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ABSTRACT

Higher-order closure (HOC) models have been proposed for parameterization of the turbulent planetary bound-
ary layer (PBL). HOC models must include closures for higher-order moments (e.g., fourth moments in third-
order closure models), for pressure terms, and for dissipation terms. Mass-flux closure (MFC) models have been
proposed for parameterization of cumulus convection and, more recently, the convective PBL. MFC models
include closures for lateral mass exchanges and for pressure terms (which are usually ignored). The authors
developed a new kind of model that combines HOC and MFC, which they hope will be useful for the param-
eterization of both the PBL and cumulus convection, in a unified framework. Such a model is particularly well
suited to regimes in which the PBL turbulence and the cumulus convection are not well separated, for example,
the broken stratocumulus and shallow cumulus regimes.

The model makes use of an assumed joint probability distribution for the variables of interest, and the equations
typically used in HOC models can be derived by integrating over the distribution. Accordingly, the model is
called Assumed-Distribution Higher-Order Closure (ADHOC). The prognostic variables of ADHOC are the mean
state, the second and third moments of the vertical velocity, and the vertical fluxes of other quantities of interest.
All of the parameters of the distribution can be determined from the predicted moments; thereafter the joint
distribution is effectively known, and so any and all moments can be constructed as needed. In this way, the
usual closure problem of ‘‘higher moments’’ is avoided. The pressure-term parameterizations previously de-
veloped for HOC models are used to predict the convective fluxes and the moments of the vertical velocity.

In companion papers, parameterizations of lateral mass exchanges and subplume-scale fluxes are presented,
and then ADHOC is applied to several observationally based tropical, subtropical, and dry convective boundary
layers.

1. Introduction

Many general circulation models (GCMs) currently
use separate schemes for planetary boundary layer
(PBL) processes, shallow and deep cumulus convection,
and stratiform clouds. In reality these processes are not
always distinct. For example, in the stratocumulus-to-
cumulus transition region, stratocumulus clouds have
been observed to break up into a combination of shallow
cumulus and broken stratocumulus. Shallow cumulus
clouds may be considered to reside completely within
the PBL, or they may be regarded as starting in the PBL
but terminating above it. Deeper cumulus clouds often
originate within the PBL but can also originate aloft.

In this paper we present the basic structure of a pa-
rameterization, which, we believe, has the potential to
represent boundary layer turbulence, shallow cumulus
convection, and possibly even deep cumulus convec-
tion, all within a unified framework. Our approach is to
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unify higher-order closure (HOC, a PBL parameteri-
zation) and mass-flux closure (MFC, a parameterization
originally developed to represent the effects of cumulus
convection). In this way, we can draw from two sub-
stantial preexisting knowledge bases to create one mod-
el—an exercise in ‘‘cross-fertilization.’’

Parameterization of higher moments that appear in
lower-order equations (the ‘‘closure problem’’; Keller
and Friedman 1924; Stull 1988) has been the focus of
much atmospheric turbulence research. In the HOC
equations, there are three classes of terms for which
‘‘closure’’ assumptions are needed. These are the higher
moments that appear as transport terms in the lower-
moment equations, the pressure–velocity correlations,
and the dissipation terms.

The simplest closure assumption for fluxlike moments
is that they always point down the gradient of the quan-
tity being transported; this is ‘‘K theory.’’ Under con-
vective conditions, however, PBL eddies can be very
deep, and the associated fluxes are often countergradient
(Deardorff 1966; Wyngaard and Coté 1974; Zeman and
Lumley 1976). Thus, attempts have been made to mod-
ify K theory so as to allow countergradient fluxes under
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some conditions. Examples include 1) the addition of a
countergradient term to represent the nonlocal aspects
of the flow (Deardorff 1966; Mailhot and Benoit 1982;
Therry and Lecarreré 1983; Troen and Mahrt 1986;
Holtslag and Moeng 1991); 2) transilience turbulence
theory, which permits simultaneous mixing between any
and all pairs of levels (Stull 1988); and 3) spectral dif-
fusivity theory, in which the mixing coefficient is as-
sumed to scale with the size of the eddy, and the dif-
fusion equations are spectrally decomposed (Berkowicz
and Praham 1979). In large-scale models for which low-
er-order schemes are adopted, often one of these mod-
ified K theories is chosen to represent fluxes. Examples
include the K-profile parameterization of Troen and
Mahrt (1986), which is used in the National Center for
Atmospheric Research (NCAR) Community Climate
Model version 3 (Holtslag and Boville 1993), and the
K-Richardson-number-dependent model of Louis
(1979), which is used in the European Centre for Me-
dium-Range Weather Forecasts model.

To the best of our knowledge, no ‘‘nonlocal’’ param-
eterization exists for the corresponding ‘‘fluxlike’’ (third
moment) terms in the second-moment equations, other
than third-order closure itself (André et al. 1978). Most
current models parameterize the third moments with a
simple downgradient diffusion assumption with various
formulas for the eddy diffusivity (e.g., Moeng and Wyn-
gaard 1989). Surely, a more realistic way to represent
the effects of the third moments could greatly improve
the realism of PBL models.

Parameterizations for the pressure terms were pio-
neered by Rotta (1951a,b), who broke them down into
‘‘pressure-transport’’ and ‘‘return-to-isotropy’’ terms.
He neglected the former and assumed that the role of
the latter is to drive the turbulence toward an isotropic
state. Later, it was realized that neglect of the pressure-
transport term is a serious error (Naot et al. 1973; Wyn-
gaard and Coté 1974; Lumley and Khajeh Nouri 1974;
Launder 1975; Zeman and Lumley 1976). By 1990, it
had become clear that the pressure-transport terms are
important, especially in the surface and inversion re-
gions of the boundary layer where the vertically moving
air is forced to slow down (Canuto 1992). For example,
the convergence of air as a downdraft approaches the
surface creates high pressure, which acts to slow the air
down and ‘‘splash’’ it out to the side. Conversely, up-
draft air near the surface creates a low pressure wake
behind it. In current mass-flux models, the pressure
terms are most often entirely neglected (although there
are some exceptions, e.g., Wu and Yanai 1994).

The final closure needed by HOC models is for the
rates of dissipation. Two paths have been taken in at-
tempts to accurately represent the effects of turbulent
dissipation. The first is to predict directly either the
dissipation or a turbulent length scale directly (Langland
and Liou 1996; Beljaars et al. 1987; Detering and Etling
1985), and the second is to diagnostically determine one
of these quantities (e.g., Blackadar 1962; Bougeault and

André 1986; Canuto et al. 1994). A natural way to pa-
rameterize a dissipation rate is to make it proportional
to the negative of what it supposed to dissipate; that is,

]x9y9 x9y9
; 2 , (1)

]t t

where t is a dissipation timescale, and x and y are dum-
my variables. Equation (1) is nothing more than a def-
inition of t. The problem is then to parameterize t.

