of Agnesi curve given by

zS(x) 5
h

1 1 (x/a)2
, (4.1)

where zS(x) is the surface height, h is the mountain

height, and a is the half-width. In this experiment,

h 5 10 m and a 5 2 km. A measure of the linearity of the

wave solution is the inverse Froude number based on the

mountain height, which is Nh/u. Linear wave theory ap-

plies when the mountain is small, that is, when Nh/u�1.

In this experiment, Nh/u 5 0.00915 � 1, so we can

compare the model results to the analytic linear solu-

tion. The inverse Froude number based on the moun-

tain half-width is given by Na/u. For broad mountains,

in which Na/u � 1, the flow is approximately hydro-

static. With narrow mountains, the hydrostatic approx-

imation breaks down. In our case, Na/u 5 1.83 ; 1, so

the flow is nonhydrostatic. Figures 3a and 4a show the

steady-state analytic linear solutions to the perturbation

zonal and vertical velocity fields (u9 and w9), respec-

tively. Note that phase lines tilt upwind, while wave

packets have a downwind tilt characteristic of non-

hydrostatic flow. The solution is based on the first

90 Fourier modes of the surface topography. The lat-

eral boundaries are periodic with a domain length of

L 5 120 km, and radiative upper boundary conditions

are applied.

In the model simulations, the horizontal boundary

conditions are periodic and the domain length is L 5 120

km. The upper boundary is a rigid lid at 30 km. A Ray-

leigh damping layer based on Klemp and Lilly (1978) is

used in the upper portion of the domain. The model

is run with 120 levels and 600 horizontal grid points.

For the hybrid-coordinate run, we use umin 5 270 K,

(›u/›s)min 5 0 K, and r 5 64. As shown in Fig. 5, this

provides a rapid transition with height from the terrain-

following coordinate to the u coordinate. At z ’ 3 km

and above, the coordinate is nearly isentropic. Figures

3b and 4b show numerical model results with the s

coordinate, and Figs. 3c and 4c show results with the

hybrid coordinate. Both simulations agree well with the

analytical solution. For both simulations, the perturba-

tion velocity fields are shown at time t 5 40a/u (1.11 h),

at which time the models reached an approximate

steady state.

Linear theory provides an analytical solution to

the vertical flux of horizontal momentum. Follow-

ing Eliassen and Palm (1961), the momentum flux is

written as

M(z) 5

ðL/2

�L/2

r u9w9 dx 5 L r u9w9, (4.2)
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FIG. 4. As in Fig. 3 except plotted fields are the perturbation

vertical velocity w9 (m s21).

FIG. 3. Perturbation zonal wind u9 (m s 21) in the vicinity of the

10-m-high, 2-km half-wide mountain from (a) the steady-state

analytical solution, and from simulations at t 5 40a/u (1.11 h) with

(b) the s vertical coordinate and (c) the hybrid vertical coordinate.

The horizontal axis represents the distance relative to the moun-

tain center.
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which, for steady-state conditions, is constant in height.

From the model runs, we diagnose the nonlinear mo-

mentum flux given by (2.51). We define two components of

the momentum flux: the ‘‘eddy flux’’ component given by

MEF(z) [

ðL/2

�L/2

(m _h)9u9 dx 5 L (m _h)9u9, (4.3)

and the ‘‘form drag’’ component given by

MFD(z) [ �
ðL/2

�L/2

p9
›z9

›x
dx 5�L p9

›z9

›x
. (4.4)

The surface pressure drag MSD is equal to the form drag

component evaluated along the surface; that is,

MSD [ MFD(h 5 hS). (4.5)

For steady-state flow, the following relation theoreti-

cally applies at all levels:

MEF(z) 1 MFD(z) 5 MSD 5 constant. (4.6)

Figure 6 shows the vertical profiles of the eddy and

form-drag contributions to the momentum flux at time

t 5 40a/u. The sum of these, shown by the black curve,

theoretically equals the surface drag. The theoretical

result is plotted as the vertical red line for reference. In

each coordinate system, the total momentum flux is

nearly constant with height and is close to the theoret-

ical surface-drag value, as well as the linear momentum

flux given by (4.2). The sign of the total momentum flux

FIG. 5. Vertical profiles of the hybrid vertical coordinate (solid

curve) and potential temperature (dashed curve) for the small-

amplitude, isothermal mountain-wave experiment. The coordinate

is isentropic above ;3 km.

