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Abstract 
 

The Colorado State University (CSU) Multi-scale Modeling Framework (MMF) is a new 

type of global climate model (GCM) that replaces the conventional parameterizations of 

convection, clouds and boundary layer with a cloud-resolving model embedded into each grid 

column. The MMF has been used to perform a 19-year long AMIP style simulation using the 

1985-2004 sea surface temperature (SST) and sea ice distributions as prescribed boundary 

conditions. Particular focus has been given to the simulation of the interannual and 

subseasonal variability.  

The annual mean climatology is generally well simulated. Prominent biases include 

excessive precipitation associated with the Indian and Asian Monsoon seasons, precipitation 

deficits west of the Maritime Continent and over Amazonia, shortwave cloud effect biases 

west of the subtropical continents due to insufficient stratocumulus clouds, and longwave 

cloud effect biases due to overestimation of high cloud amounts especially in the Tropics. The 

geographical pattern of the seasonal cycle of precipitation is well reproduced, although the 

seasonal variance is considerably overestimated mostly because of the excessive monsoon 

precipitation mentioned above. The MMF does a good job of reproducing the interannual 

variability in terms of spatial structure and magnitude of major anomalies associated with the 

the El Niño / Southern Oscillation (ENSO). The simulations of the subseasonal variability of 

tropical climate associated with the Madden-Julian Oscillation (MJO) and equatorially 

trapped waves are  particular strengths of the simulation. The wavenumber-frequency power 

spectra of the simulated outgoing longwave radiation (OLR) for time scales in the range 2 to 

96 days compare very well to the spectra derived from observations, and show a robust MJO, 

Kelvin waves and Rossby waves with phase speeds similar to those observed. The 
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geographical patterns of the MJO and Kelvin-wave filtered OLR variance for summer and 

winter seasons are well simulated, but the variances are overestimated by as much as 50%. 

The observed seasonal and interannual variations of the strength of the MJO are also well 

reproduced. 
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1. Introduction 
 

In a new type of general circulation model (GCM), many processes that unresolved on 

GCM grid are incorporated using a cloud-resolving model (CRM; Grabowski and 

Smolarkiewicz 1999; Grabowski 2001; Khairoutdinov and Randall 2001; Khairoutdinov et 

al.2005). The CRM, which in this context is often call super-parameterization, is inserted into 

each GCM grid column. From the GCM’s prospective, the CRM works like a set of 

conventional parameterizations. The CRM is forced by the GCM-grid scale tendencies, and 

the CRM generates vertical profiles of tendencies. Such a ‘super-parameterized’ GCM has 

been termed a Multi-scale Modeling Framework, or MMF. This name emphasises that such a 

model includes in a single framework not only the scales of atmospheric motion on the order 

of hundreds kilometers as represented on the GCM’s grid, but also the meso-scale and cloud-

scale circulations that are represented on the CRM’s grid. In this sense, MMF is regarded as a 

bridge between the conventional GCMs and the immensely more computationally expensive 

global CRMs that have just recently been applied for short global simulations (Tomita et al. 

2005; Miura et al. 2005).  

A major strength of the MMF concept is that it allows cloud microphysics, aerosols, 

turbulence, and radiation interact on the cloud-scale, as they do in nature. In contrast, various 

parameterizations of unresolved physical processes in conventional GCMs do not generally 

communicate directly with each other but rather through modification of the scales that are 

represented on the GCM’s coarse grid, which are generally much larger than the cloud scale. 

Recent experiments with the MMF has indicated that such cloud-scale interactions ignored in 

conventional GCMs can be quite important. For example, Khairoutdinov et al. (2005) has 

shown that the MMF tends to improve the diurnal cycle of precipitation over summertime 
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continents quite dramatically when compared to the conventional version of the same GCM. 

Cole et al.(2005) has demonstrated the importance of cloud-scale interactions between clouds 

and radiation for the simulated global distribution of clouds and radiation. The problem of the 

scale of interactions represents just one of many other problems associated with the current 

state of the art of the physical parameterizations, and the MMF approach is argued to be one 

of the plausible pathways to the future (Randall et al. 2003; Arakawa 2004).  

