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ABSTRACT

In a companion paper, the authors presented a boundary layer parameterization that was based on the
mass-flux concept and included an internally consistent representation of the vertical flux of horizontal
momentum. In the present paper, the authors show how the framework of that model can be used to
determine the perturbation pressure field, by solving the anelastic pressure equation. The pressure cova-
riances needed to close the parameterization can then be diagnosed. Tests show very encouraging agree-
ment of the pressure statistics with results obtained from large-eddy simulations.

1. Introduction

In 2001, we (Lappen and Randall 2001a–c, hereafter
LR01a,b,c, respectively) described a new type of mass-
flux model called assumed distributions with higher-
order closure (ADHOC). ADHOC is a planetary
boundary layer mass-flux model. The first version of
ADHOC, hereafter ADHOC1, predicted the vertical
fluxes of energy and moisture, but the vertical flux of
horizontal momentum was determined using conven-
tional second-order closure methods. Similarly, al-
though ADHOC’s equations contain terms involving
covariances between pressure and other variables
(hereafter, the pressure terms), ADHOC1 did not in-
corporate these terms into the mass-flux framework.
Instead, the pressure terms were determined using
Launder’s parameterization modified by Zeman and
Lumley (Launder 1975; Launder et al. 1975, hereafter
L75; Zeman and Lumley 1979, hereafter ZL79). In a
companion paper (Lappen and Randall 2005, hereafter
LR05), we describe ADHOC2, which includes consis-
tent representations of the momentum fluxes. The cur-
rent paper builds on the results of LR05 to derive pa-
rameterizations of the pressure terms.

Following LR05, we consider idealized versions of
two coherent structures that are commonly observed in
the PBL, namely plumes (cylindrical geometry with
major axis perpendicular to the ground) and rolls

(quasi-cylindrical geometry with major axis parallel to
the ground). We use the assumed geometries of these
coherent structures to derive velocity fields, and solve
the anelastic pressure equation to obtain the pressure
fields. The covariances needed in the model are then
constructed directly, by integration. Our methods re-
quire as input certain information (discussed later)
about the updrafts and downdrafts; this information is
available in ADHOC2. It can also be diagnosed from
large-eddy simulation (LES) results, which we use to
test our parameterization. In addition, we compare our
results to those obtained with previously published pa-
rameterizations of the pressure terms. Note, however,
that our parameterization can be used only with mass-
flux models of the PBL.

In the derivation of the parameterizations we
present, we have chosen for simplicity to neglect the
following two potential sources of pressure perturba-
tions: 1) vorticity-induced pressure perturbations, and
2) pressure perturbations arising from internal gravity
waves generated by thermal convection. While we ac-
knowledge that these can be important, we have tried
to simplify the cases as much as possible to provide a
framework for attacking this problem in mass-flux PBL
models. We later hope to extend the framework to in-
clude these aforementioned effects.

An outline of this paper is as follows: In section 2, we
discuss the case of axisymmetric convection with no
shear. In section 3, we examine a slab-symmetric case
with both buoyancy and shear. In each of these sec-
tions, we compare results from the current parameter-
ization, the Rotta (1951, hereafter R51) and L75/ZL79
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parameterizations, and LES. Section 4 gives a critique
of our parameterization, and a discussion of its limita-
tions.

2. Axisymmetric free convection

Axisymmetric convective plumes (Fig. 1a) occur in
free convective PBLs, as is well known on the basis of
both observations (e.g., Willis and Deardorff 1974) and
LES (e.g., Moeng 1984). To describe a plume, we adopt
cylindrical coordinates, with radial coordinate r. The
inner cylinder has radius r ! Ri(z), while the radius of
the outer cylinder, that is, the total diameter of the
plume, is denoted by Ro. We assume that Ro is inde-
pendent of height; this assumption can be interpreted
to mean that the plumes are closely packed. Let "i de-
note the fractional area occupied by the inner cylinder
(hereafter, subscripts i and o denote inner and outer,
respectively), so that