FIG. 6. Vertical flux of the horizontal momentum diagnosed from the (a) s vertical coordinate and (b) hybrid vertical coordinate runs at

t 5 40a/u (1.11 h) for the small-amplitude mountain-wave experiment. The blue curves are eddy momentum fluxes MEF, the green curves

are the form drag MFD, the black curves are the sums of these, and the red curves are the analytical, steady-state momentum fluxes from

linear theory given by (4.2). The black triangles are the diagnosed surface drag MSD.
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is negative, which means that the surface exerts a drag

on the atmosphere, as expected. Note the nonzero

contribution of the form drag in s coordinates (Fig. 6a),

which is due to the sloping of the coordinate surfaces

with respect to z. In the Eulerian system, the vertical

variations of the eddy-flux and form-drag contributions

cancel in such a way as to keep their sum approximately

constant in height. With the hybrid coordinate, a sim-

pler view of momentum transport is afforded, as the flux

is due entirely to the form drag component above ;3 km.

This is because the coordinate is almost purely isentropic,

so the vertical velocity is zero and, therefore, the eddy

flux is zero as well.

b. The 11 January 1972 Boulder, Colorado,
downslope windstorm

The downslope windstorm that occurred in Boulder,

Colorado, on 11 January 1972 was an extensively ob-

served meteorological event (Lilly and Zipser 1972). It

provides an ideal test case for model simulations of

mountain-wave amplification and breaking. In this ex-

periment, we follow Doyle et al. (2000), which presents

various two-dimensional (x–z) simulations of the wind-

storm. The topography is idealized by a witch of Agnesi

curve with the height and half-width set at h 5 2 km and

a 5 10 km, respectively. The free-slip condition is ap-

plied at the lower boundary. The horizontal domain is

220 km in extent, and we use periodic lateral boundary

conditions. The horizontal grid spacing is Dx 5 1 km.

The model top is a rigid lid at z 5 48 km. In the lower

35 km, we use even vertical grid spacing in z. Above this

level, the grid is stretched by gradually increasing the

layer thickness up to the model top.

The baseline vertical resolution is 125 levels in the

lowest 25 km, giving an average vertical grid spacing of

200 m. A high-resolution s-coordinate run was also

performed using 500 levels in the lowest 25 km. Three

simulations are presented: 1) the ‘‘Sigma125’’ run using

s coordinates and the baseline vertical resolution, 2) the

‘‘Sigma500’’ run using s coordinates and the high vertical

resolution, and 3) the ‘‘Hybrid125’’ run using hybrid co-

ordinates at the baseline vertical resolution. The hybrid

vertical coordinate parameters introduced in (2.16), (2.18),

and (2.19) were specified as umin 5 270 K, (›u/›s)min 5 0

K, and r 5 16. As shown in Fig. 7, the hybrid coordinate

is primarily isentropic above z 5 10 km.

In this experiment, coordinate surface smoothing is

applied in the hybrid vertical coordinate runs to allow

for isentropic overturning. Referring to (3.25) and

(3.26), the maximum smoothness thresholds, above

which smoothing occurs, are specified as (=4z)max 5

3.4 3 10211 m23 and (d 2z/dz)max 5 0.4. The diffusion

coefficients used for horizontal and vertical smoothing

are khoriz 5 3.125 3 1012 m4 s21 and kvert 5 1000 m s21,

respectively. On two-gridpoint length scales, these co-

efficients correspond to e-folding times of O(1022 s);

that is, the smoothing acts on a short time scale. (This

is on the order of the model time steps, which, for now, is

limited by vertically propagating acoustic waves and the

use of an explicit time-differencing scheme: third-order

Adams–Bashforth.) The relaxation time constant intro-

duced in (2.20) is specified as trel 5 0.5 h, which is on the

order of the time scale on which the wave breaking oc-

curs. Finally, the parameter b used in (3.23) is set to 0.7.