The MMF has a substantially higher computational cost than a conventional GCM. For 

example, when run on the same number of CPUs in our first MMF experiments 

(Khairoutdinov and Randall 2001), the CSU MMF was about two orders of magnitude slower 

than  the host GCM with conventional parameterizations. However, since the ratio of the time 

that that MMF spends computing to the time spent for inter-CPU communication is much 

higher than the same ratio for conventional GCMs, the MMF can be vastly more scalable on 

parallel computers, i.e., it can utilize large number of CPUs more efficiently than conventional 

GCMs. For example, the CSU MMF results presented in this paper were obtained using 1024 

CPUs of the “Seaborg” supercomputer at NERSC2 with more than 90% parallel efficiency 

(see Fig. 2 of Khairoutdinov et al. 2005).  As a result, it currently takes roughly one wall-

clock day (on Seaborg) to simulate one year on a 2.8ox2.8o horizontal grid (T42 spectral 

truncation) with 30 vertical levels. Such performance is about 20 times better in terms of the 

wall-clock time performance than it was in our first MMF experiments using similar 

processors.  

It is expected that, over the next decade, the computational performance of the CSU MMF 

will improve further on the faster systems of the future, so that century-long climate-change 

                                                
2 The Department of Energy’s National Energy Research Scientific Computing Center 
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simulations using a coupled atmosphere-ocean MMF model may become feasible. Even now, 

it is feasible to make runs as long as a decade. For example, the CSU MMF was recently used 

to conduct a relatively simple Cess-type climate sensitivity experiment (Cess et al. 1996). The 

results were reported by Wyant et al. (2006). A multi-year control simulation was compared 

to an experiment in which the prescribed climatological sea-surface temperature (SST) was 

uniformly increased by 2 K.  

It has also become feasible to use the MMF in AMIP3-style simulations based on 

prescribed observed monthly-mean SSTs and sea-ice cover, for a period of more than a 

decade. Recently, short AMIP-style MMF simulations using the 1998-1999 observed SSTs 

were conducted at Pacific Northwest National Laboratory (Ovtchinnikov et al. 2006) with a 

version of MMF similar to the CSU MMF, and also at NASA Goddard Space Flight Center 

(Tao et al. 2006) using a completely different MMF.  

In this paper, we present the results of the first decadal AMIP-style simulation with the 

CSU MMF using the 1985-2004 observed SSTs.  The emphasis of our analysis is on the 

simulated subseasonal and interannual variability as compared to observations.  

                                                
3 Atmospheric Model Intercomparison Project 
6 National Center for Atmospheric Research 
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2. Simulation setup 
 

The CSU MMF was described in detail by Khairoutdinov at al. (2005; hereinafter referred 

to as K05). The host GCM is the NCAR6 Community Atmosphere Model (CAM), version 3, 

which is the atmospheric component of the NCAR Community Climate System Model 

(CCSM; Collins et al.2006). We use a semi-Lagrangian dynamical core as it allows us to 

achieve better scalability of the MMF when using large number of processors. The dynamical 

core was configured to run with  2.8o x 2.8o horizontal grid spacing (T42 truncation) with 30 

levels, and the domain top at 3.6 hPa. The GCM timestep was 30 min. In each grid column, all 

of the conventional moist physics, convective, turbulence and boundary-layer 

parameterizations, except for the gravity-wave drag parameterization, were replaced by a 

CRM, which is a two-dimensional version of the System for Atmospheric Modeling (SAM; 

Khairoutdinov and Randall, 2003).  

The CRM solves the momentum equations using the anelastic approximation. The 

prognostic thermodynamic variables include the liqui/ice water moist static energy, total 

precipitating and total non-precipitating water. Cloud condensate is diagnosed using the ‘all-

or-nothing’ condensation scheme assuming saturation with respect to water/ice. Precipitating 

water is a mixture of the snow, graupel and rain water with the hydrometeor partitioning 

assumed to be a function of temperature only. The precipitation sources and sinks are 

computed using a simple bulk microphysics model.  

In this study, the CRM’s two-dimensional domain had 32 grid columns with 4-km 

horizontal grid spacing, and 28 layers collocated with the GCM grid layers. The timestep was 

20 sec. The domain was periodic and aligned in the south-north direction; this is different 

from K05, who used the east-west alignment. The motivation for this change is that it seems 
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to mitigate the positive precipitation bias in the Western Pacific for the summer months 

(K05).  