!i#z$ !
Ri

2#z$

Ro
2 . #1$

Let %r, %&, and w be the radial, azimuthal, and vertical
components of the perturbation velocity, that is, v ! %rr̂
' %&!̂ ' wẑ. We assume that there is no azimuthal
motion, that is,

"# ( 0. #2$

Using this assumption implies that we are considering
plumes without vorticity. We realize that this is not
ideal, but the case we will test for this parameterization
has nearly zero mean flow and minimal vorticity. It is
thus a good approximation for this particular case. With
a plume that was more vortical in nature, we would
need to include the azimuthal component of the veloc-
ity. With this assumption, the Boussinesq form of the
continuity equation can be written as

$

$r
#r"r$ '

$

$z
#wr$ ! 0. #3$

From (3), and using the assumption that w is horizon-
tally uniform within the updraft and downdraft, LR05
show that

"r#r$ ! )
r
2

$wu

$z
for r % Ri ; #4$

#"r$Ri'& ! #"r$Ri)& ' #wd ) wu$
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$z
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and

r"r#r$ ! !Ro
2 ) r2

2 " $wd

$z
for Ri % r ' Ro . #6$

In Eqs. (4)–(6), we assume that the inner (outer) cyl-
inder is the updraft (downdraft), that is, wi ! wu and

wo ! wd. We note, however, that the parameterization
still holds if we assume that the opposite is true. To
determine %r(r, z), we need know wu(z), wd(z), Ro, and
Ri(z) ! *"i(z)Ro . LR05 show how to determine these
quantities from the prognostic variables of ADHOC2.
In the present paper, we treat them as known.

With the assumptions of axisymmetry and no azi-
muthal motion, and neglecting rotation and friction, the
equation of radial motion with the Boussinesq approxi-
mation is

$"r

$t
' "r

$"r

$r
' w

$"r

$z
! )

$

$r !p(

) ". #7$

In (7), we have also neglected the subplume-scale tur-
bulent transport term. We are not neglecting subplume-
scale turbulent transport itself, but the term that will be
the radial derivative of the turbulent transport in the
elliptical pressure equation [Eq. (10)]. We do this

FIG. 1. Idealization of (a) the clear convective geometry and (b)
the slab symmetric roll geometry. In (a), the inner and outer
cylinders are concentric circles and Ri (Ro) is the distance from the
updraft center to the outer edge of the updraft (downdraft). Note
that Ri varies with height but Ro does not. In (b), a cross section
through the major axes of the rolls is shown; Lu and Ld are the
widths of the updraft and downdraft, respectively, and x1 repre-
sents border where an updraft becomes a downdraft. Similarly, x0

and x2 represent borders where downdrafts become updrafts.

JULY 2006 L A P P E N A N D R A N D A L L 1727

Fig 1 live 4/C



purely for simplicity as we test the feasibility of this
approach. In LR01b we discuss the handling of the
subplume-scale transport term in ADHOC2. In (7), p+
is the perturbation pressure, which is the departure
from a hydrostatically balanced basic-state pressure.
Obviously, if the system is in a steady resting state,
(,/,r)[(p+/-)] ! 0 everywhere.

Similarly, the equation of vertical motion is

$w
$t

' "r

$w
$r

' w
$w
$z

! )
$

$z !p(

) " ' g
*("
*0

, #8$

where g is the acceleration of gravity, .+% is the pertur-
bation virtual potential temperature, and .0 is a refer-
ence potential temperature. We assume that nonzero
values of .+% are due /only to the convective motions.
With this assumption, we see that for a steady, resting
state, (8) reduces to

0 ! )
$

$z !p(

) ". #9$

By combining (7), (8), and (3), we can derive the elliptic
equation satisfied by the pressure, hereafter the pres-
sure equation, in cylindrical coordinates:

1
r
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Here we define

B (
g
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and assume that the area average of B is equal to zero,
that is,

B ! 0. #12$

For a resting state, we get

1
r

$
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$r !p(
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) " ! 0. #13$

