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ABSTRACT

In 2001, the authors presented a higher-order mass-flux model called assumed distributions with higher-
order closure (ADHOC), which represents the large eddies of the planetary boundary layer (PBL) in terms
of an assumed joint distribution of the vertical velocity and scalars such as potential temperature or water
vapor mixing ratio. ADHOC is intended for application as a PBL parameterization. It uses the equations
of higher-order closure to predict selected moments of the assumed distribution, and diagnoses the param-
eters of the distribution from the predicted moments. Once the parameters of the distribution are known,
all moments of interest can be computed.

The first version of ADHOC was incomplete in that the horizontal momentum equations, the vertical
fluxes of horizontal momentum, the contributions to the turbulence kinetic energy from the horizontal
wind, and the various pressure terms involving covariances between pressure and other variables were not
incorporated into the assumed distribution framework. Instead, these were parameterized using standard
methods.

This paper describes an updated version of ADHOC. The new version includes representations of the
horizontal winds and momentum fluxes that are consistent with the mass-flux framework of the model. The
assumed joint probability distribution is replaced by an assumed joint spatial distribution based on an
idealized coherent structure, such as a plume or roll. The horizontal velocity can then be determined using
the continuity equation, and the momentum fluxes and variances are computed directly by spatial integra-
tion. These expressions contain unknowns that involve the parameters of the assumed coherent structures.
Methods are presented to determine these parameters, which include the radius of convective updrafts and
downdrafts and the wavelength, tilt, and orientation angle of the convective rolls. The parameterization is
tested by comparison with statistics computed from large-eddy simulations. In a companion paper, the
results of this paper are built on to determine the perturbation pressure terms needed by the model.

1. Introduction

In 2001, we (Lappen and Randall 2001a,b,c; hereafter
LRa,b,c) described a new type of mass-flux model
called assumed distributions with higher-order closure
(ADHOC). ADHOC is intended for use as a planetary
boundary layer (PBL) parameterization in large-scale
models. It represents the PBL’s large eddies in terms of
an assumed joint distribution of the vertical velocity
and scalars such as potential temperature or water va-
por mixing ratio. The joint distribution is based on the
assumed existence of idealized coherent structures,

such as plumes or rolls. ADHOC uses the equations of
higher-order closure to predict selected moments of the
assumed distribution, and diagnoses the parameters of
the distribution from the predicted moments. Once the
parameters have been determined, all moments of in-
terest can be computed. To close the model, we used
analogs between ADHOC’s equations and those of
higher-order closure models (see also de Roode et al.
2000). For example, ADHOC’s dissipation closure is an
adaptation of the one proposed by Bougeault and An-
dré (1986; see LRb for a discussion).

The 2001 version of ADHOC did not incorporate the
horizontal velocity components into the assumed distri-
bution framework; the vertical flux of horizontal mo-
mentum and all pressure covariances were included us-
ing conventional second-order closure methods. We
chose this route because, quite frankly, we did not see
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a satisfactory alternative at the time. The mass-flux ap-
proach has been used to parameterize momentum
transports by deep cumulus convection (e.g., Wu and
Yanai 1994), but with little in the way of supporting
tests. To our knowledge, the only study that had inves-
tigated the use of standard mass-flux formulas to rep-
resent momentum fluxes in a PBL model is that of
Brown (1999). In a study of shallow-cumulus clouds, he
found that the representation of momentum fluxes with
an assumed joint distribution was poor compared with
using the same approach for scalar fluxes. He assumed
that the horizontal and vertical velocities were perfectly
correlated, with joint top-hat profiles.

The use of conventional closure methods for the
momentum fluxes and the pressure covariances in
ADHOC gave rise to some inconsistencies. It was a
temporary compromise.

The current paper begins the description of
ADHOC2, which includes consistent representations of
the horizontal winds including the momentum fluxes.
ADHOC2 is based on a phenomenological approach.
We assume idealized geometries for the PBL’s coher-
ent structures, consistent with the mass-flux framework.
This means that we move beyond assumed probability
distributions and adopt assumed spatial distributions.
In particular, we consider idealized versions of two
commonly occurring coherent structures, namely un-
sheared plumes (cylindrical geometry with the cylin-
der’s axis perpendicular to the ground) and sheared
rolls (homogeneity in one horizontal direction). We use
the assumed geometries to derive velocity fields. Cova-
riances such as momentum fluxes are then constructed
directly by spatial integration. The expressions that we
obtain for these higher moments contain unknown pa-
rameters related to the geometry of the circulations.
These include the radii of the updraft and downdraft
for the unsheared plume case and the tilt, orientation
angle, and cross-roll wavelength of the roll circulations.
We provide a method for diagnosing these parameters
using quantities that are available in ADHOC2. To our
knowledge, this is the first time that a PBL parameter-
ization has been used to diagnose such parameters.

In section 2, we discuss the case of axisymmetric con-
vection with no mean flow. This is the plume version of
ADHOC2. In section 3, we examine a slab-symmetric
case with both buoyancy and shear (a roll). This is the
roll version of ADHOC2. In section 4, we discuss the
solution of the equations for the roll case. In section 5,
we give a summary, discuss some limitations of our
approach, and outline possible future directions, includ-
ing speculations on how the plume and roll versions of
ADHOC2 can be combined. Throughout the paper,
our results are compared to data generated using the

large-eddy simulation (LES) model described by Khair-
outdinov and Randall (2003).

2. Axisymmetric free convection

Consider an ensemble of axisymmetric convective
plumes (Fig. 1) in the absence of a mean flow. Obvi-
ously in this case there is no vertical flux of horizontal
momentum. Plumes in free convective PBLs have been
extensively investigated using both observations (e.g.,
Willis and Deardorff 1974) and LES (e.g., Moeng 1984;
Schumann and Moeng 1991).