HOC models have been more successful at simulating
some regimes than others. This is because standard clo-
sures make use of the assumption that turbulence is
nearly isotropic and nearly Gaussian (Lumley 1978),
whereas some regimes (e.g., trade wind cumulus) are
highly nonisotropic and non-Gaussian. In order to sim-
ulate the trade wind (TW) cumulus regime accurately,
HOC models must be ‘‘tuned’’ (Randall and Wielicki
1997). For example, Bougeault (1981a) developed a
special turbulence condensation scheme with the help
of the large-eddy simulation (LES) results of Somméria
(1976) for a 1D HOC simulation of the trade wind PBL.
Bechtold et al. (1995) developed a scheme in which
they linearly interpolated between the Gaussian turbu-
lence profiles and a distribution with known constant
positive vertical velocity skewness. He tuned the skew-
ness to a trade wind–specific value, which gave satis-
factory results.

In the late 1960s and early 1970s, boundary layer
parameterizations (e.g., K theory, mixed-layer models,
HOC) and mass-flux-based cumulus parameterizations
(e.g., Arakawa 1969; Betts 1973; Arakawa and Schubert
1974) were being developed simultaneously but inde-
pendently. Unlike HOC models, mass-flux models were
specifically designed for cumulus regimes. MFC was
pioneered by Arakawa (1969), who applied it to deep
and shallow cumulus convection. Further applications
of mass-flux ideas to cumulus convection were reported
by Ooyama (1971), Arakawa and Schubert (1974), and
Betts (1973).

MFC explicitly recognizes that, in order to satisfy
mass continuity, compensating downdrafts must fill the
space between the buoyant updrafts in a convective re-
gime. Within the ‘‘classical’’ mass-flux framework, all
dynamic and thermodynamic quantities are represented
with tophat1 profiles. Using tophat distributions, Ar-
akawa partitioned the cumulus regime into two com-
ponents: updrafts and the environment surrounding the
updrafts. He then parameterized the fluxes as the product
of a convective mass flux (Mc) and the difference in a
quantity’s value between the updraft and the environ-
ment using

1 A tophat profile is a probability distribution function that consists
only of two delta functions. Thus, a quantity represented by a tophat
profile has 100% probaility of having one of just two possible values.
In the simplest type of mass-flux model, the two allowed states are
those of the updraft and downdraft.
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mw9h9 5 M (h 2 h ). (2)c up e

Here m is the density of the air, Mc 5 mswup, s is the
average fractional area of updrafts, and wup is the av-
erage vertical velocity in updrafts. An assumption used
in (2) (written here for a single cloud type) is that ‘‘large
eddies’’ (eddies whose scales are comparable to or larger
than the depth of the PBL) account for most of the
turbulent transport in the cumulus regime. Since (2)
explicitly distinguishes between ‘‘updrafts’’ and the
‘‘environment,’’ it entails the assumption that the en-
vironment is well defined. This is the case when the
updraft area fraction is much less than unity. Later, many
researchers applied this approach to the PBL and de-
veloped parameterizations that could be applied to both
clear and cloudy convective boundary layers (Betts
1973, 1976; Albrecht 1979; Hanson 1981; Randall
1987; Wang and Albrecht 1986, 1990). Because the dis-
tinction between updraft and environment is not as clear
for many boundary layer regimes, in which the updraft
area fraction can be close to 1/2, these researchers re-
interpreted Arakawa’s ‘‘updraft–environment’’ frame-
work as an ‘‘updraft–downdraft’’ pair. They modified
Arakawa’s parameterization [Eq. (2)] by replacing he

with hdn, the value of h in a convective downdraft. Thus,
the flux of h is written as

mw9h9 5 M (h 2 h ). (3)c up dn

Subsequent studies have shown that (3) actually rep-
resents only 60% of the total flux in convective (Bus-
inger and Oncley 1990; Young 1988a; Schumann and
Moeng 1991a; Wyngaard and Moeng 1992) and stratus-
topped boundary layers (Schumann and Moeng 1991a;
Wang and Stevens 2000; de Laat and Duynkerke 1998),
while it represents 80–90% of the total flux for con-
served variables in cumulus layers (except near cloud
base; Siebesma and Cuijpers 1995; Wang and Stevens,
2000). This percentage is considerably less for noncon-
served variables in cumulus layers. All values can vary
depending on the conditional sampling technique em-
ployed (Wang and Stevens 2000).

Observational studies (Nicholls and Lemone 1980;
Greenhut and Khalsa 1982, 1987; Lenschow and Ste-
phens 1980; Crum et al. 1987; Young 1988a,b) have
advanced our understanding of the dynamics of thermals
in the convective boundary layer (CBL); this has helped
modelers working to incorporate (3) (with applications
to both cloudy and clear regimes) into numerical models
(e.g., Wang and Albrecht 1986; Chatfield and Brost
1987; Penc and Albrecht 1987). Mixed-layer models2

have been combined with mass-flux models to simulate
dry, convective (Wang and Albrecht 1990), and cloudy
(Betts 1976; Albrecht 1979) PBLs. In addition, the ap-

2 Mixed-layer models are simplified first-order closure schemes
(Ball 1960; Lilly 1968; Randall 1976; Benoit 1976). In mixed-layer
models, the boundary layer is treated as a single layer and the tur-
bulent flux profiles are computed from only the surface fluxes and
the entrainment rate.

plicability of MFC to nonconvective regimes is sug-
gested by the observational study of Businger and On-
cley (1990).

Wang and Albrecht (1990) simulated dry convection
using prognostic equations only for the mean quantities
in the updraft and downdraft. They found that their sim-
ple model was able to simulate the observed CBL more
realistically than mixed-layer models. The major im-
provement over a mixed-layer model was the fact that
it allowed for an explicit representation of processes
that control gradients of conserved variables (e.g., in-
ternal mixing and lateral mixing between updraft and
downdraft elements). Wang and Albrecht speculated that
a unified cloud and PBL model could be developed with
such an approach.

Mass-flux models have also met with some success
in modeling the stratocumulus-topped and the TW cu-
mulus PBLs. Penc and Albrecht (1987) used data from
the NCAR Electra, which flew off the coast of California
in June 1976, to show that (3) can be used to describe
the stratocumulus-topped PBL (ScTBL). This was fur-
ther confirmed recently by de Laat and Duynkerke
(1998) using data from the Atlantic Stratocumulus Ex-
periment. Most modeling studies of the ScTBL have
employed mixed-layer models, along with the mass-flux
parameterization (e.g., Wang and Albrecht 1986). Mass-
flux schemes were also used in conjunction with mixed-
layer models to simulate the TW cumulus layer by Betts
(1973, 1976), Albrecht (1979), and Hanson (1981). The
major shortcomings of these models are their mixed-
layer assumption, which does not permit accurate rep-
resentation of the internal structure of the PBL, and their
inability to represent fractional cloudiness.