We will solve Eq. (10) separately in the updraft and
downdraft. Thus, we need four horizontal (radial)
boundary conditions. We also need two vertical bound-
ary conditions. The four boundary conditions can be
derived as follows. Since %r ! 0 for all time at r ! 0 (the
center of the updraft), Eq. (7) implies that

! $

$r
p("

r!0
! 0. #14$

Similarly, our assumption that the plumes are close-
packed implies that %r ! 0 at r ! Ro, and it follows from
(7) that

! $

$r
p("

r!Ro

! 0. #15$

For isolated plumes in a quiescent environment, (15)
would be replaced by p+ ! 0 at r ! Ro.

The pressure must be continuous at r ! Ri; that is,

lim
&→0

p(#Ri ' &$ ! lim
&→0

p(#Ri ) &$, #16$

where 0 is a small number. The fourth condition that we
use is that the area-averaged perturbation pressure is
equal to zero; that is,

p( ! 0. #17$

While this may not be exactly true, it is approximately
true since the perturbation pressures are much smaller
than the average pressure field. We note here that the
parameterization will work for any value of p+ as long
as its value is known.

Finally, hydrostatic balance is required at both the
top of the model and the lower boundary. It follows
from (8) that

! $
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p("
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! !)0g
*("

*"
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and

! $
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*("
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"

z!0
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To solve (10) subject to the boundary conditions (14)–
(19), we use an analytical method to represent (and
solve for) the horizontal structure, and a finite-
difference method to represent the vertical structure.
We begin by radially integrating Eq. (10) separately for
the inner and outer regions, using our (mass-flux) as-
sumption that the vertical velocity and potential tem-
perature are horizontally uniform within the updraft
and the downdraft. The buoyancy forcing can be sepa-
rated into horizontally uniform updraft and downdraft
parts:

Bu !
g
*0

$#*("$u

$z
and Bd !

g
*0

$#*("$d

$z
. #20$

As shown in appendix A, the solutions are
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and
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There is no contribution to p at r ! Ri because (,p/,r)
is a step function there. In Eqs. (21)–(22), p+(0) is a
constant of integration.

The total solution for the pressure is given by Eqs.
(21) and (22). In these equations, the terms involving
the integrals are solved using finite difference methods
(discussed in section 2a). The first term in the curly
brackets of Eq. (22) is known [see appendix A, Eq.
(A23)]. The rest of the quantities with the exception of
p+(0) can be diagnosed with ADHOC2 (see LR05).
Thus, to obtain the total solution for the perturbation
pressure, we must determine p+(0) as a function of
height.

We can solve for p+(0) if we impose the condition
given by Eq. (17). This assumption is equivalent to as-

suming that the area-averaged pressure is close to the
base-state pressure. While this is not exactly true,
analysis of LES pressure fields for the Wangara case
(see LR05) show this to be a good approximation. We
can write
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where pi and po are the pressures in the inner and outer
cylinders, respectively. Substituting from (21) and (22)
and integrating, we obtain
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where 4o ! 5(Ri)0)
0 [(1/r)5r

0(rp) dr] dr ' 5r
(Ri'0)

[(1/r)5r
(Ri'0)(rp) dr] dr and 4i ! 5r

0[(1/r)5r
0(rp) dr] dr.

Equation (24) can be solved for the unknown p+(0).
The variables wu, wd, Bu, and Bd are known from
ADHOC2. We can calculate Ro and Ri as discussed in
LR05, and (,p/,r)Ri'0 can be calculated using Eq.
(A23). The pressure p(Ri'0) is known from Eqs. (A8)
and (16). Finally, the integral terms can be evaluated
directly, while the vertical derivatives of the integrals
can be calculated using the finite difference methods
discussed in section 2a. A more detailed description of
the method used to solve for the pressure in ADHOC2
is given in appendix D.