To analyze the circulation associated with a plume,
we adopt cylindrical coordinates, with radial coordinate
r. In Fig. 1, the inner cylinder of radius r � Ri(z) (the
subscript stands for inner) represents a convective draft
across which the vertical velocity is horizontally uni-
form, while the annulus between the inner and outer
cylinders represents the compensating draft of the op-
posite sign.1 The radius of the outer cylinder, that is, the
total diameter of the plume, is denoted by Ro (the sub-
script stands for outer). In this paper we assume that Ro

is independent of height and time and that the plumes
are closely packed. Obviously they cannot really be
closely packed if they are cylindrical, that is, with cir-
cular planforms. Hexagonal (or triangular or rectangu-
lar) symmetry would be required for true close packing,
but we prefer to avoid the additional complexity of

1 Here draft can refer to either an updraft or a downdraft.

FIG. 1. Idealization of the clear convective geometry. The inner
and outer cylinders are concentric circles: Ru (Rd) is the distance
from the updraft center to the outer edge of the updraft (down-
draft). Note that Ru varies with height.
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solving the equations in those geometries. This issue
can be revisited in the future.

The fractional area occupied by the inner cylinder is

�i�z� � �Ri�z�

Ro
�2

. �1�

We assume that the vertical velocity and thermody-
namic variables are horizontally uniform within the in-
ner cylinder and the surrounding annulus, but in gen-
eral they can be discontinuous across r � Ri(z). The
radial velocity and pressure must vary radially, as dis-
cussed below. The regions denoted by the subscripts i
and o in Eq. (1) represent the updraft, and the down-
draft, (to use the terminology of LRa–c), but here we
make no assumption about which region is which. In
the plume version of ADHOC2, �i and wi are pre-
dicted, using equations presented by LRa; the sign of
the predicted wi obviously reveals which region is the
updraft and which is the downdraft. As shown by Ran-
dall et al. (1992),

w � �iwi � �1 � �i�wo, �2�

w �2 � �i�wi � w�2 � �1 � �i��wo � w�2

� �i�1 � �i��wi � wo�2. �3�

In the remainder of this section, we use the vertical
profiles of wi and wo, assumed known, along with the
continuity equation to work out the radial dependence
of the radial velocity component. We assume that there
is no velocity component in the azimuthal direction. We
also derive the boundary conditions that apply across
r � Ri(z).

We begin with the radial boundary conditions. Ob-
viously, we must require that

�r�0� � 0. �4�

The mass flow rate must be continuous across r � Ri.
This implies that

����Ri

�t
� w

�Ri

�z
� �r��

Ri��

�����Ri

�t
� w

�Ri

�z
� �r��

Ri��

,

�5�

where ( )Ri�� and ( )Ri�� denotes values evaluated just
inside and just outside r � Ri, respectively (Randall and
Huffman 1982). We also assume that no mass crosses
r � Ro so that

����Ro

�t
� wo

�Ro

�z
� �r��

Ro��

� 0. �6�

Using our assumption that Ro is independent of height
and time, we see from (6) that

�r�Ro� � 0. �7�

At this point, we adopt the Bousinesq form of the con-
tinuity equation; that is,

1
r

�

�r
�r�r� �

�w

�z
� 0. �8�

As discussed earlier, we assume that the vertical veloc-
ity is horizontally uniform across the inner cylinder, and
horizontally uniform again, with a different value,
across the outer annulus. This is analogous to the as-
sumption used in mass-flux models (e.g., LRa; Betts
1976; Wang and Albrecht 1990). Integrating (8) from
r � 0 to an arbitrary value of r inside the inner cylinder,
and using (4), we find that the radial velocity satisfies

�r�r� � �� r

2� �wi

�z
for r � Ri. �9�

The Bousinesq approximation also allows us to simplify
Eq. (5) to

�w
�Ri

�z
� �r�

Ri��

≅ �w
�Ri

�z
� �r�

Ri��

. �10�

From (10), we see that

��r�Ri�� � ��r�Ri�� � �wo � wi�
�Ri

�z
, �11�

which tells us that �r is discontinuous at r � Ri when Ri

varies with height. By combining (9) and (11), we ob-
tain

��r�Ri�� � �
Ri�wi

2�z
�

�Ri

�z
�wo � wi�. �12�

Similarly, integrating Eq. (8) from an arbitrary point in
the outer cylinder to r � Ro � � and using (10), we
obtain

r�r�r� �
�wo

�z �Ro
2

2
�

r2

2 � for Ri � r � Ro. �13�

Applying (13) at r � Ri � � and using (12), we find that
the area-averaged vertical velocity is equal to zero (see
LRa). Because we use (9) outward from r � 0 and (13)
inward from r � Ro � �, we are ensured that (10) is
satisfied. Suppose that wi(z), wo(z), Ri(z), and Ro were
known. Then, �r(r, z) could be evaluated as outlined
above. The perturbation pressure field could then be
determined, using methods to be described elsewhere
(Lappen and Randall 2005, manuscript submitted to J.
Atmos. Sci.). ADHOC predicts �i(z). If we know either
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Ri(z) or Ro, we can determine the other using Eq. (1).
The problem is that both Ri(z) and Ro are actually un-
known. We now present a method to determine Ro,
keeping in mind that it must be independent of height.
Our approach is based on the fact that, for given pro-
files of wi(z), wo(z), and �i(z), the radial velocities will
tend to increase as Ro increases [see Eq. (13) and Fig.
2]. This means that the area average of the large-eddy
kinetic energy per unit mass in the horizontal part of
the motion, eH � (1/2)�2

r , will also tend to increase as Ro

increases. Here the overbar denotes an area average
over the whole horizontal cross section of the plume.
These ideas suggest that we can determine Ro from eH.
We write

eH �
1

	Ro
2 �

0

2	 ��
0

Ro 1
2

�r
2r dr� d
 �

1

Ro
2 ��

0

Ro

�r
2r dr�.

�14�

Substituting the solution for �r(r) derived above and
using (1), we find that

eH � Ro
2��1

4
�wi

�z �2

�2 � �1
2

�wo

�z �2

	 ��
1
2

ln��� � �1 � �� �
1
4

�1 � �2���. �15�

ADHOC2 predicts (eH)M, which is the vertical average
of eH through the depth of the PBL. Using this pre-
dicted (height independent) value of (eH)M, we can di-
agnose the (height independent) diameter of the
plumes, Ro, from the vertical average of (15). We can
then use (1) to diagnose Ri(z), and solve for the two-
dimensional distribution of the radial velocity using
Eqs. (9)–(13). The kinematic structure of the plume is
thus fully determined.

Using the LES model of Khairoutdinov and Randall

FIG. 2. Cartoon that shows the increase in �r with radius as Rd increases. (a), (b) The
length of the red and blue arrows indicate the magnitude of �r. Here x can be any positive
number.