The mass-flux approach requires a method to deter-
mine the updraft area fraction s and the mass flux Mc.
To our knowledge, Randall et al. (1992, hereafter RSM)
were the first to propose a physically based method to
diagnose these quantities. They took steps toward com-
bining MFC and HOC. In the present paper, we con-
siderably extend the approach of RSM. For reasons that
will become clear, we call the approach Assumed-Dis-
tribution Higher-Order Closure (ADHOC). In the spirit
of earlier mass-flux models, RSM adopted a ‘‘tophat’’
probability density function (PDF; see footnote 1) to
describe the mean-state and turbulent fluxes in the at-
mosphere. They derived expressions analogous to Eq.
(3) for all higher-order terms (e.g., variances, other co-
variances, and third-order and higher moments). They
showed that all higher moments can be represented in
terms of various combinations of a convective mass flux
and the difference in properties between updrafts and
downdrafts.

As an example, suppose that h is an intensive property
of a system (potential temperature, mixing ratio, etc.).
With MFC, one can represent the mean value of h as
an area-weighted average of its two components:

h 5 sh 1 (1 2 s)h ,up dn (4)
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where s is the fractional area covered by the updrafts,
and hup and hdn are the values of h in the updraft and
downdraft, respectively. RSM also introduced a con-
vective mass flux,

M 5 ms(1 2 s)(w 2 w ),c up dn (5)

where 1 2 s is the fractional downdraft area, and (wup

2 wdn) is the difference in the vertical velocity between
the updraft and downdraft.

RSM used (4)–(5) to derive expressions for higher
moments. For example, we can derive an expression for
the vertical flux of h by replacing h with w9h9 in (4);
this gives

mw9h9 5 m[sw9 h9 1 (1 2 s)w9 h9 ]. (6)up up dn dn

Substituting the expressions 5 hup 2 and 5h9 h h9up dn

hdn 2 (along with the analogous ones for verticalh
velocity perturbations) and simplifying, we can obtain
the mass-flux formula (3).

One can follow similar procedures to obtain expres-
sions for variances; that is,

2mh9h9 5 ms (1 2 s)(h 2 h ) (7)up dn

and other higher-order moments:

mw9h9h9 5 ms (1 2 s)(1 2 2s)
23 (w 2 w )(h 2 h ) , (8)up dn up dn

2mw9h9h9h9 5 ms (1 2 s)(1 2 3s 1 3s )
33 (w 2 w )(h 2 h ) . (9)up dn up dn

In short, we can use this approach to diagnostically
determine any higher moments that appear in the tur-
bulence closure equations, provided that the variables
of the mass-flux model are known.

Two of the variables that we need to determine are
s and Mc. The approach of RSM provides us with a
physically based method to diagnose these quantities.
In (4), (7), and (8), we replace h by w everywhere. In
doing so, we are left on the rhs with three equations
and three unknowns: wup, wdn, and s. Solving this sys-
tem of equations, we find that

1 Sws 5 2 , (10)
2 1/22 2(4 1 S )w

2 1/2m(w9 )
M 5 rs (1 2 s)(w 2 w ) 5 , (11)c up dn 2 1/2(4 1 S )w

where

3w9
S 5 (12)w 3/2

2(w9 )

is the skewness of the vertical velocity. This demon-
strates that given and , we can diagnose both s2 3w9 w9
and Mc. To completely ‘‘close’’ this system, however,
we must also know the difference in properties between
the updrafts and downdrafts of all variables of interest

[Eqs. (6)–(9)]. We can determine these if we know the
flux and the mean value of the desired variable [Eqs.
(4) and (6)]. The success of this method thus requires
the knowledge of certain higher-moment statistics,
namely, , , and the vertical flux of any model2 3w9 w9
variable. RSM proposed using HOC equations to de-
termine these quantities. A schematic illustrating this
logic is shown in Fig. 1.

As an example, consider a model containing two ther-
modynamic variables, representing energy and mois-
ture. In order to apply the approach described here in
such a model, we require only four higher-order closure
equations (for , , and the two thermodynamic2 3w9 w9
fluxes), plus equations for the mean state. For compar-
ison, in a ‘‘conventional’’ third-order closure model with
two thermodynamic variables, 10 second- and third-or-
der moments must be predicted (e.g., Stull 1988). We
should note that since subplume-scale (SPS) contribu-
tions are removed by tophat filtering, we include an
additional equation for the SPS turbulent kinetic energy
(see Part II, Lappen and Randall 2001a, hereafter LR2).

Moreover, in ADHOC, all of the various moments
are guaranteed to be ‘‘realizable’’ because they are all
diagnosed from the same PDF. In conventional HOC
models, there is nothing to guarantee realizability (An-
dre et al. 1976).

We can summarize the advantages of the ADHOC
approach as follows:

1) all of the higher-order statistics are guaranteed to be
consistent with one another;

2) the model provides a physical basis for determining
s and Mc;

3) many fewer prognostic equations are required com-
pared with conventional HOC;

4) the model has an inherent ability to represent non-
local transport3 and partial cloudiness.

The main weakness of the approach is the crudeness
of the tophat assumption for dynamic and thermody-
namic quantities.

In the present study, we use a plume model to derive
prognostic equations for higher-moment statistics, based
on Eqs. (6)–(9). We demonstrate that the resulting mod-
el, ADHOC, is exactly consistent with the standard HOC
equations, in the sense that there is an exact term-by-
term correspondence. For the pressure terms, we use

3 A mass-flux representation of the fluxes has many advantages
over diffusion, especially in the convective PBL. With diffusion,
transport occurs level by level and information flows simultaneously
both upward and downward in the boundary layer. With mass-flux
closure, information either flows up (if s is small) or down (if s is
large). It is similar to advection in that information flows in whatever
direction the ‘‘velocity’’ is moving. We can say that local transport
is diffusive, while nonlocal transport (like that described by mass-
flux closure) is advective. In a cumulus layer (where s is very small),
the transport is clearly not diffusive. Thus, mass-flux closure is dis-
tinctly more realistic than diffusion closure for the representation of
higher-moment transport terms.
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FIG. 1. ADHOC model logic, based on RSM. We use ww and www to predict s, Mc,
wup, and wdn using (10)–(11). We then predict the flux of a variable and use (3) to diagnose
the difference in properties of the variable between the updraft and downdraft. Finally, we
use equations of the form (7)–(9) to diagnose any other higher moment.

parameterizations that have been developed for HOC;
most MFC models have neglected these terms entirely.
To determine the dissipation terms, we use ideas from
both HOC and MFC.

The remainder of the paper is organized as follows.
In section 2, we derive the governing equations. This
includes a discussion of the ADHOC-consistent second-
and third-moment equations, and their reduction to
known HOC and MFC relationships for some limiting
cases. In sections 3 and 4, we discuss the manner in
which momentum and pressure correlations are handled
in ADHOC. In section 6, we draw conclusions, and
discuss the possible wider applicability of our approach.
In LR2, we present a new parameterization of the lateral
mass exchange terms, and discuss an SPS parameteri-
zation, which we incorporate into ADHOC in order to
represent the small-eddy contribution to the flow. In Part
III (Lappen and Randall 2001b, hereafter LR3), we show
some results from simulations of a variety of clear and
cloudy PBL regimes.