Figure 2 gives a plot of p+(0) as a function of height
for various (height-independent) values of Ro. Here we
have used the dry convective boundary layer profiles of
wu, wd, Bu, Bd, and " given by Schumann and Moeng
(1991) and Young (1988). Figure 2 shows that Ro has a
significant effect on both of these constants. ADHOC2
predicts Ro.

a. Solution for the vertical structure

The perturbation pressures in the updraft and down-
draft (neglecting other effects such as friction) are rep-
resented by Eqs. (21) and (22), respectively. It is im-
portant to realize here that the solutions given by Eqs.
(21) and (22) are the radial solutions for the pressure at
a given height. In order to get the total solution for the
pressure; that is, p(r, z), we must solve these equations
at every model height. In this section, we describe how
we solve for the vertical structure. The terms in Eqs.
(21) and (22) that we are discussing here have the form

$2

$z2 6#r, z$, #25$

where 6 ! 5r
0(1/r)[5r

0(rp) dr] dr and 6 ! 5(Ri)0)
0

(1/r)[5r
0(rp) dr] dr ' 5r

(Ri'0)(1/r)[5r
(Ri'0)(rp) dr] dr in

Eqs. (21) and (22), respectively. We represent approxi-
mate (25) using finite differences; that is,

$2

$z2 6#r, z$ !
#6$l'1 ) 2#6$l ' #6$l)1

#-z$2 , #26$

where l is an index denoting a particular level on the
vertical grid. The effects of these terms are then incor-
porated into our solution in the following iterative man-
ner (diagramed in Fig. 3).

1) We solve Eqs. (21) and (22) first by temporarily
neglecting all contributions from the terms that in-
volve vertical derivatives. This includes neglecting
these contributions in the solution for p+(0) [Eq.
(24)] as well.

2) We solve for the radial dependence of p that ap-
pears in the modified Eqs. (21), (22), and 0.

3) Using the solution for p obtained in 2, we approxi-
mate the second derivative with respect to z using
the centered finite-difference formula given in (26).
(We also use finite difference formula for the single
z derivative terms.)

4) We add the result from step 3 back into Eqs. (21),
(22), and (24) and return to step 2. We do this until
the solution converges. We find that in practice
there is no need to return to step 2.

We note that this representation of the vertical struc-
ture is also applied to the 4i, 4o, and (,2Ri /,z2) terms in
Eq. (24). This algorithm yields [p+(r)]l; that is, an ana-
lytical expression for the radial dependence of the per-
turbation pressure at each finite-difference level.

Finally, we would like to point out that if we also
wanted to solve for the radial structure of the pressure
using finite difference, we could use a two-dimensional
grid relaxation solver. We have used this as a check of
the solution algorithm outlined above, with good re-
sults.

b. A check on the results so far

To test the model, we used the vertical profiles of wu,
wd, and Ro given by Schumann and Moeng (1991), as
illustrated in their Figs. 3–4 (see also Young 1988). We
computed Ri(z) from (1). We calculated the perturba-
tion pressure for day 33 of the Wangara experiments
(Hicks 1978), by the method outlined above [this case
has been extensively studied by many authors including
Wyngaard and Coté (1974), Yamada and Mellor
(1975), and André et al. (1978)]. The results are shown
in Fig. 4, along with the corresponding LES-derived

FIG. 2. The pressure at the center of the updraft as a function of
height plotted for different values of the updraft radius for the
Wangara case.
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pressure for the Wangara case. For the LES results, we
used Ro ! 1100 m)1. This value was obtained by using
a composite averaging method similar to what was used
by Schumann and Moeng (1991).1

There is some agreement between the parameterized
and LES-derived results. In particular, low pressure is

found at the updraft center near the surface, and a high
pressure is found in the downdraft near the surface; at
upper levels, the pressure pattern is reversed. This is
what one would expect to find for a clear convective
PBL. The strength of the high pressure near the top of
the updraft is slightly weaker in the parameterization
than the LES. The opposite is true near the surface in
the downdraft. These results are encouraging given the
sensitivity of p+(0) to the values chosen for Ri (or Ro;
Fig. 2).