2832 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62

Fig 2 live 4/C



(2003), we performed a simulation of clear, weakly
sheared convection on day 33 of the Wangara field ex-
periments (Hicks 1978). Throughout this day, the evo-
lution of the temperature and humidity profiles are
typical of the very well-understood dry convective
boundary layer (see, e.g., André et al. 1978). The simu-
lation started at 0600 LT and ran for 12 simulated
hours. We used horizontal and vertical resolutions of
100 and 40 m, respectively, with 75 levels and a hori-
zontal domain of 64 	 64 grid cells. The time step was
2 s. We prescribed the surface latent and sensible heat
fluxes from the observations (Hicks 1978).

To test Eq. (15) and the parameterized expressions
for �r(r, z), we use the LES results for �i(z), (
wi /
z),
and (
wo /
z). In this calculation, wi and wo are the av-
erage vertical velocities over the regions where w � 0
and w � 0, respectively. Based on inspection of the LES
results, the updrafts are assumed to be the inner cylin-
ders. The fractional area �(z) is diagnosed, at each
level, as the number of grid points where w � 0, divided
by the total number of grid points. We vertically inte-
grated Eq. (15) to obtain an expression for (eH)M and
Ro. We calculated (eH)M from the LES and diagnosed
the height-independent value of Ro by enforcing the
vertical average of (15). This method yields Ro � 1208
m. We then calculated Ri(z) using Eq. (1).

A second, independent estimate Ro can be obtained
from the LES data. To do this, we conditionally
sampled the LES fields at the height where the maxi-
mum vertical velocity occurs in the plume. Plume cen-
ters are identified as 3 	 3 block of grid cells where
w � � 1.5 m s�1. We then took averages over succes-
sively larger circles surrounding the plume centers and
averaged over all plumes to get composite profiles of
the vertical velocity as a function of distance from the
center of an average plume. We correlated these aver-
aged values with the plume center values. The results
are shown in Fig. 3. Positive correlation coefficients
indicate updrafts, while negative values show down-
drafts. Figure 3 shows that Ro � 1100 m. This is en-
couragingly close to the first value diagnosed above.

We used our numerical results in Eqs. (9)–(13), with
Ro � 1208 m, to determine the distribution of the radial
velocity. The resulting radial and vertical velocities are
depicted by the arrows plotted in Fig. 4. The longest
arrows in the plot represent a particle speed of approxi-
mately 2 m s�1. The dashed lines in the figure represent
the height-dependent updraft–downdraft boundaries.
The diagnosed radial velocity field shows convergence
down low and divergence up high. Because Ri varies
with z, we see a jump in �r across the updraft–
downdraft boundary [see Eq. (11)].

The results of the simulation were also used to test

Eq. (15). We used the LES value of �i(z) in Eq. (1), to
determine Ri(z) for various values of Ro. We then used
the LES values for wi(z) and wo(z) in Eq. (15) to cal-
culate e�(z). In Fig. 5, the results are compared with the
profile of eH as diagnosed from the LES results. The
best overall agreement near the surface and the top of
the PBL occurs for Ro � 900 m, while the best agree-
ment near the midlevel of the PBL is for Ro � 1300 m.

3. Rolls

We now consider idealized roll circulations, horizon-
tally uniform in one direction. Our analysis of the rolls
is broadly similar to that for plumes, as presented
above. Key differences are that rolls are expected to
occur in the presence of significant shear of the hori-
zontal wind and they are expected to transport hori-
zontal momentum vertically.

We simulated the roll case of Glendening (1996,
hereafter G96) with the LES model described by Khair-
outdinov and Randall (2003). All results in this section
are compared with this LES run. In our simulated G96
LES case, we ran the model for 16 h with a domain size
of 25 km 	 18 km. The horizontal and vertical resolu-
tions were 64 and 25 m, respectively. The time step was
2 s. The forcing parameters were designed to represent
a sheared marine boundary layer with weak surface
buoyancy below a strongly stable layer. We imposed a
geostrophic wind of 15 m s�1 at an angle of 10° clock-
wise from the y axis. The surface fluxes were held con-

FIG. 3. The correlation coefficient of the average vertical veloc-
ities with the plume center velocities as a function of distance
from the plume centers as calculated using LES data. Positive
(negative) values indicate updraft (downdraft) regions.
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FIG. 4. Parameterized radial velocity obtained from Eqs. (9)–(13) for the Wangara case. The solid line is the
updraft center, while the dashed lines represent the updraft–downdraft border. The longest arrows shown (near the
bottom) are approximately 2.0 m s�1.

FIG. 5. Comparison of the LES and parameterized [Eq. (15)] horizontal TKE for different values
of Ro.
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stant at (w �u �)s � 221 m2 s�2; (w ���)s � 0.134 K m s�1;
and (w �q �)s � 0.076 g m s�1 kg�1. The temperature and
humidity fluxes were chosen so as to contribute equally
to the total buoyancy flux, (w ����)s � 0.264 K m s�1. To
attenuate the boundary layer growth rate, a base-state
stratification of 
�/
z � 10 K km�1 is chosen above the
boundary layer. In our results, the length scale of the

along-roll variations is approximately 4 times the cross-
roll length scale, as found by G96. The results of the
simulation will be used later.

To construct our idealized model of a field of rolls,
we adopt Cartesian coordinates (x̂, ŷ), and assume al-
ternating updrafts and downdrafts, aligned at an angle
� from the ŷ axis (see Figs. 6a,b). For convenience, we

FIG. 6. Cross sections through the roll: (a) vertical cross sections Lu and Ld are the widths
of the updraft and downdraft, respectively, while E0 and E1 represent mass entrained from the
updraft to the downdraft and vice versa, respectively. Black arrows show the updrafts and
downdrafts while blue arrows show lateral mass fluxes. The directions of the blue arrows
merely indicate the sign conventions for these mass fluxes and are not meant to depict the
actual pattern of mass flow. (b) Horizontal cross section: the (x̂, ŷ) coordinates are west-to-east
and south-to-north, respectively. The rolls are invariant along the direction that makes an
angle � with the ŷ axis. We call this the y direction so that 
/
y � 0.
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define a rotated coordinate system (x, y), such that

 · /
y � 0; we also define a corresponding x direction,
which is oriented at the same angle � with respect to the
x̂ axis. The horizontal velocity components are (u, �) in
the (x, y) system, and (û, �̂) in the (x̂, ŷ) system. We
assume that the horizontal averages of û and �̂ are
known as functions of height. A method to determine �
is presented in the next section.