The subgrid-scale fluxes were computed using the first-order turbulent closure based on 

the Smagorinski model for the eddy diffusivity and viscosity. The CAM radiative transfer 

scheme was applied every 15 min for each CRM column using the all-or-nothing cloud 

overlap assumption.  

During the GCM timestep, the CRM was forced by the large-scale tendencies arising from 

GCM dynamical processes. The forcing was applied uniformly in the horizontal, and 

computed as described in K05. The CRM output consisted of horizontally averaged 

tendencies of temperature, water vapor and cloud condensate, which were used to feed back 

on the GCM fields. The GCM’s horizontal wind was not modified by the CRM because of 

concern that the vertical momentum transport simulated by the two-dimensional model is 

unrealistic. Instead, the conventional parameterizations of the host GCM were allowed to alter 

the wind field (see the discussion and experiments reported by K05). The surface fluxes were 

computed on the GCM grid with a local gustiness enhancement of the surface stress on the 

CRM grid.  

The AMIP-style integration presented in this study was performed using prescribed 

monthly-mean SST and sea ice datasets provided by J. Hurrell of NCAR. The integration 

period was from September 1, 1985 to September 1, 2004, i.e., a total of simulated 19 years. 

The monthly and yearly means were computed for 1986 through 2003.  
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3. Results 
 
a. Simulated annual-mean climatology 
 

The global distribution of annual mean precipitation for the MMF is shown in Fig. 1, 

along with the observed CMAP7 climatology (Xie and Arkin 1997) and the corresponding 

mean error for years 1986-2001. The overall pattern of precipitation is generally well 

reproduced; but, there are important deficiencies. The most prominent are the deficits of 

precipitation in the Indian Ocean just to the west of the Maritime Continent, in the western 

Pacific intertropical convergence zone (ITCZ), south Atlantic storm trek, and over the 

Amazonia. Most notable precipitation regions of excessive simulated precipitation are in the 

northwest tropical Pacific during the South Asian Monsoon season, and in the western India 

and Bay of Bengal during the Indian Monsoon season. Also, there is a `bull’s eye` of 

excessive precipitation in equatorial South America. The positive monsoon season biases have 

also been evident in earlier MMF simulations with prescribed climatological SSTs 

(Khairoutdinov et al. 2005). There is a clear underestimation of precipitation in the region 

where the ITCZ and the South Pacific convergence zone merge, and an overestimation just 

south of the equator; this is a manifestation of the double-ITCZ problem.  

Precipitation in Africa and Eurasia is generally well simulated, while considerable biases 

are present in North and South America. The global-mean annual precipitation is 

overestimated by about 0.14 mm/day with respect to the CMAP estimate of 2.66 mm/day 

(Table 1).  

                                                
7 Climate Prediction Center Merge Analysis of Precipitation  
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The geographical distribution of the annually averaged column integrated water vapor, or 

precipitable water, and its difference from the NVAP (Randel et al., 1996) climatology, is 

shown in Fig. 2. Although the MMF captures the observed patterns quite well, there are 

considerable biases. Precipitable water is systematically overestimated over most of the 

oceans with the most prominent error in the equatorial eastern Pacific. The most notable 

maritime negative biases are in and around the Maritime Continent and equatorial Atlantic. 

Over land, the simulation is systematically too dry over the subtropical continents, and too 

wet over central  Africa, suggesting that the simulated Hadley circulation is stronger than in 

nature. There is a clear tendency for unrealistically dry air over the maritime regions west off 

the subtropical continents, where stratocumulus clouds are observed to form. This contributes 

to an underestimation of low-level clouds in those regions. The globally average precipitable 

water is overestimated by 0.7 mm (Table 1). 