We apply a subgrid-scale mixing parameterization to

the three components of velocity as well as the potential

temperature, following the scheme used in the University

of Oklahoma’s Advanced Research Prediction System

(ARPS; documentation available online at http://

www.caps.ou.edu/ARPS/download/code/pub/ARPS.docs/

ARPS4DOC.PDF/arpsch6.pdf). We use the modified

Smagorinsky first-order closure scheme (Smagorinsky

1963), which includes Richardson number dependency.

The initial conditions, shown in Fig. 8, are uniform in

the horizontal following Doyle et al. (2000). They are

based on the upstream 1200 UTC 11 January 1972 Grand

Junction, Colorado, sounding up to 25 km. At higher

levels, a constant zonal wind of 7.5 m s 21 is assumed and

the temperature profile smoothly merges with that of the

U.S. Standard Atmosphere, 1976. The reference surface

pressure corresponding to z 5 0 is 850 mb.

FIG. 7. Vertical profiles of the hybrid vertical coordinate (solid

curve) and potential temperature (dashed curve) at the initial time

for the Hybrid125 simulation of the 11 Jan 1972 Boulder down-

slope windstorm.
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The potential temperature field at t 5 70 min is shown

in Fig. 9. The mountain wave has substantially devel-

oped throughout the troposphere and lower strato-

sphere with generally an upwind tilt to the phase lines.

A hydraulic jump feature has developed in the lower

troposphere, approximately 20 km downstream of the

mountaintop with lee waves of horizontal wavelength

;10 km appearing just downstream. There is also con-

siderable wave development above the hydraulic jump

at the base of the stratosphere, with lee waves appearing

just downstream as well.

The three simulations shown in Fig. 9 agree well with

each other. The most noticeable difference is that in the

s-coordinate runs, isentropes are already beginning to

overturn at the 19-km level. This overturning is more

pronounced in the Sigma500 run. In the Hybrid125 run,

overturning has not occurred yet, which is likely due to

the decreased resolution of the isentropic coordinate in

the areas of low static stability. Coordinate surfaces

closely follow the isentropes above ;10 km.

A particular advantage of the isentropic coordinate is

the enhancement of vertical resolution in regions of

high static stability. As shown in Fig. 10, which shows

the static stability field at t 5 2 h, this advantage leads

to more accurately resolved layers of stable air. This was

also recently noted by Zängl (2007), who found improved

representation of the tropopause in nonhydrostatic

simulations with the isentropic coordinate. The static

stability field resulting from the Hybrid125 simulation

(Fig. 10c) closely resembles that of the high vertical

resolution Sigma500 run (Fig. 10a) in terms of capturing

layers of high static stability. In the Sigma125 run (Fig.

10b), these layers are much less pronounced. Use of the

hybrid coordinate, therefore, provides an economic ad-

vantage over the s coordinate by capturing these fea-

tures with the same number of model layers. On the

other hand, Fig. 10 shows that the hybrid coordinate

underestimates the degree of static instability in regions

of wave breaking. As mentioned before, this is likely due

to the reduced vertical resolution in these regions.

At 3 h of simulation time, the wave-breaking activity

is at a maximum, as is the surface-wind intensity on the

leeward mountain slope, that is, the simulated down-

slope windstorm. The potential temperature and zonal

wind fields at this time are shown in Figs. 11 and 12,

respectively. There is general agreement among the

three model configurations. These results also compare

well with the model results presented in Doyle et al.

(2000; see Figs. 3 and 4 of their paper).

The diagnosed surface form drag, given by D 5

�
H

x pS(›zS/›x)dx, is plotted as a time series in Fig. 13.

The evolution of the drag force is related to the down-

ward transfer of zonal momentum due to the amplifi-

cation and breaking of the mountain wave (e.g., Peltier

and Clark 1979; Durran and Klemp 1983). As shown in

Fig. 13, the three simulations produced similar results

during the first 1.5 simulated hours, which is the period

of wave amplification that precedes wave breaking.

After this time, differences develop among the runs, but

they generally follow a similar evolution. For the hy-

brid-coordinate simulation, this indicates that the pro-

cess of wave amplification and breaking is adequately

represented in terms of the vertical transfer of zonal

momentum. After the peak at 3 h, the drag dies out and

even becomes negative for a brief period. This is due to

the periodic lateral boundaries and the fact that the

momentum field is not forced.