Let x � x0(z) denote the boundary between one par-
ticular downdraft and one particular updraft with the
updraft on the side of the larger values of x (Fig. 6a).
The opposite wall of the updraft is at x � x0(z) � Lu(z)
� x1(z) so that the updraft has width Lu(z) � x1(z) �
x0(z), and occupies the region x0(z) � x � x1(z). A
neighboring downdraft occupies the region x1(z) � x �
x0(z) � L � x1(z) � Ld(z) � x2, where L is the total
width of the roll; that is,

L � Lu � Ld, �16�

and Ld(z) is the width of the downdraft. The fractional
area occupied by the updraft is

��z� �
Lu�z�

L
�

x1�z� � x0�z�

L
. �17�

We assume that

�L

�z
� 0. �18�

Because L is the total width of a roll and Ro is the
radius of a plume, the assumption that L is independent
of height is analogous to our earlier assumption that Ro

is independent of height. From (17) and (18), we see
that

�x1

�z
�

�x0

�z
� L

��

�z
. �19�

This will be used later.
The Bousinesq version of the continuity equation can

be written in the (x, y) system as

�u

�x
�

�w

�z
� 0, �20�

The assumption that 
/
y � 0 has been used in writing
(20). To determine the spatial distribution of u, using
the continuity equation, we start arbitrarily at x � x0

� � and integrate (20) with respect to x (across the
updraft) to x � x1 � � to obtain

u�x� � u�x0 � �� � �x � x0�
�wu

�z
for x0 � x � x1.

�21�

The mass flow rates must be continuous across x � x0

and x � x1. This implies that

wu

�x0

�z
� ux0�� � wd

�x0

�z
� ux0��, �22�

wd

�x1

�z
� ux1�� � wu

�x1

�z
� ux1��. �23�

In Eqs. (22)–(23), ()u denotes an average over the up-
draft [x0(z) � x � x1]; ( )d denotes an average over the
downdraft (x1(z) � x � x2); ( )x0��, ( )x0��, ( )x1��, and
( )x1�� denote values evaluated just to the right and left
of x � x0 and x � x1, respectively (see Fig. 6a). Use of
(17) and (23) allows us to write

u�x1 � �� � u�x0 � �� � Lu

�wu

�z
� �wu � wd�

�x1

�z
. �24�

Further integration of (20) then gives

u�x� � u�x0 � �� � Lu

�wu

�z
� �wu � wd�

�x1

�z

� �x � x1�
�wd

�z
for x1 � x � x2. �25�

Equations (21) and (25) determine u(x) throughout a
roll except at the boundaries (x � x0, x � x1, and
x � x2). If the boundaries between the updraft and
downdraft are not tilted, then u(x) is continuous there.
If the boundaries are tilted, then u(x) is discontinuous
there.

It is useful to rewrite (21) and (25) as

u�x� � u�x0 � �� � �x � x0

L ��Ld

�

�z
�wu � wd�

� �wu � wd�
�

�z
�x1 � x0��

for x0 � x � x1, �26�

u�x� � u�x0 � �� � �Lu��Ld � �x � x1��

L � �

�z

	 �wu � wd� � �wu � wd���x1

�z ��Ld � �x � x1�

L �
�

�x0

�z ��Lu � �x � x1�

L �� for x1 � x � x2,

�27�

respectively. In deriving (26) and (27), we have used
w � 0.
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The next step is to work out u �, the departure of u
from its horizontal average, u. Integration gives

u �
1
L �

x0

x0�L

u dx �
1
L ��

x0

x0�Lu

u dx � �
x1

x1�Ld

u dx�
� u�x0 � �� � �LuLd

2L � �

�z
�wu � wd� � �wu � wd

2 �
	 ��x1

�z �Lu � Ld

L � �
�x0

�z �. �28�

Equation (28) can be used to eliminate u(x0 � �) in
favor of u. With this substitution, (26) and (27) can be
rewritten as

u � �
Ld

L �Lu

2 � �

�z
�wu � wd� �

�wu � wd�

2

	 ���x0

�z � � ��x1

�z ��Lu � Ld

L ��� �x � x0

L �
	 ��Ld

�

�z
�wu � wd� � �wu � wd�

	 ��x1

�z
�

�x0

�z �� for x0 � x � x1, �29�

and

u � � ��Lu

L ��Ld

2 � �

�z
�wu � wd� � �wu � wd�

	 ��1
2

�
Lu

L ���x0

�z � �
1
2 ��x1

�z ��� �x � x1

L �
	 �Lu

�

�z
�wu � wd� � �wu � wd�

	 ��x1

�z
�

�x0

�z �� for x1 � x � x2, �30�

respectively, where

u � � u�x� � u. �31�

We can now compute moments involving u �. For ex-
ample, the variance of the u wind can be written as

u �2 �
1
L �

x0

x0�L

u �2 dx

�
1
L ��

x0

x0�Lu

u �2 dx � �
x1

x1�Ld

u �2 dx�. �32�

After substituting from (29) and (30) and performing a
lengthy algebraic exercise which is detailed in the ap-
pendix, we obtain

u �u � �
1
3

�LD�2 �
2L

3
D��1 � 2����x1

�z
�

�x0

�z �
� 2��1 � ����x0

�z
�

�x1

�z ���wu � wd�

� �wu � wd�2�1
2

��1 � ����x0

�z
�

�x1

�z �
	 ��

�x0

�z
� �1 � ��

�x1

�z �� � �wu � wd�2

	 ��x1

�z
�

�x0

�z �
2�1 � 3� � 3�2

3 �, �33�

where for convenience, we define

D � ��1 � ��
�

�z
�wu � wd�. �34�

Equation (33) will be further simplified below, and
tested against the LES results.