The global distributions of the annual mean longwave (LWCE)  and shortwave (SWCE) 

cloud effects are shown in Fig. 3 and Fig. 4, respectively, along with the observational 

estimates from the ISCCP-FD data set (Zhang et al. 2004) and the mean error distribution for 

years 1986-2000. The cloud effect is the difference between the clear-sky and total fluxes at 

the top-of-atmosphere (TOA), and, thus, is a direct measure of the cloud effect on the TOA 

radiation.  The global annual mean values for MMF match the observational estimates rather 

well (Table 1). The TOA global annual mean fluxes have been tuned8 to force the net 

radiation be close to zero; however, the global mean SWCE and LWCE have not been 

intentionally tuned, but their good match with observational estimates appears to be a result of 

cancellation of rather large regional biases. The geographical distribution of LWCE biases 

                                                
8 Shortwave radiation was tuned by a slight reduction of the specified liquid water drop 
effective radius relative to the standard CAM. Longwave radiation was not tuned. 
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generally resembles the precipitation biases, which is expected since the outgoing longwave 

radiation is mostly affected by deep precipitating. Therefore, we expect that improvements in 

the global distribution of precipitation will lead to a general improvement in the geographical 

pattern of longwave radiation.   

The large negative biases in the SWCF (Fig. 4) are also well correlated with the positive 

precipitation biases due to the fact that more active deep convection and, as the result, more 

extensive anvils in the model tend to reflect more sunlight back to space. The global  high-

cloud cover is slightly overestimated by the MMF  (Table 1). The largest positive SWCE 

biases are, not surprisingly, situated to the west from the subtropical continents, where the 

stratocumulus clouds are observed. The MMF consistently underestimates the occurrence of 

low-level clouds such as trade cumuli and stratocumuli, because of the coarse resolution of the 

super-parameterization’s grid. Although there are low-level clouds in the MMF and their 

spatial distribution is somewhat realistic their amount is underestimated, especially in the 

subtropics (not shown).  Further discussion is given by K05. 

The net shortwave radiation absorbed by the surface is underestimated by about 7 W m-2 

compared to the ISCCP-FD estimates (Table 1) with much smaller bias under clear skies. Net 

surface longwave flux is overestimated also by 7 W m-2, with a comparable bias under clear 

skies. Despite the biases in the surface radiation budget, the global mean turbulent surface 

fluxes are within 3 W m-2 of the Kiehl and Trenberth (1997) estimates; however, the estimates 

themselves are subject to significant uncertainties. The MMF simulation has biases in the 

zonal structure of the temperature field (not shown) similar to those seen in the earlier 

climatological SST run (see Fig. 12 of  K05), with a significant cold bias in the temperature of 

the tropical tropopause.  
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       b. Seasonal variability 
 
 

The seasonal cycle is a major forced mode of climate variability. One of many ways to 

evaluate the simulated mean seasonal cycle is to look at the geographical distribution of the 

amplitude and phase of the first annual harmonic, for various variables. Fig. 5 shows the first 

annual harmonic of the precipitation rate, from the MMF simulation and from CMAP. The 

monthly mean precipitation for the period 1986-2003 was used to define a mean annual cycle. 

In general, the simulated and observed patterns of the seasonal variation amplitude are quite 

similar. The most notable overestimation of the seasonal precipitation amplitude is in the 

Indian and Asian monsoon regions, which is consistent with the large biases of the mean 

precipitation there (see Fig. 1). The geographical pattern of the average month of the 

precipitation maximum as seen in the first annual harmonic closely resembles the observed 

pattern. There are biases in North America and Europe, where the simulated phase is about 

two months ahead of the observations.  

In the CMAP monthly data, the first annual harmonic of the precipitation rate explains 

41% and 34% of the total precipitation variance in the Tropics and midlatitudes9, respectively. 

The corresponding values from the MMF are 33% and 27%, respectively These 

underestimates are mostly due to overestimates of the total variance of monthly precipitation 

for the whole AMIP run, by a factor of 1.83 for the tropics and 1.57 for midlatitudes. The 

ratios of the simulated to observed annual-harmonic’s variance in the tropics and midlatitudes, 

are 1.48 and 1.24, respectively. These numbers also indicate that most of the overestimation 

                                                
9 Here the tropics are defined as the belt from 30oS to 30oN , and the midlatitudes between 30o 
and 60o in both hemispheres. The contribution of each grid cell was weighted by its surface 
area.  
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of variability of precipitation in tropics is due to an unrealistically strong annual cycle 

associated with the Indian and Asian monsoon biases discussed earlier. 