2. Governing equations

a. Framework

Following RSM, we distinguish between the rising
and sinking regions of grid cells. Accordingly, we divide
a grid cell into two subregions, denoted by subscripts
‘‘up’’ and ‘‘dn,’’ with areas Aup and Adn, respectively.
We assume that

A 1 A 5 A.up dn (13)

Here A (no subscript) is the total area of the grid cell.

If we consider an arbitrary intensive variable h and
let Sh denote the source or sink of h, we can write the
following budget equations:

] ]
(mh A ) 5 EAh 2 DAh 2 (mw h A )up up dn up up up up]t ]z

1 m(S ) A , (14)h up up

] ]
(mh A ) 5 DAh 2 EAh 2 (mw h A )dn dn up dn dn dn dn]t ]z

1 m(S ) A , (15)h dn dn

where E (D) is the lateral mass exchange from the sink-
ing (rising) air into the rising (sinking) air, and m is the
density of the air. We ignore density differences between
the updrafts and downdrafts, except for buoyancy ef-
fects, which are discussed later. Advection by the mean
flow is neglected here for simplicity although it can be
included as shown by Lappen (1999).

In view of the definitions of E and D,

D $ 0 and E $ 0. (16)

Note that D is not equal to minus E. The two mass
exchange processes can occur independently and si-
multaneously. A full discussion of the parameterization
of E and D is given in LR2.

When we add (14) and (15), the E and D terms cancel
out and we obtain

] ]
mh 5 2 mwh 1 m(S ), (17)h]t ]z

where
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hA 5 h A 1 h A , (18)up up dn dn

mwhA 5 mw h A 1 mw h A , and (19)up up up dn dn dn

(S )A 5 (S ) A 1 (S ) A . (20)h h up up h dn dn

The continuity equations corresponding to (14)–(15)
and (17) can be obtained by setting h 5 1 and Sh 5 0:

] ]
(mA ) 5 EA 2 DA 2 (mw A ), (21)up up up]t ]z

] ]
(mA ) 5 DA 2 EA 2 (mw A ), (22)dn dn dn]t ]z

]m ]
5 2 mw, (23)

]t ]z

where is the area-averaged vertical velocity. Equa-w
tions (21)–(22) govern the time change of the mass or
area within each subregion. Equation (23) is the con-
tinuity equation for a whole grid cell. The horizontal
advection term is missing in (23) because we neglected
advection by the mean flow in (14)–(15).

For convenience, we define

Aup
s [ . (24)

A

Using (13) and (24), we find that

Adn1 2 s 5 . (25)
A

With this definition of s, we can show that

w 5 w 1 (1 2 s)(w 2 w ), (26)up up dn

w 5 w 2 s (w 2 w ), and (27)dn up dn

mwh 5 mw h s 1 mw h (1 2 s)up up dn dn

5 mw h 1 M (h 2 h ). (28)c up dn

In (28), m is the ‘‘large-scale’’ mass flux, and Mc isw
the convective mass flux given by (5). Equation (28)
shows that each of these mass fluxes contributes to the
total vertical flux of any quantity.

By combining (21)–(23) and (28) with (14)–(15) and
(17), we can derive ‘‘advective forms’’ of the budget
equations for h:

]h ]hup up
mA 5 EA(h 2 h ) 2 mA wup dn up up up]t ]z

1 m(S ) A , (29)h up up

]h ]hdn dnmA 5 DA(h 2 h ) 2 mA wdn up dn dn dn]t ]z

1 m(S ) A , (30)h dn dn

] ] ]
m h 5 2mw h 2 [M (h 2 h )]c up dn]t ]z ]z

1 m(S ). (31)h

b. Second and third moments

In this section, we derive the second- and third-mo-
ment equations, starting from the equations for the up-
draft and downdraft properties. We will do this for

, , and . We show that the resultingw9h9 w9w9 w9w9w9
equations are term-by-term consistent with the corre-
sponding HOC equations:

] 1 ] ]
w9h9 5 2 mw9w9h9 2 w9w9 h

]t m ]z ]z

g 1 ]p9
1 h9s9 2 h9 2 « , (32)y whC T m ]zp 0

] 1 ] g
w9w9 5 2 mw9w9w9 1 2 w9s9y]t m ]z C Tp 0

2 ]p9
2 « 2 w9 , (33)ww m ]z

] 1 ] 3 ]
2 2w9w9w9 5 2 mw9w9w9w9 1 w9 (mw9 )

]t m ]z m ]z

g 3 ]p9
21 3 w9s9 2 « 2 w9 , (34)y wwwC T m ]zp 0

where w is the vertical velocity, h is an any intensive
variable, Cp is the heat capacity of air at constant pres-
sure, g is the acceleration of gravity, T0 is a reference
temperature, sy 5 CpTy 1 gz 2 Ly rL is the virtual liquid
water static energy, Ty is the virtual temperature, z is
height, Ly is the latent heat of condensation of water
vapor, rL is the liquid water mixing ratio, «x is the rate
of dissipation of a dummy variable x, and p is pressure.

To derive the second- and third-moment equations,
we begin by expanding the left-hand sides of (32)–(34)
following the approach of RSM:

]
2[s (1 2 s)(w 2 w ) ]up dn]t

]s
25 (w 2 w ) (1 2 2s)up dn ]t

]
1 2s (1 2 s)(w 2 w ) (w 2 w ), (35)up dn up dn]t

]
[s (1 2 s)(w 2 w )(h 2 h )]up dn up dn]t

]s
5 (w 2 w )(h 2 h )(1 2 2s)up dn up dn ]t

]
1 s (1 2 s) [(w 2 w )(h 2 h )], (36)up dn up dn]t

]
3[s (1 2 s)(1 2 2s)(w 2 w ) ]up dn]t

]s
3 25 (w 2 w ) [6s 2 6s 1 1]up dn ]t
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21 3s (1 2 s)(1 2 2s)(w 2 w )up dn

]
3 (w 2 w ). (37)up dn]t

From (29) and (30), we can derive an equation for
the time change of the updraft–downdraft difference, hup

2 hdn:
(h 2 h ) ]h] E D up dn up

(h 2 h ) 5 2 1 2 wup dn up1 2]t s 1 2 s m ]z

]hdn1 w (S ) 2 (S ) .dn h up h dn]z
(38)

We can write an essentially identical equation for the
vertical velocity difference,

(w 2 w )] E D up dn
(w 2 w ) 5 2 1up dn 1 2]t s 1 2 s m

1 ]
2 22 [(w ) 2 (w ) ]up dn2 ]z

1 [(S ) 2 (S ) ], (39)w up w dn

where (Sw)up and (Sw)dn represent the sources and sinks
of w in the updraft and downdraft, respectively. The
difference between these two quantities is

(S ) 2 (S )w up w dn

g 1 ]
5 (T 2 T ) 2 (p 2 p )up dn up dnT m ]z0

1 ]
2 (sw9w9 )spspup5s ]z

1 ]
2 [(1 2 s)w9w9 ] . (40)spspdn 6(1 2 s) ]z

The terms on the right-hand side of (40) represent (from
right to left) buoyancy, pressure, and SPS effects. The
parameterization of the pressure terms is discussed in
section 4. The SPS terms are addressed in LR2.