As shown in the appendix, the vertical flux of u mo-
mentum is given by

w �u � �
1
L ��

x0

x0�Lu

wuu � dx � �
x1

x1�Ld

wdu � dx�
� �wu � wd�2�LuLd

2L2 ����x0

�z � � ��x1

�z ��
� �wu � wd�2��1 � ���. �35�

According to (35), the momentum flux is different from
zero only when the tilt of the updrafts and downdrafts,
defined by

� �
1
2 ���x0

�z � � ��x1

�z ��, �36�

is different from zero. Comparing (35) and (3), we see
that

w �u � � �w �w ���. �37�

Also, use of (19) and (34)–(36) allows us to simplify
(33) to

u �u � �
1
3

�LD�2 �
2LD

3 ��1 � 2���L
��

�z�
� 4��1 � �����wu � wd�

� w �u ��� � �1 � 2�

2 �L
��

�z�
� �wu � wd�2�L

��

�z�
2�1 � 3� � 3�2

3 �. �38�
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Using (36) and (19), we obtain

�x0

�z
� � �

L

2
��

�z
, �39�

and

�x1

�z
� � �

L

2
��

�z
. �40�

If L, �(z), w �u � and w �w � are known, we can diagnose
(
x0 /
z) and (
x1/
z) from (39) and (40).

The values of w �u �, w �w �, and � can readily be ob-
tained from the LES. We also use the LES to diagnose
L, as follows. We examine a horizontal slice through
the LES data at the height of the maximum vertical
velocity (in the example given below, at z � 300 m). We
compute the autocorrelations of vertical velocity across
the domain along lines whose angles with the y axis (the
axis of mean wind) ranged from �15° to 15°. The high-
est correlation was found for an angle of 8° to the left
of the mean wind. We then averaged the vertical ve-
locity across the domain along all lines with this orien-
tation. This averaged cross-roll vertical velocity is
shown in Fig. 7 for a section of the domain that covers
two rolls. By inspection, L (indicated by an updraft–
downdraft pair) is about 3600 m. Section 4 presents an
analytical method to determine L.

Using the LES-diagnosed values of L, w �u �, w �w �,

and �, we can determine the tilt. The results are plotted
in Fig. 8. In the figure, (
x0/
z) is the tilt of the updraft–
downdraft wall to the left side of the updraft, while
(
x1/
z) is the tilt of the analogous wall on the right side
of the updraft (see Fig. 6). The two sides of the updraft
tilt in opposite directions. The tilt ranges between 0%
and 10% throughout the PBL. Plots of observed and
numerically simulated rolls show this to be a reasonable
number (G96; Etling and Brown 1993).

At this point, we have a complete picture of the roll’s
size, shape including tilt, and circulation. We can use
Eqs. (21)–(25), along with the filtered LES updraft and
downdraft vertical velocities, to get the total wind vec-
tor. Figure 9 shows the diagnosed roll structure.

Figure 10a shows u �u � as diagnosed from (33) and as
determined directly from the LES. In Fig. 10b, we show
the contributions to the diagnosed value of u �u � from
the first, second, and third lines of Eq. (33). The shape
and maximum values of u �u � are well represented by
the parameterization. As with the Wangara plumes,
however, the diagnosed u �u � is too small in the PBL
midlevels, and slightly too large near the PBL top and
near the surface. The reason for the unrealistically
small values of u �u � at midlevels may be our neglect of
smaller-scale eddies, a known limitation of the mass-
flux approach. Figure 10b shows that, for this particular
simulation diagnosed here, the first line of (33) is
strongly dominant.

Similar methods can be used to work out statistics
involving ��. Unlike u �, �� is independent of x inside the

FIG. 7. Average vertical velocity as a function distance from a
roll center. Adjacent positive and negative regions show a com-
plete roll formation. The length of the two rolls shown is indicated
by the arrows.

FIG. 8. Average tilt of the roll; (
x0 /
z) is the tilt of the updraft–
downdraft wall to the left side of the updraft, while (
x1/
z) is the
tilt of the analogous wall on the right side of the updraft (see Fig.
6). The curve labeled tilt is the average tilt of the roll.
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updraft, and also inside the downdraft.2 It is also inde-
pendent of y, of course, so that we can define �u and �d

as functions of z only. In this respect �� is similar to w �,
and, in fact, �� and w � are perfectly correlated in our
idealized model (in the case of the rolls, this correlation
is actually negative). The simplest results are

��2 � ��1 � ����u � �d�2, �41�

which is analogous to (3), and

w ��� � ��1 � ���wu � wd���u � �d�, �42�

where �u and �d are the x- (and y-) independent values
of � in the updraft and downdraft, respectively. Figure
11 shows a comparison of the parameterized lateral and
longitudinal momentum fluxes [Eqs. (35) and (42), re-
spectively] with those diagnosed from LES. We see
that, despite our somewhat crude assumption that � is
independent of x within the updraft and downdraft, the
results are in reasonable agreement with the LES re-
sults. The larger differences near the top and bottom
are presumably associated with subplume-scale fluxes,
which become important at those levels.

Comparing (41) and (42), and using (3), we see that

��2 �
�w ����2

w �w �
. �43�

This will be used below, to determine �.
The analysis for u ��� is very similar to that for w �u �.

By analogy with (35), we have

u ��� � �wu � wd���u � �d��LuLd

L2 ��. �44�

Equation (44) can be rewritten as

u ��� � �w �����. �45�

4. Solving for the orientation angle, tilt, and
wavelength

In our earlier analysis of unsheared plumes, we pre-
sented a method to determine Ro, the plume radius.
The approach was to choose the value of Ro so that the
vertically averaged value of eH, as diagnosed from the
continuity equation and the vertical motion, agreed
with the corresponding value prognosed by ADHOC.
We take a similar approach to the corresponding prob-
lem of determining L, the wavelength of the rolls. A
major complication, however, is that the roll equations
involve additional parameters, namely, the orientation
angle, �, and the tilts 
x0/
z and 
x1/
z.

2 This directly follows from the assumption that w is indepen-
dent of x in the updraft and downdraft. The main source of � � is
vertical advection of � by w �. Therefore, if w � is independent of x,
then 
� �/
t will also be independent of x, and so will � �. See also
Fig. 11, discussed below.