The most striking difference between the hybrid- and

s-coordinate runs is in the vertical advection of a pas-

sive tracer. Here, we see a distinct advantage with the

FIG. 8. Vertical profiles of the (a) zonal wind and (b) temperature used as the initial condition

for the 11 Jan 1972 Boulder downslope windstorm simulation. The data are from Doyle et al.

(2000) and are based on the 1200 UTC 11 Jan 1972 Grand Junction sounding.
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isentropic coordinate. To isolate the effects of vertical

advection as much as possible, the passive tracer is

initialized along horizontal bands bounded by selected

isentropes as shown in Fig. 14a. The tracer is assigned the

arbitrary value of unity inside the bands and zero outside.

This is also shown in a scatterplot of tracer concentration

versus potential temperature for all model points, as

shown in Fig. 14b. In the continuous system of equations

for adiabatic processes, since u is conserved, the corre-

lation between u and the passive tracer remains un-

changed in time assuming no diffusion of either property.

This means that the scatterplot of tracer concentration

versus u should remain unchanged in time.

Profiles of the tracer concentration after 70 min of

simulation time are shown in Fig. 15. In contrast to

the initial conditions shown in Fig. 14a, there are now

additional values of tracer concentration besides 0 and

1, and some of the tracer has ‘‘leaked’’ outside of the

original isentropic bounds indicated by the boldface

black curves. This has occurred because of numerical

FIG. 10. Static stability N 2 5 gu21›u/›z (1023 s22) at time t 5 2 h

for the 11 Jan 1972 Boulder downslope windstorm simulations using

the s coordinate with (a) 500 and (b) 125 levels in the lowest 25 km,

and (c) the hybrid coordinate with 125 levels in the lowest 25 km.

FIG. 9. Potential temperature (black contours and shading) at

time t 5 1 h 10 min for the 11 Jan 1972 Boulder downslope wind-

storm simulations using the s coordinate with (a) 500 and (b) 125

levels in the lowest 25 km, and (c) the hybrid coordinate with 125

levels in the lowest 25 km. The contour interval is 8 K, and selected

isentropes are labeled. The boldface red curves in (b) and (c) in-

dicate every 10th model coordinate surface.
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dispersion associated with the vertical advection terms

of the tracer tendency equation. The dispersion error is

most evident where the coordinate is s, that is, in Figs.

15a and 15b and the lowest band in the hybrid coordi-

nate plot in Fig. 15c. At t 5 70 min, wave overturning

has not yet occurred and there has been minimal coor-

dinate smoothing in the hybrid vertical coordinate run.

Therefore, the vertical velocity in the u-coordinate re-

gions of the hybrid coordinate has been virtually zero up

until this time. The effect of this can be seen in the upper

three tracer bands in Fig. 15c as compared to those in

Figs. 15a and 15b.

The characteristics mentioned above are more no-

ticeable in Fig. 16. The difference between the top tracer

band among the four simulations is the most striking.

With the hybrid coordinate (Fig. 16c), the scatter points

lie along the theoretical profile indicated by the dashed

lines. In the 125-level s-coordinate simulation (Fig. 16b),

the profile of the upper band differs significantly from

theoretical profile due to dispersion error and numeri-

cal diffusion. The 125-level hybrid-coordinate model

also has an advantage over the high-resolution 500-level

s-coordinate simulation (Fig. 16a), in which some

FIG. 11. As in Fig. 9 but at time t 5 3 h.

FIG. 12. Zonal wind (m s21) at time t 5 3 h for the 11 Jan 1972

Boulder downslope windstorm simulations using the s coordinate

with (a) 500 and (b) 125 levels in the lowest 25 km, and (c) the

hybrid coordinate with 125 levels in the lowest 25 km. The contour

interval is 8 m s 21.
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dispersion is evident at the discontinuities in the original

profile.

Figure 17 shows scatterplots after three simulated

hours. The hybrid run displays some dispersion error due

to the vertical velocity induced by coordinate smoothing.

Despite this, the hybrid run exhibits less error than the

Sigma125 runs. The error is comparable to, if not better

than, the high-resolution Sigma500 runs, but achieves

this with fewer model levels.