c. Pressure parameterization for use in the u+u+ and
w+w+ equations

Recall that our objective is to develop expressions
that can be used for the pressure terms in the second-
moment momentum equations of our mass-flux model.
For the u+u+ and w+w+ equations, the expressions that
we seek are

$

$t
u(u( 7 )2

u(

)

$p
$x

and
$

$t
w(w( 7 )2

w(

)

$p
$z

. #27$

We can write the right-hand side (rhs) of the u+u+ equa-
tion in (27) as

2
u(

)

$p
$x

! 2
U(

)

$p
$r

cos2# !
2

+Ro
2 ,&

0

Ri

&
0

2+

U(

)

$p
$r

' &
Ri
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&
0

2+

U(

)

$p
$r- cos2# d#r dr, #28$

where & is the angle between the radial vector and the
x axis and U+ is the total perturbation wind vector.

Integrating this equation gives (the details of this are
given in appendix B).

1 Centers of updrafts were taken to be grid points where w+ 8
2 m s)1 over an entire 1 gridpoint circle surrounding the middle
point. Then w+ was averaged in concentric circles around each
updraft center point and then averaged again over all concentric
circles the same distance away from the center points. These av-
eraged values were plotted as a function of distance from the
center of the updraft. A clear updraft and downdraft radii
emerged from these plots (not shown).

FIG. 3. Flowchart that demonstrates the iteration performed to
solve for the perturbation pressure in the clear convective case.

FIG. 4. Comparison of the perturbation pressure (as a function
of radius and height) for the new parameterization with that of
LES data for the Wangara case. The updraft and downdraft radii
are labeled (Ru and Rd, respectively); Zi is the PBL top height.
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In (29),
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We can calculate (,p/,r)Ri'0 from (A23). If we assume
that B and w are equal to zero, and that Ri can be
determined from Ro [using the updraft area fraction, "
and Eq. (1)], we can write

u(

)

$p
$x

! f!Bu, Ri,
$wu

$z ". #31$

Thus, if we know Bu, Ri, and ,wu /,z, we can solve for the
pressure contribution in the u+u+ equation. ADHOC2
determines all three of these quantities (see LR01a and
LR05).

As discussed, ADHOC1 uses standard second-order
closure parameterizations for the pressure terms. To
see if the new parameterization (29) makes a differ-
ence, we ran ADHOC2 3 times for day 33 of the Wan-
gara experiment—twice with conventional pressure pa-
rameterizations (given by R51 and L75/ZL79, respec-
tively), and once with Eq. (29). In the third run, we used
the prescribed profile of Ri from Schumann and Moeng
(1991, their Fig. 4). We also simulated the same case
using a large-eddy simulation model (Khairoutdinov
and Randall 2003). The results from all four simulations
are shown in Figs. 5–6.

Fig. 5 shows the evolution of )u+,p+/,x in height and
time for each of these cases. The run that used Eq. (29)
(Fig. 5a) exhibits the best agreement with )u+,p+/,x as
diagnosed from the LES results (Fig. 5d). Although it
increases faster than the LES as the PBL starts to grow,
it tapers off at the end of the simulation [76 P.M. local
time (LT)] in a manner very similar to the LES. The
maximum height of the pressure effects extends to ap-
proximately 1700 m for both the LES and the ADHOC
run that used Eq. (29). The runs that used R51 and
L75/ZL79 show a delayed pressure response to the sur-

face heating as well as a delayed response to the setting
of the sun in the late afternoon. The pressure effects in
the PBL do not get above 1300 m (which is the PBL
top) in these runs. The reason for the latter difference
may very well relate to prescription of the turbulent
length scale, which is required in the R51 and L75/ZL79
parameterizations. This length scale gets very small
near the PBL top, and so the dissipation of the momen-
tum variances becomes very efficient. When the energy
near the PBL top is dissipated, the pressure terms go to
zero.