From (38) and (39) we can form a prognostic equation
for (wup 2 wdn)(hup 2 hdn):

]
[(w 2 w )(h 2 h )]up dn up dn]t

(w 2 w )(h 2 h )E D up dn up dn
5 22 11 2s 1 2 s m

(h 2 h ) ]up dn 2 22 [(w ) 2 (w ) ]up dn2 ]z

]h ]hup dn1 (w 2 w ) 2w 1 wup dn up dn[ ]]z ]z

1 (h 2 h )[(S ) 2 (S ) ]up dn w up w dn

1 (w 2 w )[(S ) 2 (S ) ]. (41)up dn h up h dn

This immediately carries over to

2](w 2 w )up dn

]t
2(w 2 w )E D up dn

5 22 11 2s 1 2 s m

]
2 22 (w 2 w ) [(w ) 2 (w ) ]up dn up dn]z

1 2(w 2 w )[(S ) 2 (S ) ]. (42)up dn w up w dn

Finally, using the identity ]A3/]t 5 3A2(]A/]t), we can
write

3](w 2 w )up dn

]t
3(w 2 w )E D up dn

5 23 11 2s 1 2 s m

3 ]
2 2 22 (w 2 w ) [(w ) 2 (w ) ]up dn up dn2 ]z
21 3(w 2 w ) [(S ) 2 (S ) ]. (43)up dn w up w dn

We now recast the continuity equations [Eqs. (21)–
(22)] for the updrafts and downdrafts. Making use of
the definition of s [Eq. (24)], and in the spirit of the
anelastic approximation, neglecting the tendency of m,
we obtain

]s E 2 D 1 ]
5 2 (mw s), (44)up]t m m ]z

] D 2 E 1 ]
(1 2 s) 5 2 [mw (1 2 s)]. (45)dn]t m m ]z

We would like to combine (44) and (45) into a sym-
metrical form. Multiply (45) by s, and subtract the result
from (1 2 s) times (44), to obtain

]s E 2 D 1 ]M ]sc5 2 2 w . (46)1 2]t m m ]z ]z

Here we have used (5) and 5 swup 1 (1 2 s)wdn.4w
In the second- and third-moment equations, we neglect
the effects of the mean vertical velocity, so that we
approximate (46) by

]s E 2 D 1 ]Mc5 2 . (47)1 2]t m m ]z

Now we assemble the various pieces to form the sec-
ond- and third-moment equations, beginning with the
equation for the vertical velocity variance [Eq. (35)].
The details of this derivation are given by Lappen
(1999). The result is

4 We ignore the antisymmetric part of Eqs. (44)–(45) (obtained by
adding these equations) because it gives only the continuity equation
for the mean flow.
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FIG. 2. Comparison of the buoyancy and dissipation terms in the
heat flux budget of a convective boundary layer. The plot is from an
LES run done by S. de Roode (2000, personal communication).

]
2[ms (1 2 s)(w 2 w ) ]up dn]t

25 2(w 2 w ) (E 1 D)up dn

]
22 [M (1 2 2s)(w 2 w ) ]c up dn]z

1 2M [(S ) 2 (S ) ]. (48)c w up w dn

We can identify the terms on the right-hand side of (48)
as dissipation, transport, and the effects of sources and
sinks associated with buoyancy, pressure forces, and
small-scale mixing [see Eq. (40)]. Dissipation is asso-
ciated with mass exchanges between the updraft and
downdraft. Additional dissipation can enter through the
small-scale mixing terms included on the third line. De
Roode et al. (2000) independently noticed the relation-
ship between the lateral mass exchange terms and dis-
sipation rate in their study of a scalar variance equation.

We now perform a similar analysis for the flux equa-
tion. This time we expect to find gradient production,
in addition to dissipation, transport, and the sourcesink
terms. The starting point is (36). The details of the der-
ivation are given by Lappen (1999). The result is
]

ms (1 2 s)(w 2 w )(h 2 h )up dn up dn]t

5 2(E 1 D)(w 2 w )(h 2 h )up dn up dn

]
2 (1 2 2s)(w 2 w )M (h 2 h )up dn c up dn]z

]
2 M (w 2 w ) hc up dn ]z

1 ms (1 2 s)(h 2 h )[(S ) 2 (S ) ]up dn w up w dn

1 M [(S ) 2 (S ) ]. (49)c h up h dn

Here we see both the transport term and the gradient
production term. The last term represents the effects of
sources and sinks of h (such as the SPS mixing, dis-
cussed later) on the flux. The second-to-last term, which
involves sources and sinks of the vertical velocity, con-
tributes the important buoyancy term of the flux equa-
tion. It also represents the pressure term and the effects
on the flux of the subplume mixing of the vertical ve-
locity. The latter are probably negligible.

Finally, to complete the discussion of second mo-
ments, we show the plume equation for the variance,

:2h9
]

2ms (1 2 s)(h 2 h )up dn]t
25 2(E 1 D)(h 2 h )up dn

]
22 [M (1 2 2s)(h 2 h ) ]c up dn]z

]
2 2M (h 2 h ) h 1 2M [(S ) 2 (S ) ]. (50)c up dn c h up h dn]z

We hasten to point out that this equation is not explicitly
used in ADHOC. In ADHOC, we diagnose using2h9
the RSM formula given by Eq. (7). Thus, (50) will be
implicitly satisfied, provided that the source terms of
(48) and (49) are consistently formulated.

Before we move on to the third-moment equations,
we elaborate on another key point. The E and D terms
in the second-moment equations represent dissipation
through mixing of the updraft and downdraft properties.
In HOC equations, the dissipation rate for a flux,

] ] ]
w9h9 ; 2y w9 h9, (51)

]t ]z ]z

is typically neglected on the basis that sometimes the
product of these spatial derivatives is positive and some-
times it is negative so that the average of the product
can be close to zero. While neglect of these terms may
be justified for the very small scales (where true mo-
lecular dissipation occurs), the fact is that HOC purports
to represent, with a single set of statistics, all of the
scales of the turbulent motion field, including most im-
portantly the large-eddy scales, which are responsible
for most of the fluxes. There can be little doubt that the
fluxes on large-eddy scales are significantly ‘‘dissipat-
ed’’ by the interactions of the large eddies with smaller-
scale eddies. Recent LES results (S. de Roode 2000,
personal communication) show that this dissipation term
is of the same order as the buoyancy term in the lower
part of a convective boundary layer. His results are de-
picted in Fig. 2.