5. Summary and conclusions

We have developed a new nonhydrostatic, hybrid-

vertical-coordinate atmosphere model that uses the

quasi-Lagrangian u coordinate throughout much of the

domain. The coordinate is based on Konor and Arakawa

(1997), in which the coordinate is specified as a combi-

nation of a terrain-following s coordinate and potential

temperature u. We modified their method by incor-

porating adaptive grid techniques to allow the repre-

sentation of negative static stability (i.e., ›u/›z , 0),

which develops through processes such as gravity wave

breaking. In the free atmosphere, coordinate and isen-

tropic surfaces coincide as long as specific criteria re-

garding the spatial arrangement of the coordinate sur-

faces are met. When these surfaces become irregular,

mass is vertically exchanged between layers to maintain

layer separation and smoothness. With the return to

positive static stability, the coordinate surfaces are re-

laxed back to their isentropic targets.

Small-amplitude gravity wave simulations demon-

strated the quasi-Lagrangian characteristics of vertical

momentum transport in u coordinates. This transport

manifests itself as the balance of the pressure form

drag acting on coordinate surfaces, which is a physi-

cally direct representation of the process, in contrast

to the eddy flux transport within the Eulerian frame-

work.

A simulation of the 11 January 1972 Boulder, Colo-

rado, downslope windstorm was performed. Use of the

hybrid coordinate resulted in superior performance

over the s coordinate in reducing the error associated

FIG. 13. Time series of the surface pressure drag for the 11 Jan

1972 Boulder downslope windstorm simulations using the s co-

ordinate with 500 (black curve) and 125 levels (red curve) in the

lowest 25 km, and the hybrid coordinate with 125 levels in the

lowest 25 km (blue curve).

FIG. 14. (a) Contour plot of the initial passive tracer concentration (shading) and the isentropes bounding the tracer bands (black

curves). (b) Scatterplot at t 5 0 of the tracer concentration vs potential temperature. The dashed black lines indicate the theoretical

scattering distribution.
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with the vertical transport of a passive tracer. This is due

to the elimination of the vertical velocity in isentropic

coordinates. Also, features of high static stability were

better resolved due to the concentration of model layers

that develops in regions of high static stability with the u

coordinate. On the other hand, the degree of isentropic

overturning associated with wave breaking was some-

what suppressed with the hybrid coordinate. This is

likely due to the decrease in vertical resolution in these

FIG. 15. Contour plots at time t 5 1 h 10 min of the passive tracer

concentration (shading) and the isentropes that originally bounded

the tracer bands (black curves) using the s coordinate with (a) 500

and (b) 125 levels in the lowest 25 km, and (c) the hybrid coordi-

nate with 125 levels in the lowest 25 km.

FIG. 16. Scatterplots at time t 5 1 h 10 min of the passive tracer

concentration vs potential temperature using the s coordinate with

(a) 500 and (b) 125 levels in the lowest 25 km, and (c) the hybrid

coordinate with 125 levels in the lowest 25 km. The dashed black

lines indicate the theoretical scattering distribution.
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regions resulting from the larger vertical separation of

the isentropic surfaces.

Nonhydrostatic atmospheric models using potential

temperature as the vertical coordinate have been suc-

cessfully developed in the past decade. The model pre-

sented in this paper further demonstrates the feasibility

of representing finescale motion in isentropic coordi-

nates. This framework has distinct advantages, which are

open to future development and application.

Acknowledgments. This paper is based on part of the

Ph.D. dissertation by the first author at Colorado State

University. The research was supported by the Office of

Science (BER), U.S. Department of Energy, Grant DE-

FC02-06ER64302. The first author would like to thank

Dr. Celal Konor for his help and encouragement during

the development of the model. We wish to thank the

reviewers for their valuable comments, which helped

improve the paper.

APPENDIX

Integral Constraints

a. Integral constraints in the continuous equations

Two integral constraints found in the continuous sys-

tem of equations were used to guide the formulation of

the vertical differencing scheme. The first is a constraint

on the horizontal pressure-gradient force—that it not

affect the vertically integrated momentum circulation in

the absence of topography—and the second is the con-

servation of total energy under adiabatic, frictionless

conditions. Detailed analyses of these constraints in a

generalized vertical coordinate have been formulated

for both hydrostatic atmospheres (e.g., Kasahara 1974;

Arakawa and Konor 1996) and nonhydrostatic atmos-

pheres (e.g., Staniforth and Wood 2008).