 

c. Interannual variability 
 

The El Niño / Southern Oscillation (ENSO) is the most important mode of interannual 

variability on sub-decadal scales, especially in the tropics. In this study of uncoupled 

integrations, only the forced atmospheric response to evolving but prescribed SST anomalies 

can be examined and compared to observations. Two analysis methods have been used: 

empirical orthogonal function (EOF) analysis and simple compositing. To reveal the structure 

of the interannual variations, EOF analysis was applied to the bandpass-filtered monthly data, 

i.e., with the annual cycle and shorter time-scales removed. In Fig. 6, the results for the 

precipitation rate anomalies are compared to observations for the first and second EOFs, 

denoted by EOF1 and EOF2. The MMF simulation does a very good job in reproducing the 

spatial patterns of both modes. The simulated EOF1 explains 19% of the variance, with EOF2 

explaining about half of that. This is a similar to what is observed, except that in observations 

EOF1 explains up to a third of the variance. The observed time series of principle components 

(PCs) of the two modes are well reproduced by the MMF, especially for the leading mode. 

The peaks of the PC1 time series correspond to the El Niño events, while the troughs mark the 

La Niña events.   

Another simple way of looking at the response of the atmosphere to the ENSO SST 

anomalies is to look at the spatial pattern of the differences between the annually averaged 

anomalies for a composite El Niño year and composite La Niña year. The contributing years 

have been selected based on the observed PC1 for the precipitation rate, and the number of 
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years for a given field was limited by the availability of observational estimates for a given 

ENSO phase. The same years were used for the MMF results and observations. Figure 7 

shows the composite anomalies  for several fields. As was the case with the precipitation 

anomaly, the MMF does a good job of reproducing the spatial structure and shape as well as 

magnitude of major positive and negative anomalies. There are some discrepancies with 

respect to observations for the weaker anomalies, especially over the continents; however, the 

statistical significance of those differences is hard to access without running a multi-member 

ensemble of MMF simulations, which is not currently practical.  

 

 

d. Subseasonal variability in the tropics 
 

While the variability of simulated atmosphere associated with the ENSO in the AMIP-

style simulation is essentially forced by the imposed SST anomalies, the subseasonal 

variability for time scales of 100 days or shorter is mostly due to internal modes. Here we 

examine the ability of the MMF to simulate the tropical subseasonal variability associated 

with convectively coupled equatorial waves such as Kelvin and equatorial Rossby waves, as 

well as, of course, the Madden-Julian Oscillation (MJO; Madden and Julian 1972). The MJO 

is a major mode of subseasonal variability in the tropics, and is equally important for both 

climate and weather prediction.  MJO has teleconnections with the extratropics and is 

believed to play important role in triggering El Niño events. Unfortunately, subseasonal 

variability, and especially the MJO, is generally very poorly simulated by most contemporary 

GCMs (e.g., Lin et al., 2006).  
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In our earlier experiments with climatological SSTs (Randall et al.2003; Khairoutdinov et 

al.2005), the MMF simulations showed a robust MJO with a realistic structure. Although 

quite encouraging, those early experiments were relatively short, each about year and half, 

with just a few MJO events. In this study, we compared the MJO statistics as simulated by the 

MMF over 18-year period with statistics derived from the similarly lengthy observations. The 

longer records make the comparison more robust.  

It has become a rather standard approach to look at the dominant subseasonal modes of 

variability using the methods of Wheeler and Kiladis (1999; hereafter WK) who analyzed the 

wavenumber-frequency spectrum using the ratio of the raw spectral power to the power of a 

“background spectrum,” which is simply a sufficiently smoothed raw spectrum. The WK 

procedure was applied to daily mean data from the MMF and from observations. To reduce 

the noise, the data was divided into 96-day-long segments overlapping each other by 60 days. 

Thus, the lowest resolved frequency was 1/96 cycle per day, while the highest frequency was 

1/2 cycle per day. We looked only at the equatorially trapped waves, so only the data in the 

15oS-15oN latitudinal belt were considered. For each analyzed field, two sets of wavenumber-

frequency spectra were calculated, one for the symmetric and one for the antisymmetric 

components about the equator. Here we present the symmetric spectra only because they 

contain most of the power.  