In HOC models, the pressure terms of the flux equa-
tions are typically modeled with a return-to-isotropy
parameterization (Rotta 1951a,b), which takes the form
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of dissipation-like terms involving a proportionality
constant. There is uncertainty in the literature over the
value of the constant in front of this dissipation-like
return-to-isotropy term (Bougeault 1981b). We contend
that in HOC models this term actually represents the
combined effects of flux dissipation and the true pres-
sure term. In ADHOC, we include the effects of both
of these terms (see LR2 and section 4).

Finally, we present the equation for the third moment
of the vertical velocity as given by Eq. (37). The details
of this derivation are given by Lappen (1999). The final
result is

]
3[ms (1 2 s)(1 2 2s)(w 2 w ) ]up dn]t

35 (w 2 w ) [E(3s 2 2) 1 D(3s 2 1)]up dn

3 22 (w 2 w ) [6s 2 6s 1 1]up dn

]
3 [ms (1 2 s)(w 2 w )]up dn]z

3
22 ms (1 2 s)(1 2 2s)(w 2 w )up dn2

]
23 [(1 2 2s)(w 2 w ) ]up dn]z

1 3(1 2 2s)M (w 2 w )[(S ) 2 (S ) ]. (52)c up dn w up w dn

Here the entrainment and detrainment terms are mul-
tiplied by linear functions of s. We show in LR2 that
the E and D terms in (52), despite their different form,
still act as dissipation in the equation.w9w9w9

In order for the standard HOC and the plume-model
equations for to be consistent, the third andw9w9w9
fourth terms on the right-hand side of (52) must be equal
to the first and second terms on the right-hand side of
(34), the transport and gradient-production terms, re-
spectively. We can show this by replacing h with w in
(7) and (9), plugging the result into the aforementioned
terms in (34), and expanding the derivatives [see Lappen
(1999) for a derivation].

We can summarize the insight that we have gained
from this analysis. First, there is a term-by-term cor-
respondence between the ADHOC plume equations and
those of HOC. In this correspondence we see that en-
trainment and detrainment in ADHOC act as dissipation
in the second-moment equations, but they act somewhat
differently in the equation for the third moment of the
vertical velocity. In these higher-moment plume equa-
tions, there are terms that represent ‘‘generic’’ sources
and sinks. These sources and sinks include the effects
of pressure, buoyancy, and SPS fluxes. We will show
in LR2 that the SPS effects are quite important, espe-
cially when clouds are present. In LR2, we will also
explain in detail how ADHOC parameterizes both the
lateral mass exchanges and the SPS fluxes. In the next
section, we will examine the ADHOC equations derived

here (using an analysis similar to that of RSM), and
show how they specifically encompass both HOC and
MFC within a single framework.

c. Limiting cases

We now examine two limiting cases, s 5 1/2 and s
K 1, which were also discussed by RSM and de Roode
et al. (2000). We expect that for s 5 1/2 local transport
dominates. The case s K 1 is relevant to cumulus con-
vection (e.g., Arakawa and Schubert 1974). Consider
the variance equation [Eq. (50)] written in the ‘‘mass-
flux framework’’:

M (h 2 h )] ]c up dn2h9 5 22 h
]t m ]z

1 ]
22 [M (1 2 2s)(h 2 h ) ]c up dnm ]z

22 (E 1 D)(h 2 h ) . (53)up dn

Assuming a quasi-steady state and using (3), we can
rewrite (53) as

] 1 ]
20 5 22w9h9 h 2 [M (1 2 2s)(h 2 h ) ]c up dn]z m ]z

2E 1 D mw9h9
2 . (54)1 21 2m Mc

Setting s 5 1/2 in (54), the middle term drops out and
we can solve for the flux m :w9h9

222M ]cmw9h9 5 h. (55)
E 1 D ]z

This describes downgradient diffusion, in which the ef-
fective eddy diffusivity is represented by

22McK 5 . (56)eff E 1 D

From this exercise, we see that when s approaches 1/2,
the nonlocal transport term (third moment) drops out
and the remaining terms describe local diffusion. In this
manner, the mass-flux model is able to represent situ-
ations in which nonlocal effects play no role.

It is interesting to note that, more than three decades
ago, Deardorff (1966) came to this same conclusion. He
performed a similar analysis with the HOC variance
equation for the potential temperature u. He determined
that, when the triple-correlation transport term is small,
and for steady-state conditions, one can solve for the
heat flux in terms of the remaining molecular dissipation
and radiation terms. The heat flux is directed down the
gradient.

A second limiting case is that of cumulus convection
(s K 1). To examine this situation, we rewrite (54)
using (3), and the equilibrium assumption
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2] 1 ] (mw9h9)
22w9h9 h 2 (1 2 2s)[ ]]z m ]z Mc

2E 1 D mw9h9
2 5 0. (57)1 21 2m Mc

In the limit s K 1, 1 2 2s ø 1. Using this in (57),
and expanding out the middle term, we get

2
] 2w9h9 ] w9h9 ]Mc22w9h9 h 2 mw9h9 11 2 1 2]z M ]z M ]zc c

2E 1 D mw9h9
2 5 0. (58)1 21 2m Mc

Equation (58) can be simplified further using the steady-
state version of (47),

]Mc 5 E 2 D. (59)
]z

Using (59) in (58), we get

2
] w9h9 ] 2D mw9h9

22w9h9 h 2 2 mw9h9 21 2 1 2]z M ]z m Mc c

5 0. (60)

Multiplying (60) by 2Mc/2 and solving for ]/w9h9
]z , we getw9h9

] ]
2 mw9h9 5 M h 1 D(h 2 h ). (61)c up dn]z ]z

Equation (61) is quite well known in the field of cumulus
parameterization. The first term represents the effect of
‘‘compensating subsidence.’’ It acts to warm and dry
the environmental air. The second term describes the
effect of detrainment on the environment. It is especially
important near cloud top. This same equation was de-
rived by AS74, using a very different method.

Wyngaard and Weil (1991) also obtained a result sim-
ilar to (54). Their Eq. (36) can be written as

] c9w9 Ss T ]w LC 5 2 2 c9w9, (62)1 2]z K 2K ]z

where C is a passive, conservative scalar; K is an eddy
diffusivity; S is the skewness of the vertical velocity;
sw 5 ( )1/2; and TL is the Lagrangian integral time-2w9
scale. This equation contains three terms that are pro-
portional to (in order from left to right) the gradient of
the mean scalar, the scalar flux itself, and the scalar-flux
divergence. If the last term is negligible, we obtain the
downgradient diffusion formula,

]
c9w9 5 2K C. (63)

]z

This is analogous to our Eq. (55) derived for the case

where s 5 1/2. If the middle term in (62) is negligible,
we get

] 2K ]
c9w9 5 2 C. (64)1 2]z Ss T ]zw L

This is similar to our Eq. (61), but without the detrain-
ment term, for the case where s K 1.