Figure 6 shows a cross section through the contours
plotted in Fig. 5 at hour 13 (1 P.M. LT). The shapes and
magnitudes of the LES and new parameterization pro-
files are very similar, with the greatest differences near
the surface and near the inversion. The parameterized
values actually become slightly negative in the inver-
sion layer. We can compare our results to Mason’s
(1989). His Fig. 15 shows )u+,p+/,x for an idealized
convective PBL. The shape and magnitude are very
similar to what is seen here—fairly constant and posi-
tive in the bulk of the PBL, with an increase near the
surface. However, they also show a small increase near
the inversion layer. This is not seen for Wangara (the
parameterization shows a slight decrease while the LES
shows no change). The differences may be due to the
facts that the vertical resolution in the Mason run was
twice that used here and the inversion was slightly
stronger. A double resolution run with the current LES
(not shown) produces a slight increase near the inver-
sion, although it is much smaller than that obtained by
Mason (1989). The R51 ' L75/ZL79 curve does a nice
job in the lower part of the PBL. However, it goes to
zero 800 m below the LES and gets very large near the
surface.

In general, we would expect )u+,p+/,x to be positive
near the surface, because this implies low pressure in
the updraft near the surface. In a dry convective bound-
ary layer, this low pressure results from surface heating
and is the mechanism by which air is drawn into the
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updraft. However, using similar reasoning, we would
expect )u+,p+/,x to be positive up high. This is not the
case for the parameterization, but is the case in the
results of Mason (1989) and in the LES. The param-
eterization does not perform as well near the inversion
as it does in the rest of the boundary layer. A similar
analysis was performed for the pressure term in the
w+w+ equation ()w+,p+/,z); it provided no new insight.

Until now, we have focused on the actual pressure
term that appears in the equations for u+u+ and w+w+

()u+,p+/,x and )w+,p+/,z, respectively). However, as
discussed earlier, these terms are not the ones modeled
in higher-order closure models. Typically these terms
are divided into pressure diffusion terms (),u+p+/,x
and ),w+p+/,z) and return-to-isotropy terms (p+,u+/,x
and p+,w+/,z). The pressure–diffusion term is either ne-
glected or lumped together with the transport (triple
moment) term, while the return-to-isotropy term is pa-
rameterized using either R51 or L75/ZL79. Thus, in
Fig. 7, we show the R51 and L75/ZL79 parameteriza-

FIG. 5. Comparison of the evolution of )u,p+/,x over the first 8 h of the Wangara simulation for (a) the new
parameterization given by Eq. (29), (b) the Rotta parameterization, (c) the Rotta plus Launder parameterization,
and (d) LES.
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tions (and their sum) for the return-to-isotropy terms in
the u+u+ and w+w+ equations. We also show a relatively
new parameterization, which improved R51 and L75/
ZL79, developed by Cheng et al. (2002), along with the
LES-derived values and the new parameterization re-
sults. The best agreement with the LES is obtained
with the new parameterization for both p+,u+/,x and
p+,w+/,z. The latter is particularly striking. The next
best agreement is with Cheng et al. (2002) parameter-
ization—the only other one that is able to get the cor-
rect sign of the term throughout the PBL). The R51
results for p+,u+/,x are too large in the lower half of the
PBL and too small in the upper half. L75/ZL79 brings
R51 closer to the LES, but the differences are still large,
especially near the inversion where the R51 plus L75/
ZL79 parameterization gives the wrong sign. A very
similarly shaped curve for the R51 parameterization in
the w+w+ equation was found by Deardorff (1974, their
Fig. 20) in their simulation of the same Wangara, day 33
case.

3. Rolls
To represent rolls, we use a series of alternating up-

drafts and downdrafts (Fig. 1b). The width of an up-
draft (downdraft) is denoted by Lu (Ld) and the total
width of the roll is L ! Lu ' Ld, where

FIG. 6. Comparison of )u,p+/,x calculated with the new param-
eterization given by Eq. (29) (short dashed), the Rotta param-
eterization (dashed–dotted), the Rotta plus Launder parameter-
ization (long dashed), and LES (solid) for the Wangara case at
hour 13 (1 P.M. LT). The red line is the zero line.