FIG. 9. Picture of the parameterized roll and its parameterized circulation. The horizontal component
of the roll circulation is given by Eqs. (21)–(25). The vertical component is calculated from the LES
updraft and downdraft velocities. The tilt of the roll can be seen by the lines indicating the x0(z), x1(z),
and x2(z) boundaries calculated in section 3 and drawn in Fig. 8.
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First consider the orientation angle, �. We can write

w �u � � w ��û�� cos� � w ���̂�� sin�, �46�

w ��� � �w ��û�� sin� � w ���̂�� cos�, �47�

u �u � � ��û�� cos� � ��̂�� sin��2

� �û��2 cos2� � 2�û����̂�� cos� sin� � ��̂��2 sin2�,

�48�

���� � ���û�� sin� � ��̂�� cos��2

� �û��2 sin2� � 2�û����̂�� cos� sin� � ��̂��2 cos2�,

�49�

u ��� � ��û�� cos� � ��̂�� sin�����û�� sin� � ��̂�� cos��

� ����̂��2 � �û��2� cos� sin� � �û����̂���cos2�

� sin2�� � ����̂��2 � �û��2�
sin2�

2

� �û����̂�� cos2�. �50�

Suppose that, except for �, all quantities on the right-
hand sides of (46)–(50) were known, for example, via
prediction by ADHOC2. In the preceding section,
we have used the idealized roll model to derive sev-
eral relationships among the quantities on the left-
hand sides of (46)–(50). A proper choice of � is needed
to ensure that these relationships are actually satisfied.
In particular, substitution of (47) and (49) into (43)
gives

�û��2 sin2� � 2�û����̂�� cos� sin� � ��̂��2 cos2� �

��w ��û�� sin� � w ���̂�� cos��2

w �w �
. �51�

Vertical averaging of both sides of (51) through the
depth of the PBL gives, after some rearrangement,

FIG. 10. (a) Comparison of the parameterized u �u �, as given by
(33), to that of the LES for the Glendening (1996) roll case. (b)
Contributions to u �u � from the first, second, and third lines of (33).

FIG. 11. Comparison of the parameterized (a) lateral momen-
tum fluxes w �u � [given by Eq. (35)] and (b) longitudinal momen-
tum fluxes w �� � [given by Eq. (42)] with those diagnosed from
LES.
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��û��2 �
w ��û��

2

w �w �
�

M

sin2�

� 2��û����̂�� �
�w ��û����w ���̂���

w �w �
�

M

cos� sin�

� ���̂��2 �
w ���̂��

2

w �w �
�

M

cos2� � 0. �52�

Here we have used our assumption that � is indepen-
dent of height.

Equation (52) can be solved for �, provided that the
various vertically averaged quantities under the curly
brackets are known. The roll version of ADHOC2 pre-
dicts [(û) �2]M, [(û) �(�̂) �]M, and [(�̂) �2]M. It also predicts
w �w �, w �(û) �, and w �(�̂) � as functions of height so that
the additional vertically averaged quantities within the
braces of (52) can be evaluated, leaving � as the only
unknown. In this way, ADHOC2 determines the value
of �.

Note that there are some realizability issues here,
since at each height we must require that |w �(û) �|2 �

(û) �2 w �w �, and a similar inequality for the �̂ compo-
nent.

For the plume version of ADHOC2, the momentum
fluxes are known as functions of height because they

are simply equal to zero at all heights. For the roll
version of ADHOC2, the momentum fluxes are pre-
dicted as functions of height. For the plumes, we predict
(eH)M, which is analogous to predicting (û) �2

M, (�̂) �2
M,

and [(û) �(�̂) �]M for the rolls. The plume and roll ver-
sions of ADHOC2 thus have parallel structures.

A diagnostic example based on analysis of LES re-
sults is shown in Fig. 12. The solution is given by the
intersection of the LES-integrated value for u ��� and
the curve given by determining (u ���)M for different
values of �. There are two solutions, at � � 12.1° and �
� 78.6°. We choose the former because it maximizes
the vertically integrated rate of turbulence kinetic en-
ergy (TKE) production through the shear term. This
solution is reasonably close to the value diagnosed ear-
lier (� � 8°) using the autocorrelation method.

Once � has been determined, we can diagnose
w �u �(z) and w ���(z) from (46) and (47), respectively;
��2(z) from (43); and �(z) from (37). We could also
determine 
x0/
z and 
x1/
z from (39) and (40), if we
knew the value of L. The last major task is to determine
L, which we can do by using (38). Collecting powers of
L in (38), we obtain

0 � L2�D2

3 �1 � 2�1 � 2��
��

�z�� �wu � wd�2���

�z�
2

	 �1 � 3� � 3�2

3 �� � L�2D

3
4��1 � ����wu � wd�

� w �u ��1 � 2�

2 � ��

�z�� �w �u �� � u �u ��. �53�

We vertically average this equation through the depth
of the PBL, using our assumption that L is independent
of height. The result can be solved as a quadratic equa-
tion for L. Using the LES data, we get L � 2988 m. This
is close to the value obtained using autocorrelation
(Fig. 7).

5. Summary and discussion

In this paper, we describe a new method to represent
momentum fluxes and variances in a PBL mass-flux
model. Our approach is based on the assumption that
coherent structures, that is, plumes or rolls, dominate
the PBL physics. Rolls occur with shear and produce
vertical momentum transport, while the plumes occur
in the absence of shear and do not transport momen-
tum.

Using idealized models of plumes and rolls, we de-
veloped expressions for the velocity variances and co-
variances. These results have been tested using LES
data from simulations of the clear convective Wangara

FIG. 12. Graphical solution for �. The intersection of the LES-
integrated value of u �� � (dotted line) with the curve of the inte-
grated value of u �� � found for different values of � (solid line) is
the solution. This occurs at � � 12.1° and at � � 78.6°. The former
is chosen because it maximizes the vertically integrated shear pro-
duction.

AUGUST 2005 L A P P E N A N D R A N D A L L 2841

Fig 12 live 4/C



experiments and a roll case described by Glendening
(1996).

The parameterizations presented here have been de-
signed to work in a mass-flux model called ADHOC
(Lappen and Randall 2001a–c). The original version of
ADHOC predicted the fractional area covered by ris-
ing motion, as well as moments of the thermodynamic
variables and the vertical velocity, including of course
the vertical fluxes of the thermodynamic energy and
moisture.

The newest version, ADHOC2, is based on the ideas
presented here, and predicts second moments involving
the horizontal velocity. The plume version of ADHOC2
predicts (eH)M, and the roll version predicts (u �u �)M,
(����)M, and (u ���)M. We use the continuity equation to
develop expressions for the horizontal velocity compo-
nents. These are then used to derive expressions for
second moments involving the horizontal velocity com-
ponents.