3. Momentum fluxes

MFC can succeed when there is a strong correlation
between the vertical velocity and the variable of interest,
as is typically the case for thermodynamic variables in
convective layers. However, high correlations are not
always found between the vertical velocity and the dy-
namic quantities (zonal and meridional momentum). In
a free-convective boundary layer, mass continuity dic-
tates that u9 and y9 are largest in between the updraft
and downdrafts (where w9 is near zero) and are smallest
in the centers of the updrafts and downdrafts (where w9
is a maximum) (Fig. 3a). This does not bode well for
an accurate determination of the momentum fluxes with
MFC. In a shear-driven boundary layer, however, the
correlation between u9 and w9 is strong (Fig. 3b), and
we may very well be able to use the mass-flux method
with accurate results. The only PBL study (that we are
aware of ) that tested the representation of momentum
fluxes with a mass-flux decomposition was that of Khal-
sa and Greenhut (1985). They showed that this for-
mulation is valid for momentum fluxes in the lower third
of the marine boundary layer. However, this study is
quite limited in its range of applicability and, to our
knowledge, has not been extended to other regimes.

One could argue that, given the fact that momentum
fluxes are weak (and relatively unimportant) in the con-
vective boundary layer, the ‘‘noncorrelation’’ is harm-
less. This, combined with the fact that u9 and w9 are
well correlated in the shear-driven boundary layer, may
indicate that ADHOC could still produce accurate mo-
mentum fluxes, when and where the fluxes are large.
While this may be true, we have chosen to prognose
the momentum fluxes (as we do the thermodynamic
fluxes) but use ‘‘downgradient’’ diffusion for the third-
moment transport terms in these equations. ADHOC
predicts , , (as well as the analogous y9u9x9 w9u9 u9u9
moments; here x represents any thermodynamic vari-
able) using conventional HOC methods; the details are
described by Lappen (1999).

4. Pressure terms

Pressure effects enter the ADHOC equations through
the vertical velocity ‘‘source’’ terms [e.g., (Sw)up 2
(Sw)dn in Eq. (39)]. Up to now, the pressure terms have
been dealt with very differently in MFC and HOC. The
pressure-term parameterizations have always been an
integral part of HOC models. On the other hand, few
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FIG. 3. The correlation of w and u in (left) the convective boundary layer and (right) the shear-driven
boundary layer. We see that w and u are correlated in (right) but are 908 out of phase in (left).

mass-flux models have even considered these terms [an
exception is the study of Wu and Yanai (1994)]. It may
be possible to use the anelastic pressure equation (Hol-
ton 1973; Yau 1979; Lappen 1999) to derive the updraft
and downdraft pressure gradient components, and sub-
stitute this directly into Eq. (40). However, the current
version of ADHOC makes use of ideas from the HOC
literature. Following Rotta (1951) and Launder (1975),
we write

2]u9 ]u9 q qi kp9 1 5 2C u9u9 2 d1 i k ij1 2 1 2]x ]x l 3k i

2
2 C P 2 d P , (65)2 ij ij1 23

where

]U ]Uj iP [ 2 u9u9 1 u9u9ij i k j k1 2]x ]xk k

a
2 (u9T9g 1 u9T9g ), and (66)i j j iT

]U aiP [ 2 u9u9 1 u9T9g . (67)i k i i1 2]x Tk

Here a is the coefficient of thermal expansion, T is the
temperature, u is the potential temperature, and l is a
turbulent length scale (Blackadar 1962).

Using (40) and (3), we can write out the ADHOC
formula for the pressure term in the equation [Eq.w9w9
(48)],

]
2[ms (1 2 s)(w 2 w ) ]up dn]t

]
; 22s (1 2 s)(w 2 w ) (p 2 p ). (68)up dn up dn]z

We can rewrite this as

]
2[ms (1 2 s)(w 2 w ) ]up dn]t

] M ] Mc c; 22 (p 2 p ) 1 2(p 2 p ) . (69)up dn up dn 1 2[ ]]z m ]z m

In the current version of ADHOC, we essentially neglect
the first term on the right-hand side of (69) (the pressure
transport) and parameterize the second term using the
right-hand side of (65).

In summary, for the , , and equations,u9u9 y9y9 w9w9
we use (65) with l calculated using a modified version
of the method of Bougeault and André (1986; see LR2),
and with C1 5 2.0, and C2 5 0.6. In the flux equations,
we neglect all pressure contributions from (65) except
for the first term, which represents the ‘‘slow,’’ return-
to-isotropy part:

] q
w9x9 5 2C w9x9, (70)

]t l

where x is any variable, C 5 4.85 for thermodynamic
fluxes, and C 5 4.5 for momentum fluxes. In the

equation, we use a form analogous to (70) withw9w9w9
C 5 6.5 (Bougeault 1981b). The limitations of param-
eterizing pressure effects in this manner are discussed
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FIG. 4. Vertically staggered grid of the model. The mean state and third moments are
defined at the layer centers (zm) while the second and fourth moments are defined at the
layer edges (zt). In addition, all mass-flux and subplume-scale (SPS) quantities are defined
at the layer edges. Above, small letters represent turbulent quantities and capitals represent
the mean state values. Here x, y, and z are dummy symbols representing any model ther-
modynamic or dynamic variable, and Xu (Xd) represents an updraft (downdraft) quantity.

in LR3. For a further discussion of the pressure terms
see Lappen (1999).

5. Boundary conditions

Depending on the application (see LR3), the surface
fluxes are either prescribed from observations or else
diagnosed following Louis (1979); they are fed directly
into the plume-scale motion. Following Krueger (1985),
we define all second moments at layer edges and first
and third moments at layer centers (see Fig. 4). With
the exception of the surface fluxes, we set all second
and third moments to zero at the surface. For the first
layer above the surface, we predict all first- and second-
moment quantities. We prescribe in the middlew9w9s9y
of the first layer according to the surface layer similarity
relationship of Moeng and Wyngaard (1989):

w9w9s9 5 0.3w*w*s* if w9s9 . 0 and (71)y y y2sfc

w9w9s9 5 0 if w9s9 , 0, (72)y y2sfc

where w* is the convective velocity scale and 5s*y
( ,sfc/w*). We diagnose all other third moments usingw9s9y
a mass-flux formula analogous to Eq. (8). Because all
of the quantities on the right-hand side of Eq. (8) are
defined at the layer edges and the third moment is de-
fined at the layer center (Fig. 4), we do an arithmetic
average of s, (hup 2 hdn), and (wup 2 wdn) between the
surface and the top of the first layer. In doing so, we
use (wup 2 wdn) 5 (hup 2 hdn) 5 0 and s 5 1/2 at the
surface.

Upper boundary conditions are described by Lappen
(1999).

6. Summary and conclusions

In this paper, we have taken the familiar plume equa-
tions describing the mean properties of updrafts and
downdrafts and used the framework of RSM to derive
a set of higher-order prognostic equations. We obtain a
hybrid MFC–HOC model (called ADHOC) whose equa-
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TABLE 1. Comparison of ADHOC with the mass-flux models of Wang and Albrecht (1986) and Arakawa and Schubert (1974).