1) CONSTRAINT I: CONSTRAINT ON THE

VERTICALLY INTEGRATED HORIZONTAL

PRESSURE-GRADIENT FORCE

The contribution of the horizontal pressure-gradient

force to the tendency of the vertically integrated hori-

zontal momentum can be expressed as

ðhT

hS

m(HPGF) dh 5�=

ðhT

hS

p

g

›f

›h

� �
dh� pS=zS, (A.1)

where f [ gz is the geopotential and zT, hT, and hS

are assumed constant. When the line integral of the

FIG. 17. As in Fig. 16 but at time t 5 3 h.
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tangential component of (A.1) is taken along any closed

curve, the first term on the rhs has a zero contribution

because it is a gradient vector. The only contribution to

the vertically integrated circulation of momentum co-

mes from the last term, which is called the mountain

torque term. When the closed curve is a contour of the

surface topography, it is zero.

2) CONSTRAINT II: CONSERVATION OF TOTAL

ENERGY

In the absence of diabatic heating and friction, the

total energy of a fluid system is constant. Here, total

energy is defined as the sum of the kinetic, geopotential,

and internal energies. Conversions between these forms

of energy take place at rates given by ‘‘conversion’’

terms that appear in the energy tendency equations.

Total energy conservation is maintained through the

cancellation of these conversion terms when deriving

the total energy tendency equation.

(i) Kinetic energy equation

The tendency of kinetic energy can be expressed in

flux form as

where K 5 ½(v � v 1 w2) is the kinetic energy per unit

mass, a is the specific volume, v [ Dp/Dt, and friction is

neglected. This equation is obtained by taking the dot

product of mv and (2.5), and adding mw times (2.9), and

combining with (2.2), (2.3), (2.6a), and (2.10a). Note

that mav is the conversion term between the thermo-

dynamic and kinetic energy, and mwg is the conversion

term between the kinetic and geopotential energy.

(ii) Internal energy equation

For frictionless atmospheric processes, the first law of

thermodynamics can be expressed as

where cyT is the internal energy. This equation is ob-

tained by combining (2.2), (2.8), (2.12), and (2.14). Note

that the first term on the rhs is the conversion term

between the thermodynamic and kinetic energy, which

appears with the opposite sign to that in (A.2). Equation

(A.3) can be rewritten in terms of enthalpy, defined as

h [ cyT 1 pa, for which dh 5 cpdT. The result is

›

›t
(mcpT) 1 = � (mvcpT) 1

›

›h
(m _hcpT) 5 mav 1 mQ.

(A.4)

(iii) Geopotential energy equation

Multiplying (2.13) by mg and using the continuity

Eq. (2.2), the geopotential energy equation can be

written as

›

›t
(mf) 1 = � (mvf) 1

›

›h
(m _hf) 5 mwg. (A.5)

Note the energy conversion term mwg appears with the

opposite sign to that in the kinetic energy Eq. (A.2).

(iv) Total energy equation

The total energy equation is obtained by adding

(A.2), (A.3), and (A.5), and canceling the energy con-

version terms, to obtain

›

›t
(mE) 1 = � (mvE) 1

›

›h
(m _hE)

5 mQ� = � p

g

›f

›h
v

� �
� ›

›h

p

g

›f

›t
1 _h

›f

›h

� �� �
, (A.6)

where E [ cyT 1 K 1 f is the total energy. The last two

terms on the rhs are flux divergence terms that represent

the spatial redistribution of energy. When integrated

over the domain, they make no contribution to the

total energy budget except for contributions from the

boundaries. Therefore, total energy is globally con-

served for adiabatic, frictionless processes.