Figure 8 shows the WK diagram for the outgoing longwave radiation (OLR) for the MMF 

and for the standard CAM3 AMIP-style run (case eul64x128_d50amip), along with the 

corresponding results from the 1979-2004 daily NOAA AVHRR interpolated OLR data 

(Liebmann and Smith 1996). Positive zonal wavenumbers indicate eastward propagating 

disturbances; the lines in the figure are the theoretical dispersion curves for the shallow-water 
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equations for selected equivalent depths. In the observations, one can clearly see that the MJO 

occupies the spectral window of eastward wavenumbers of 1-4 and periods of about 50 to 100 

days. The eastward moving Kelvin waves and westward moving Rossby waves follow the 

theoretical dispersion curves corresponding to a 25-m equivalent depth. All three of these 

modes are captured quite well by the MMF. The Kelvin wave is a bit weak but appears to 

propagate at about observed speed. In contrast, the simulation produced with the standard 

CAM3 lacks most of the MJO power, and although the Kelvin wave has a strong amplitude its 

phase speed is too fast, corresponding to an equivalent depth of more than 50 m.  

The wavenumber-frequency spectra can be filtered to extract the signal associated only 

with particular disturbances of interest by zeroing the spectrum except for the  spectral region 

that contains the selected modes. The corresponding space-time structures of the selected 

modes can then be generated from the filtered spectra using the inverse complex FFT. 10  The 

results of such filtering for the MMF simulation are illustrated by Fig. 9 which shows the 

Hovmuller diagrams for the MJO,  Kelvin and equatorial Rossby wave filtered OLR as well 

as for the full or unfiltered OLR anomalies.  

Figure 10 shows the geographical distribution for the simulated and observed OLR 

variance of the disturbances associated with the MJO averaged for the boreal winter, boreal 

summer, and the annual average. Overall, the pattern of OLR variability is well reproduced by 

the MMF. As in the observations, the simulated MJO is mostly confined to the Indian ocean 

and the western Pacific. Also, the MJO is considerably stronger during the boreal winter, with 

                                                
10 Strictly speaking,  the new data set will also contain also some random noise contributed 
from the background spectrum at the same frequencies and wavenumbers as the desired 
disturbance. The amplitude of that noise will be much smaller though than the amplitude of 
the disturbance if the signal-to-noise ratio for that disturbance power spectrum is sufficiently 
larger than one which is the case for the MJO, Kelvin, and Rossby waves. 
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the maximum activity just north from Australia, as observed. During boreal summer, the MJO 

can propagate much further eastward, just north from the equator, all the way to the Gulf of 

Mexico. This is also well captured by the MMF. However, the magnitude of the OLR 

variance is overestimated by about 50% (please note that different color bars are used for the 

MMF and observations). Unlike most of GCMs which typically produces an MJO which is 

too weak, the MMF tends to make the MJO stronger than observed. As discussed by K05, 

experiments with convective momentum transport (using a version of the MMF that has a 

three-dimensional CRM) produce a slightly weaker, more realistic MJO. 

Figure 11 compares the simulated and observed geographical distribution of variance 

associated with Kelvin wave. As was the case with the MJO, the MMF does very good job in 

reproducing the Kelvin wave variance spatial pattern, as well as the seasonal variations; 

however, the magnitude of the variance is again overestimated. 

To examine the seasonal and interannual variability of the MJO, one can plot the mean 

MJO filtered OLR variance for each of the overlapping 96-day data segments against the time 

at the middle of the segment. This is shown in Fig. 12 along with the corresponding plot based 

on the NOAA OLR. Note that the multiyear mean variance was subtracted from both time 

series to accentuate the periods with below-average OLR anomalies, or weak MJO. In the 

MJO simulation, the periods with the strongest MJO events tend to occur during boreal 

winter, in agreement with observations. The strength of the simulated MJO varies quite a bit 

from year to year. This is also seen in the observations.  
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4. Conclusions and future plans 
 

A Multi-scale Modeling Framework, or MMF, is a climate model in which all of the 

conventional parameterizations of clouds and the boundary layer are replaced with a cloud-

resolving model that explicitly represents the bulk of the dynamical processes that are 

unresoved by the GCM. The first two-month integration using such a framework was 

presented in 2001. Since then, the results of a set of relatively short simulations have been 

reported in several publications that examined the aspects of mean seasonal climatology and 

subseasonal variability, climate sensitivity, the effects of radiation-cloud interactions, domain 

dimensionality, among others.  In the present study, we present preliminary results from a 19-

year long AMIP-style simulation in which the MMF is forced with prescribed SSTs and sea 

ice from September 1985 to September 2004. Such a prolonged simulation makes it possible 

to assess the ability of the MMF to simulated the interannual, seasonal, and, subseasonal 

variability of the present climate. The observed changes in the atmospheric hydrological cycle 

and the TOA radiation fields, in response to the interannual variability of the SST, are 

generally well reproduced by the MMF, as is the seasonal cycle. The subseasonal variability 

associated with the MJO and equatorially trapped waves is an area where MMF is particularly 

successful. An area of concern is overprediction by as much as 50% of the MJO-related 

variance of the outgoing longwave radiation. The seasonality of the MJO and its large 

interannual variability are quite realistically simulated by the MMF. 