ADHOC
Wang and Albrecht

(1986)
Arakawa and Schubert

(1974)

Vertical velocity
equation

The equation for wup 2 wdn is explicitly used
in all higher-moment prognostic equa-
tions.

Not included Not included

Parameterization of
E and D

E and D are shown to be related to dissipa-
tion and are parameterized using a modi-
fied form of Bougeault (1986).

Not discussed The fractional entrainment rate (l) is con-
sidered to be constant for a given cloud
type, while detrainment is assumed to oc-
cur only at cloud top in order to satisfy
mass continuity.

E and D are positive everywhere in the
cloud.

N/A D is zero everywhere except at cloud top.

Only one updraft and downdraft are consid-
ered.

N/A Many categories of updrafts and downdrafts
are considered.

s equation The prognostic s equation is given by Eq.
(47).

Not discussed The s equation is used with the assumption
that s is in steady state.

Subplume-scale ef-
fects

Subplume-scale effects are considered in the
mean-state and second-moment equations
using a modified version of Deardorff
(1980) to predict the subplume-scale tur-
bulent kinetic energy.

Not discussed Not discussed

Pressure parameteri-
zation

ADHOC uses the HOC pressure parameteri-
zation given by Rotta (1951a,b) and
Launder (1975).

Not discussed Not discussed

Type of regimes
considered

Boundary layer and shallow convection Boundary layer and
Sć convection

Shallow and deep convection, excluding the
boundary layer.

tions are term-by-term consistent with the correspond-
ing conventional HOC equations. A comparison of the
features of ADHOC with those of two other mass-flux
models is given in Table 1. GCMs use a ‘‘modular’’
approach toward parameterizing cloud and the boundary
layer processes; as a result, they have trouble with tran-
sitional regimes. ADHOC may be a step toward unifying
parameterizations of cloud and boundary layer pro-
cesses in large-scale models.

ADHOC provides a method to diagnose s and Mc

when and are known. The ADHOC equa-w9w9 w9w9w9
tions are derived by integrating the prognostic HOC
equations over a top hat PDF, thus guaranteeing con-
sistency with the mass-flux model. In addition, since all
higher-moment statistics are derived from the same PDF,
there are no realizability issues with this model.

The basic logic behind the ADHOC approach is
sketched in Figs. 1 and 5, and can be summarized as
follows.

1) Prognose (or initialize) and using thew9w9 w9w9w9
unified MFC–HOC equations [Eqs. (48) and (52)].

2) Use these prognosed values to diagnose s, Mc [Eqs.
(10) and (11)], and the properties of the updraft and
downdraft.

3) Predict (or initialize) the fluxes.
4) Use the thermodynamic fluxes, along with Mc, to

diagnose the properties of the updraft and downdrafts
[Eq. (3)].

5) Diagnose higher-order moments using the RSM for-
mulation [Eqs. (7)–(9)].

6) Calculate the SPS fluxes and the radiative forcing
(done separately for the updraft and downdrafts).

7) Update the surface fluxes, diagnose the lateral mix-
ing terms (E and D).

We haven chosen to predict , , the fluxes,w9w9 w9w9w9
and the mean-state quantities. We could reasonably
choose various other combinations of prognostic equa-
tions to form a model that would be mathematically
equivalent to that described above. For example, we
could use the same set of prognostic equations described
above with the exception that we predict s [using Eq.
(47)] and diagnose . Similarly, we could choosew9w9w9
not to predict the fluxes, but instead use prognostic equa-
tions for the ‘‘updraft minus downdraft’’ quantities [i.e.,
equations of the form of (38)]; in such a model, we
would compute the fluxes using Eq. (3).

One weakness of the current model is that the tophat
PDF cannot fully describe the statistics of the flow; it
is an oversimplification. To make the approach more
accurate, a more realistic PDF must be used. The AD-
HOC approach can be generalized to make use of a
more realistic PDF.

1) Assume a PDF shape, formulated in terms of a few
parameters.

2) Integrate the prognostic equations over the PDF to
get a ‘‘plume’’ model.

3) Make mechanistic assumptions in the framework of
the plume model (e.g., make assumptions about the
lateral mixing).
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FIG. 5. Model flowchart.

4) Derive higher-moment equations from the plume
model.

5) Diagnose the parameters that describe the PDF shape
from the predicted moments.

We can actually go from step 1 to step 4 directly for
some of the terms. For example, in the current version
of ADHOC, the thermodynamic variances can be di-
agnosed directly from the PDF once the PDF is known.

One result that emerges from our analysis is that the
lateral mass exchange terms (E and D) are analogous
to the dissipation terms in the corresponding ‘‘standard’’
HOC equations. In LR2, we discuss parameterizations
of E and D. Also in LR2, we discuss the parameteri-
zation of SPS fluxes, which contribute to the source/
sink terms such as Sw [see Eq. (40)]. The SPS fluxes
allow us to account for the portion of the turbulent mo-
tion that is not represented with the tophat PDF.

A weakness of the current model is its treatment of
momentum. The mass-flux model lacks any information
on the tilt of the convection, which controls momentum
fluxes through the covariance of u9 (and y9) with w9.
We have chosen to use conventional HOC to prognose
the momentum fluxes. Ideally, a formulation consistent
with the assumed statistical PDF (tophat in the current

model) should be used for higher-moment momentum
terms.

The pressure terms of the model are currently based
on conventional HOC ideas. We are exploring an al-
ternative approach based on the plume model.

With ADHOC, the additional complexity introduced
by prognosing the higher moments is offset by the pros-
pect of simplifying the model by unifying its convection
and boundary layer parameterizations. The number of
equations used by ADHOC is significantly less than
would be required with a full second-order closure mod-
el.

Despite the step that we have taken here to unify cloud
and boundary layer processes, a few aspects of the cur-
rent model must be changed before incorporation into
a large-scale model is realistic. First of all, the current
model uses s to define the fractional area of the updrafts.
However, s can only determine the ratio of the updraft-
to-downdraft areas, not the actual number of or spacing
between updrafts. Even when the convection is of a
single type, at least two horizontal length scales should
be considered: one for the size of the individual updrafts
and one for the mean distance between updrafts.

The second aspect of the current model that must be
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addressed before its incorporation into a large-scale
model is resolution. ADHOC’s need for high vertical
and temporal resolution is one of the main factors in-
hibiting its incorporation into a GCM. In particular, high
resolution is needed near the PBL top where properties
of the PBL change rapidly across the PBL-top inversion.
One way to alleviate this problem is to use a modified
s coordinate (Suarez et al. 1983) in which high reso-
lution near the PBL top is not needed because the PBL
top is a coordinate surface.

We believe that ADHOC has the potential to provide
a unified parameterization of cumulus and boundary lay-
er processes. Our hope is that by generalizing the PDF
we can derive a more realistic, more flexible model. Our
long-term goal is a unified parameterization that will
combine the PBL and cumulus parameterizations in a
single physical and computational framework.
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