›

›t
(mK) 1 = � (mvK) 1

›

›h
(m _hK) 5 mv � (HPGF) 1 mw (VPGF)�mwg

5�mav� ›

›h

p

g

›f

›t

� �
1

›

›t

p

g

›f

›h

� �
�mwg, (A.2)

›

›t
(mcyT) 1 = � (mvcyT) 1

›

›h
(m _hcyT) 5 mav 1 mQ� ›

›t

p

g

›f

›h

� �
� = � p

g

›f

›h
v

� �
� ›

›h

p

g

›f

›h
_h

� �
, (A.3)
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b. Vertically discrete continuity equation for mass at
layer edges

Arakawa and Konor (1996) derived a flux-form con-

tinuity equation written in terms of the layer-edge

pseudodensity to facilitate the development of conser-

vation properties for layer-edge quantities. Our vertical-

differencing scheme uses the same method, which is

reviewed here. The relations are used in the discrete

integral constraint analysis to follow. The layer-edge

continuity equation is

›mk11/2

›t
1 = � (mv)k11/2 1

(m _h)k11 � (m _h)k

(dh)k11/2

5 0

for k 5 1, 2, � � � , K � 1, (A:7)

›m1/2

›t
1 = � (mv)1/2 1

(m _h)1

(dh)1/2

5 0, (A.8)

and

›mK11/2

›t
1 = � (mv)K11/2 �

(m _h)K

(dh)K11/2

5 0, (A.9)

where the layer-edge masses are

mk11/2 [
1

2

(dh)kmk 1 (dh)k11mk11

(dh)k11/2

for k 5 1, 2, � � � , K � 1, (A.10)

and

m1/2 [ m1, mK11/2 [ mK. (A.11)

The horizontal mass flux interpolated to layer edges

is

(mv)k11/2 [
1

2

(dh)k(mv)k 1 (dh)k11(mv)k11

(dh)k11/2

for k 5 1, 2, � � � , K � 1, (A.12)

and

(mv)1/2 [ (mv)1, (mv)K11/2 [ (mv)K. (A.13)

The layer-center vertical mass fluxes are

(m _h)k [
1

2
[(m _h)k 1 1/2 1 (m _h)k�1/2]

for k 5 2, 3, � � � , K � 1, (A.14)

and

(m _h)1 [
1

2
(m _h)1/2, (m _h)K [

1

2
(m _h)K�1/2. (A.15)

Finally, the generalized layer-edge thicknesses are

(dh)k11/2 [
1

2
[(dh)k 1 (dh)k11]

for k 5 1, 2, � � � , K � 1, (A.16)

and

(dh)1/2 [
1

2
(dh)1, (dh)K11/2 [

1

2
(dh)K . (A.17)

As in Arakawa and Konor (1996), it can be shown

that the vertical sum of the layer-center continuity

Eq. (3.1) times (dh)k is equivalent to the vertical sum

of the layer-edge continuity Eqs. (A.7)–(A.9) times

(dh)k11/2.

c. Integral constraints in the vertically discrete
equations for h 5 z

Here, we demonstrate that integral constraints I and

II are satisfied by the discrete governing equations of

section 3 for the case of z coordinates, that is, for h 5 z,

but not for the general case. A scheme that satisfies

these integral constraints for the generalized coordinate

h was developed in Toy (2008). However, the scheme

supports a vertical computational mode in the potential

temperature field, so it is not used in the model. Based

on the potential harmful effects of this computational

mode on atmospheric simulations, as shown in Arakawa

and Moorthi (1988) and Arakawa and Konor (1996), we

believe that the benefit of avoiding this computational

mode outweighs that of formally satisfying constraints I

and II.

1) CONSTRAINT I: CONSTRAINT ON THE

VERTICALLY INTEGRATED HORIZONTAL

PRESSURE-GRADIENT FORCE

In z coordinates, =f equals zero; therefore, the

HPGF given by (3.6) becomes

(HPGF)k 5�~uk=Pk for k 5 1, 2, � � � , K. (A.18)

Using (3.19)–(3.22) in (A.18), the layer mass-weighted

HPGF can be written as

[m(HPGF)]k(dh)k 5�=
pk

g
(fk11/2 � fk�1/2)

� �
. (A.19)

Since the rhs of (A.19) is a gradient term, it generates

zero circulation of momentum when integrated about a

closed curve and, therefore, constraint I is satisfied.
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2) CONSTRAINT II: CONSERVATION OF TOTAL

ENERGY

For h 5 z, the vertical difference scheme conserves the

globally integrated total energy through the consistency

of the energy conversion terms derived from the discrete

governing equations. To show this, we begin by taking

the dot product of (mvdh)k and (A.18), adding

(mwdh)k11/2 times (3.3), and summing in the vertical.