FIG. 7. Here, (a) p+,u/,x and (b) p+,w/,z are calculated with the
new parameterization, the R51, L75, and Cheng et al. (2002) pa-
rameterizations (with the terms calculated using LES data), and
the LES data for the Wangara case.
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Lu ( x1 ) x0 and Ld ( x2 ) x1. #32$

We let Lu and Ld vary with height, but the total roll
width L is assumed to be independent of height; that is,

$L
$z

! 0. #33$

The updraft and downdraft fractional areas are (respec-
tively)

! ! Lu .L and 1 ) ! ! Ld .L. #34$

One key to accurately representing the pressure–
velocity correlations in such a roll is to know its aspect
ratio, a (the width divided by the height). Previous stud-
ies of rolls show that the aspect ratio depends on a bulk
Richardson number, or alternatively, on the ratio of the
PBL height to the Monin–Obukhov length, zi/LMO

(Deardorff 1972; Moeng and Sullivan 1994; Glendening
1996; Sykes and Henn 1988; Chou and Ferguson 1991).
Most of the studies agree that rolls are found for )1.5
' zi/LMO ' )10 with aspect ratios in the range 2 ' a
' 15. The case we will examine here is that of Glen-
dening (1996, hereafter G96). In the G96 case, zi/LMO

! )2.5 and a ! 4. For a discussion of our G96 case, see
LR05.

We simulated the G96 case with the LES model de-
scribed by Khairoutdinov and Randall (2003). We
adopt a Cartesian coordinate system, with the y axis
parallel to the mean wind. Figure 8 shows an x–y and an
x–z cross section of the LES perturbation vertical ve-
locity for this run. The roll structures are apparent in
both plots. The white squares indicate the regions that
we have classified as rolls. Only the data from these
squares have been used in our analysis.

Rolls are observed to have an orientation ranging
from )20° to '30° relative to the mean wind (Moeng
and Sullivan 1994). To determine the orientation of the
rolls in the G96 LES run, we used an autocorrelation
method similar to what we used to determine Ro in the
clear convective case. We found the autocorrelation in
the LES data for lines across the domain that whose
angles with the y axis (the axis of mean wind) ranged
from )15° to 15°. The highest correlation was found for
lines with an angle of 8° to the left of the mean wind.
Figure 8 supports this value. This implies modest rates
of change in the y direction (perpendicular to the page
in Fig. 1b). However, for simplicity here, we assume
that the orientation angle is 0°, so that we can neglect
terms involving ,/,y.

Solution for the perturbation pressure

Using Cartesian coordinates for this case, the Bouss-
inesq continuity equation is

$u
$x

'
$w
$z

! 0. #35$

In the updraft (downdraft) w ! wu (w ! wd) uniformly
(see Fig. 1b). We integrate Eq. (35) in x separately over
the updraft and downdraft to determine u(x). The re-
sults are:

u#x$ ! u#x0 ' &$ ) #x ) x0$
$wu

$z
for x0 % x % x1

#36$

and

u#x$ ! u#x0 ' &$ ) Lu

$wu

$z
) #wu ) wd$

$x1

$z

) #x ) x1$
$wd

$z
for x1 % x % x2. #37$

Neglecting rotation and friction, and using the assump-
tion (,/,y) ! 0, the equations of horizontal and vertical
motion in Cartesian coordinates can be written as

FIG. 8. Perturbation vertical velocity for the LES roll case simu-
lation: (a) x–y cross section through the PBL center and (b) x–z
cross section at the midpoint in y. Values of w+ greater than 0.5
m s)1 are black. The white squares in (a) indicate the regions
classified as rolls in this paper.
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$u
$t

' u
$u
$x

' w
$u
$z

! )
$

$x !p(

) " #38$

and

$w
$t

' u
$w
$x

' w
$w
$z

! )
$

$z !p(

) " ' g
*("
*0

, #39$

respectively. Taking (,/,x) of (38) and (,/,z) of (39),
adding the results, and rearranging, we obtain

$2

$x2 !p(

) " '
$2

$z2 !p(

) " ! )2#!$w
$x

$u
$z" ' !$w

$z "2$' B,

#40$
where B is defined by (11).