Many aspects of the simulated mean multiyear climatology are quite familiar from our 

earlier experiments with prescribed climatological SST, such as persistent precipitation 

excesses in the Indian and Asian Monsoon regions, large positive biases in the shortwave 

cloud effect due to a lack of stratocumulus and other low-level clouds, and an excessively 
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cold tropical tropopause. Many of the biases associated with the hydrological cycle may be 

related to of the parameterized microphysics in the cloud-resolving model, particularly the ice 

microphysics. Therefore, further refinement of the microphysics may lead to improvements in 

the performance of the model. The TOA flux biases associated with underprediction of the 

low-level clouds, including trade cumulus and stratocumulus clouds, are not as 

straightforward to alleviate. A simple increase of the grid resolution is currently not a viable 

option due to dramatic increase of already high computational cost of running MMF. Several 

possible pathways of addressing this problem without prohibitive cost increase are currently 

being tested. 
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Table 1 Global annual-mean climatological properties of CSU MMF vs observational 

estimates. 

Property MMF Observation Source 

TOA Outgoing longwave radiation (W m-2) 238.3 234.1 ISCCP-FD 

TOA Absorbed Solar Radiation (W m-2) 237.6 238.3 ISCCP-FD 

Longwave cloud forcing (W m-2) 24.5 25.6 ISCCP-FD 

Shortwave cloud forcing (W m-2) -52.6 -50.0 ISCCP-FD 

    

Net surface longwave radiation (W m-2) 56.2 49.4 ISCCP-FD 

Clear-sky net surface longwave radiation (W m-2) 83.7 78.7 ISCCP-FD 

Net surface shortwave radiation (W m-2) 158.8 165.9 ISCCP-FD 

Clear-sky surface shortwave radiation (W m-2) 216.4 218.6 ISCCP-FD 

Precipitation rate (mm day-1) 2.80 2.66 CMAP 

Precipitable water (mm) 25.2 24.5 NVAP 

Latent heat flux (W m-2)  81.2 78 KT 

Sensible heat flux (W m-2) 22.9 24 KT 

    

Total Cloud Amount (%) 67.0 66.7 ISCCP 

Low cloud amount (%) 22.9 26.4 ISCCP 

Middle cloud amount (%) 17.0 19.1 ISCCP 

High cloud amount (%) 27.2 21.3 ISCCP 
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Figures 
 

Figure 1. Annual mean precipitation in mm day-1 for (top) MMF, (middle) CMAP 
observations, and (bottom) MMF minus CMAP. 
 
Figure 2. Annual mean precipitable water in mm for (top) MMF, (middle) NVAP 
observations, and (bottom) MMF minus NVAP. 
 
Figure 3. Annual mean longwave cloud effect in W m-2for (top) MMF, (middle) ISCCP-FD 
observational estimates, and (bottom) MMF minus ISCCP-FD. 
 
Figure 4. Annual mean shortwave cloud effect in W m-2for (top) MMF, (middle) ISCCP-FD 
observational estimates, and (bottom) MMF minus ISCCP-FD. 
 
Figure 5. The mean seasonal cycle of precipitation during 1986-2004 as in terms of the 
average amplitude of the annual harmonic (left top) simulated by the MMF and (left bottom) 
derived from the CMAP observations. The (right top) simulated and (right bottom) observed 
month of maximum (phase) of the precipitation annual harmonic. 
 
Figure 6. EOF1 (top)  and EOF2 (middle) and the associated principle-component time series 
(bottom) of bandpass-filtered monthly simulated (left) and observed CMAP (right) 
precipitation for years 1986-2004. 
 