The result is the work done by the pressure-gradient

forces given by

where we used (A.16), (A.17), and (3.5) for h 5 z.

Comparing (A.20) and (A.2), we can identify the column-

integrated energy conversion term between thermody-

namic and kinetic energy as

To derive the corresponding energy conversion term

from the thermodynamic energy equation, we begin

by multiplying (3.13)–(3.15) by (mPdh)k11/2, and use

(3.2), (A.11), (A.14), (A.15), (A.17), (3.9), (3.16), (3.17),

and the fact that _hk11/2 5 wk11/2 in z coordinates to

obtain

�
K

k51
[mv � (HGPF)]k(dh)k 1 �

K�1

k50
[mw � (VGPF)]k11/2(dh)k11/2

5 ��
K

k51
mkak

›pk

›t
1 vk � =pk

� �
(dh)k ��

K�1

k51
wk11/2mk11/2uk11/2(Pk11 �Pk)

1 �
K

k51

›

›t

pk

g
(fk11/2 � f

k�1/2)

� �
, (A.20)

�
K

k51
(mav)k(dh)k 5 �

K

k51
mkak

›pk

›t
1 vk � =pk

� �
(dh)k 1 �

K�1

k51
wk11/2mk11/2uk11/2(Pk11 �Pk) . (A.21)

�
K

k51
mkPk

›~uk

›t
1 vk � =~uk

� �
(dh)k ��

K

k51

~uKPk[(m _h)k11/2 � (m _h)
k�1/2] ��

K�1

k51
wk11/2mk11/2uk11/2(Pk11 �Pk)

5 �
K

k50
(mQ)k11/2(dh)k11/2. (A.22)

Finally, applying (3.1), (3.2), and (3.20)–(3.22) in (A.22), we obtain

�
K

k51

›

›t
(mcpT)k(dh)k 1 �

K

k51
= � (mvcpT)k(dh)k 5 �

K

k51
mkak

›pk

›t
1 vk � =pk

� �
(dh)k

1 �
K�1

k51
wk11/2mk11/2uk11/2(Pk11 �Pk) 1 �

K

k50
(mQ)k11/2(dh)k11/2. (A.23)
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Comparing (A.23) to (A.4), the first two terms on the

rhs of (A.23) correspond to the energy conversion term

mav, which is identical to (A.21); therefore, the energy

conversion between the thermodynamic and kinetic

energies is conservative.

The last step in determining the total energy conser-

vation by the vertically discrete system of governing

equations is to check the consistency of the energy

conversion term between the kinetic and geopotential

energies derived from the vertical momentum and geo-

potential tendency equations. Multiplying (mw)k11/2 by

the vertical momentum equation, given by the discrete

form of (2.9) evaluated at layer edges, the energy con-

version term is 2g(mw)k11/2. To derive the geopotential

energy equation, we multiply (3.10) and (3.18) by mk11/2

and add fk11/2 times the layer-edge continuity Eqs.

(A.7)–(A.9) to obtain

›

›t
(mf)k11/2 1 = � (mvf)k11/2 1

(em _hf)k11 � (em _hf)k
(dh)k11/2

5 g(mw)k11/2 for k 5 1, 2, � � � , K � 1, (A.24)

›

›t
(mf)1/2 1 = � (mvf)1/2 1

(em _hf)1

(dh)1/2

5 g(mw)1/2,

(A.25)

and

›

›t
(mf)K11/2 1 = � (mvf)K11/2 �

(em _hf)K
(dh)K11/2

5 g(mw)K11/2, (A.26)

where the vertical flux of the geopotential energy at

layer centers is defined as

(em _hf)k [
1

2
[(m _h)k�1/2fk11/2 1 (m _h)k11/2fk�1/2]

for k 5 1, 2, � � � , K. (A.27)

In (A.27), we note that the geopotential flux terms in-

volve products of the mass flux and geopotential at

different levels. Equations (A.24)–(A.26) are in flux

form, so geopotential energy is conserved under vertical

advection, and the energy conversion term g(mw)k11/2

appears in the same form but of opposite sign as that

derived above; therefore, the requirements for total

energy conservation are met.
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