In the plume version of ADHOC2, the expression for
(eH)M involves the outer radius of the plumes, R0. We
present a method to determine R0 from the predicted
value of (eH)M. Once R0 is known, we can diagnose the
height-dependent radius of the inner cylinder, Ri(z),
using �7(z). This describes the size and shape of the
convective plume, as well as its circulation. We applied
this to the Wangara case (Hicks 1978) and the resulting
plume (sketched in Fig. 4) looks as expected. This is the
first time (to our knowledge) that a simple PBL model
has been able to diagnose such structures. We found
that R0 � 1208 m. To check this value, we used LES
data for the Wangara case and compared the param-
eterized values of eh to those simulated by the LES for
different values of R0. The closest agreement was found
for R0 values close to that diagnosed by our parameter-
ization. Further confirmation of the validity of our di-
agnosed R0 value came from conditionally averaging
the LES plumes to get a composite vertical velocity as
a function of distance from the plume center. Correla-
tion of these velocities with the plume center values
gave R0 � 1100 m.

In the roll version of ADHOC2, the expressions for
the second moments involving the horizontal velocity
components depend on the widths of the updraft and
downdraft, Lu and Ld, the tilts of the updraft/downdraft
walls, 
x0 /
z and 
x1/
z and the orientation angle, �. As
in the plume version, the continuity equation was inte-
grated to derive expressions for second moments in-
volving the horizontal velocity components. The orien-
tation angle can be determined from Eq. (52) using the
predicted values of w �u �, w ���, and w �w �, as well as the
predicted vertically averaged covariance (u ���)M. Once
� is known, L can be calculated using (53). Finally, Lu,

Ld, and the tilt of the updraft/downdraft wall can be
determined using Eqs. (17), (39), and (40). Using the
LES data, our parameterization gives � � 12.1°. Plot-
ting the LES rolls directly using an autocorrelation
technique gave a value of about � � 8°, close to our
parameterized value. For L, the agreement was fair.
Our parameterization yielded L � 2988 m, while in-
spection of the roll using autocorrelation showed the
value to be closer to L � 3600 m. This is the first time
(to our knowledge) that a PBL model has been able to
diagnose the tilt, orientation angle, and wavelength of a
field of rolls. In the future, we will test this parameter-
ization on rolls with differing aspect ratios and surface
buoyancy fluxes.

In our companion paper (Lappen and Randall 2005,
manuscript submitted to J. Atmos. Sci.), we present
methods to diagnose the pressure terms in the higher
moment momentum equations using these assumed ge-
ometries and the available mass-flux quantities. Prior to
the present study, PBL mass-flux models have been
used to diagnose only the thermodynamic properties of
convection. The methods presented here and in our
companion paper permit mass-flux models of the PBL
to determine the corresponding statistics for the involv-
ing the horizontal wind components.

A major limitation of our approach is that the geom-
etries of the circulations are highly idealized. It remains
to be seen how well our approach will work for a wide
range of realistic conditions.
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APPENDIX

Calculation of Higher Moments for Roll Case

a. u �u �

Equations (29) and (30) can be written schematically
as

u � � A � �x � x0

L �B for x0 � x � x1, �A1�

u � � C � �x � x1

L �D for x1 � x � x2, �A2�

where A, B, C, and D are independent of x.
We can now compute
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u �2 �
1
L �

x0

x0�L

u �2 dx �
1
L ��

x0

x0�Lu

u �2 dx � �
x1

x1�Ld

u �2 dx� �
1
L ��x0

x0�Lu �A � �x � x0

L �B�2

dx

� �
x1

x1�Ld �C � �x � x1

L �D�2

dx� �
1
L ��A2Lu �

ABLu
2

2L
�

B2Lu
3

3L2 � � �C2Ld �
CDLd

2

2L
�

D2Ld
3

3L2 ��.

�A3�

Substituting and expanding, we find that

Lu �2 � �Ld

L �Lu

2 � � ��0�1
2� � �1�Lu � Ld

2L ���2

Lu � �Ld

L �Lu

2 � � ��0�1
2� � ��1�Lu � Ld

2L ���
	 ��Ld � ��1 � �0��

Lu
2

2L
� ��Ld � ��1 � �0��2

Lu
3

3L2 � ���Lu

L ��Ld

2 � � ��1
2

�
Lu

L ��0 �
1
2

�1��2

Ld

� ���Lu

L ��Ld

2 � � ��1
2

�
Lu

L ��0 �
1
2

�1���Lu � ��1 � �0��
Ld

2

2L
� �Lu � ��1 � �0��2

Ld
3

3L2 , �A4�

where

 �
1
�0

�

�z
��0�wu � wd��, �A5�

�0 � �wu � wd�
�x0

�z
, �A6�

�1 � �wu � wd�
�x1

�z
. �A7�

We now separate out the three components given by
Eqs. (A5)–(A7). We can write the � contribution as

u �2 � �L�2
Lu

2Ld
2

3L4

�
1
3 ���1 � ��L

�0

�

�z
��0�wu � wd���2

�alpha only�.

�A8�

We can write the �� component as

Lu �2 � 2
Ld

L

Lu

2
��0�1

2� � �1�Lu � Ld

2L ��Lu �
Ld

L

Lu

2
��1 � �0�

Lu
2

2L
� ��0�1

2� � �1�Lu � Ld

2L ��Ld
Lu

2

2L

� 2Ld��1 � �0�
Lu

3

3L2 � 2
Lu

L

Ld

2
��1

2
�

Lu

L ��0 �
1
2

�1�Ld � �Lu

L

Ld

2 ���1 � �0�
Ld

2

2L

� ��1
2

�
Lu

L ��0 �
1
2

�1�Lu
Ld

2

2L
� 2Lu��1 � �0�

Ld
3

3L2 �
Ld

L
Lu��0�1

2� � �1�Lu � Ld

2L ��Lu

�
Ld

L

Lu

2
��1 � �0�

Lu
2

2L
� ��0�1

2� � �1�Lu � Ld

2L ��Ld
Lu

2

2L
� 2Ld��1 � �0�

Lu
3

3L2

�
Lu

L
Ld��1

2
�

Lu

L ��0 �
1
2

�1�Ld � �Lu

L

Ld

2 ���1 � �0�
Ld

2

2L
� ��1

2
�

Lu

L ��0 �
1
2

�1�Lu
Ld

2

2L

� 2Lu��1 � �0�
Ld

3

3L2 . �A9�
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Simplifying further, we get

u �2 �
2LuLd

3L3 ��Lu
2 � Ld

2���0 � �1�

� 2LuLd��0 � �1�� �alpha-beta only�. �A10�

Using Eqs. (A5)–(A7), (A10) can be written as

u �2 �
L��1 � ��

3�0

�

�z
��0�wu � wd�2���1 � 2��

	 ��x1

�z
�

�x0

�z � � 2��1 � ����x1

�z
�

�x0

�z ��.