Figure 7. El Niño minus La Niña yearly anomaly composites of (top) precipitable water, 
(middle) longwave cloud effect, and (bottom) shortwave cloud effect for (left panels) the 
MMF simulation, and (right panels) as observed. 
 
Figure 8. The symmetric raw OLR spectral power divided over the background power 
(signal-to-noise ratio spectrum) as (left) simulated by the MMF, (middle) derived from 
NOAA daily observations, and (right) simulated by the CAM3. Superimposed are the 
theoretical shallow-water dispersion curves for the equatorial Rossby and Kelvin waves for 
the equivalent depths of 12, 25, and 50 m. Contour interval is 0.1 with contours beginning at 
1. 
 
Figure 9. The Hovmuller diagram of the OLR anomalies averaged for the latitudes 15oS to 
15oN for the 96-day time sample of the MMF diurnal output for the (top left) MJO-filtered 
band, (top right) Kelvin-wave filtered band, (bottom left) equatorial Rossby-wave band, and 
(bottom right) unfiltered with the sample-mean removed. 
 
Figure 10. The geographical distribution of the for the MJO-filtered OLR variance averaged 
for the (top) boreal winter , (middle) summer, and (bottom) annual mean for (left) MMF 
simulation and (right) NOAA observations. 
 
Figure 11. Same as Fig. 10, but for the Kelvin-wave filtered OLR anomaly. 
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Figure 12. Time series of the 96-day-averaged MJO-filtered OLR variance for the (top) MMF 
simulation and (bottom) NOAA observations. The multiyear mean was removed.  
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Figure 1. Annual mean precipitation in mm day-1 for (top) MMF, (middle) CMAP 
observations, and (bottom) MMF minus CMAP. 
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Figure 2. Annual mean precipitable water in mm for (top) MMF, (middle) NVAP 
observations, and (bottom) MMF minus NVAP. 
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Figure 3. Annual mean longwave cloud effect in W m-2 for (top) MMF, (middle) ISCCP-
FD observational estimates, and (bottom) MMF minus ISCCP-FD. 
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Figure 4. Annual mean shortwave cloud effect in W m-2 for (top) MMF, (middle) 
ISCCP-FD observational estimates, and (bottom) MMF minus ISCCP-FD. 
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Figure 5. The mean seasonal cycle of precipitation during 1986-2004 as in terms of the 
average amplitude of the annual harmonic (left top) simulated by the MMF and (left 
bottom) derived from the CMAP observations. The (right top) simulated and (right 
bottom) observed month of maximum (phase) of the precipitation annual harmonic. 
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Figure 6. EOF1 (top)  and EOF2 (middle) and the associated principle-component time 
series (bottom) of bandpass-filtered monthly simulated (left) and observed CMAP (right) 
precipitation for years 1986-2004. 
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Figure 7. El Niño minus La Niña yearly anomaly composites of (top) precipitable water, 
(middle) longwave cloud effect, and (bottom) shortwave cloud effect for (left panels) the 
MMF simulation, and (right panels) as observed. 
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 Figure 8. The symmetric raw OLR spectral power divided over the background power 
(signal-to-noise ratio spectrum) as (left) simulated by the MMF, (middle) derived from 
NOAA daily observations, and (right) simulated by the CAM3. Superimposed are the 
theoretical shallow-water dispersion curves for the equatorial Rossby and Kelvin waves 
for the equivalent depths of 12, 25, and 50 m. Contour interval is 0.1 with contours 
beginning at 1. 
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Figure 9. The Hovmuller  diagram of the OLR anomalies averaged for the latitudes 15oS to 
15oN for the 96-day time sample of the MMF diurnal output for the (top left) MJO-filtered 
band, (top right) Kelvin-wave filtered band, (bottom left) equatorial Rossby-wave band, 
and (bottom right) unfiltered with the sample-mean removed. 
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Figure 10. The geographical distribution of the for the MJO-filtered OLR variance 
averaged for the (top) boreal winter , (middle) summer, and (bottom) annual mean for 
(left) MMF simulation and (right) NOAA observations. 
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Figure 11. Same as Fig. 10, but for the Kelvin-wave filtered OLR anomaly. 
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 Figure 12. Time series of the 96-day-averaged MJO-filtered OLR variance for the (top) 
MMF simulation and (bottom) NOAA observations. The multiyear mean was removed.  