�A11�

The � contribution can be written as

Lu �2 � ��0�1
2� � �1�Lu � Ld

2L ��2

Lu � ��0�1
2� � �1�Lu � Ld

2L ����1 � �0�
Lu

2

2L
� ��1 � �0�2

Lu
3

3L2

� ��1 � �0�2
Ld

3

3L2 � ��1
2

�
Lu

L ��0 �
1
2

�1�2

Ld � ��1
2

�
Lu

L ��0 �
1
2

�1���1 � �0�
Ld

2

2L

� ��0�1
2� � �1�Lu � Ld

2L �����0�1
2� � �1�Lu � Ld

2L ��Lu � ��1 � �0�
Lu

2

2L� � ��1 � �0�2�Lu
3 � Ld

3

3L2 �
� ��1

2
�

Lu

L ��0 �
1
2

�1����1
2

�
Lu

L ��0 �
1
2

�1�Ld � ��1 � �0�
Ld

2

2L�
� ��0�1

2� � �1�Lu � Ld

2L ����0�Lu

2
�

Lu
2

2L� � �1�Lu
2

2L
� �Lu � Ld

2L �Lu�� � ��1 � �0�2�Lu
3 � Ld

3

3L2 �
� ��1

2
�

Lu

L ��0 �
1
2

�1���0��1
2

�
Lu

L �Ld �
Ld

2

2L�� �1�Ld
2

2L
�

Ld

2 ��. �A12�

This can be simplified to

Lu �2 �
LuLd

2L
��0 � �1���0�Lu � Ld

2L
�

Lu � Ld

2L � � �1�Ld � Lu

2L
�

Lu � Ld

2L ��� ��1 � �0�2�Lu
3 � Ld

3

3L2 �
�

LuLd

2L2 ��0 � �1���0Lu � �1Ld� � ��1 � �0�2�Lu
3 � Ld

3

3L2 � �beta only�. �A13�

Using (17), (A6), and (A7), we can write this as

u �2 � w �2�1
2 ��x0

�z
�

�x1

�z ���
�x0

�z
� �1 � ��

�x1

�z �
� �1 � 3� � 3�2

3��1 � ��
���x1

�z
�

�x0

�z �
2� �beta only�.

�A14�

In (A14), we have also used the mass-flux relation
w �2 � �(1 � �)(wu � wd)2.

The total expression for the variance of the u wind
(u �u �) is the summation of Eqs. (A8), (A10), and
(A13). This can be written as

u �2 �
�L�2

3
���1 � ���2 �

2L

3
��1 � ����1 � 2��

	 ��1 � �0� � 2��1 � ����1 � �0�� �
1
2

��1 � ��

	 ��0 � �1����0 � �1 � ���1�

� ��1 � �0�2 �1 � 3� � 3�2

3 �. �A15�

We can compute this with LES if we can determine the
value of �0 and �1 (or alternatively, 
x0 /
z and 
x1/
z).
This is done in the main body of the paper.
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b. w �u �

�0w �u � �
�0

L ��
x0

x0�Lu

wuu � dx � �
x1

x1�Ld

wdu � dx� �
�0wu

L ��
x0

x0�Lu �A � �x � x0

L �B� dx�
�

�0wd

L ��
x1

x1�Ld �C � �x � x1

L �D� dx� �
�0wu

L �Ld

L �Lu

2 � 1
�0

�

�z ��0�wu � wd��
� �wu � wd����x0

�z ��1
2� � ��x1

�z ��Lu � Ld

2L ���Lu �
�0wu

L

Lu
2

2L��Ld

1
�0

�

�z ��0�wu � wd��
� �wu � wd���x1

�z
�

�x0

�z �� �
�0wd

L ���Lu

L ��Ld

2 � 1
�0

�

�z ��0�wu � wd��� �wu � wd�
	 ��1

2
�

Lu

L ���x0

�z � �
1
2 ��x1

�z ���Ld �
�0wd

L

Ld
2

2L�Lu

1
�0

�

�z ��0�wu � wd��
� �wu � wd���x1

�z
�

�x0

�z ��. �A16�

This simplifies considerably

�0w �u � � ��0wu

L

1
�0

�

�z
��0�wu � wd����Ld

L �Lu

2 �Lu �
Lu

2

2L
Ld�� ��0wd

L

1
�0

�

�z
��0�wu � wd������Lu

L ��Ld

2 �Ld

�
Ld

2

2L
Lu��

�0

L
�wu � wd�wu����x0

�z ��1
2� � ��x1

�z ��Lu � Ld

2L ��Lu �
Lu

2

2L ��x1

�z
�

�x0

�z ��
�

�0

L
�wu � wd�wd���1

2
�

Lu

L ���x0

�z � �
1
2 ��x1

�z ��Ld �
Ld

2

2L ��x1

�z
�

�x0

�z ��
�

�0

L
�wu � wd�wuLu���x0

�z ��1
2

�
Lu

2L� � ��x1

�z ����Lu � Ld

2L � �
Lu

2L��
�

�0

L
�wu � wd�wdLd���x0

�z ���1
2

�
Lu

L � �
Ld

2L�� ��x1

�z ���
1
2

�
Ld

2L��
�

�0

L
�wu � wd�wuLu���x0

�z � Ld

2L
� ��x1

�z � Ld

2L��
�0

L
�wu � wd�wdLd���x0

�z ���1
2

�
Lu

L � �
Ld

2L�
� ��x1

�z ���
Lu

2L�� �
�0

L
�wu � wd�wuLu

Ld

2L ���x0

�z � � ��x1

�z ��
�

�0

L
�wu � wd�wdLd

Lu

2L ���x0

�z � � ��x1

�z ��� �0�wu � wd�2�LuLd

2L2 ����x0

�z � � ��x1

�z ��. �A17�
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