The vertical boundary conditions are (18)–(19). The
horizontal conditions are Eq. (17) and that the rolls are
periodic. It also must be true that p+ is continuous ev-
erywhere. To solve (40) subject to these conditions, we
use an analytical method to determine the horizontal
structure, and a finite-difference method to determine
the vertical structure. This idea behind doing this is
explained in section 2. We begin by integrating Eq. (40)
in x separately for the updraft and downdraft regions,
using the expressions given by (36) and (37) for u(x).
We also use our assumption that the vertical velocity
and potential temperature are horizontally uniform
within the updraft and the downdraft.

As shown in appendix C, the solutions are

p(

)
! !p(

) "x0'&

' #x ) x0$# $

$x !p(

) "$x0'&

'
#x ) x0$2

2 #)2!$wu

$z "2

' Bu$) &
#x0'&$

x

' &
#x0'&$

x

$2

$z2 !p(

) " dx( dx

for x0 % x % x1. #41$

and

p(

)
! !p(

) "x0'&

' Lu# $

$x !p(

) "$x0'&

'
Lu

2

2 #)2!$wu

$z "2

' Bu$) &
#x0'&$

#x1)&$

' &
#x0'&$

x

$2

$z2 !p(

) " dx( dx

' #x ) x1$# $

$x !p(

) "$x1'&

'
#x ) x1$2

2 #)2!$wd

$z "2

' Bd$) &
#x1'&$

x

' &
#x1'&$

x

$2

$z2 !p(

) " dx( dx

for x1 % x % x2. #42$

At the updraft–downdraft borders (i.e., x ! x0 and x !
x1), there is no contribution to the pressure terms be-
cause p is continuous there. However, (,/,x)p+ can be
discontinuous at these borders.

Equations (41)–(42) contain the unknowns [(,/,x)
(p+/-)]x0'0 , [(,/,x)(p+/-)]x1'0 and (p+/-)x0'0. Appendix C
describes how to solve for these. The only variables
needed as input are the updraft and downdraft vertical
velocities and potential temperatures (which are known
from ADHOC), and the values of Lu and Ld (which are
calculated using the methods discussed in LR05). The
solution for the vertical structure of the pressure is ob-
tained using finite-difference methods, as described in
section 2a. A detailed description of how to solve for
the pressure (in ADHOC2) in the axisymmetric case is
given in appendix D. The solution method for this roll
case is solved analogously.

To test our parameterization, we use the LES de-
scribed by Khairoutdinov and Randall (2003) to simu-
late the case described by G96. We get the profiles of
wu and wd from the LES data (using data from the
white boxes in Fig. 8). We then use Eqs. (36)–(37) to get
the profiles of u(x) at each height (here, we use the
value of Lu calculated in LR05). We use these velocities
and the LES-derived values of .+% in Eqs. (41)–(42) and
use the methods outlined above to get the pressure
fields. These fields are then averaged appropriately to
get the pressure–velocity gradient covariance terms
that appear in the second-moment flux equations (cal-
culated as in section 2c). These averages are taken over
the entire LES domain. We compare these results to
those obtained with the LES and the parameterizations
of R51 and L75/ZL79 for this case. As discussed earlier,
the actual pressure term in the momentum flux and
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variance equations is often separated into a pressure
diffusion and return-to-isotropy terms. In Fig. 9, we
compare the LES-derived values for both the return-
to-isotropy and the diffusion terms to our parameter-

ized values for the u+u+, w+w+, and w+u+ equations. For
the return-to-isotropy term, we also include a plot of
the R51 plus L75/ZL79 parameterization. The three
plots in the left-hand column are profiles of the pres-

FIG. 9. A comparison of LES, parameterized, and R51 plus L75 values for (left) the pressure diffusion and (right)
the pressure return-to-isotropy in the (top) u+u+, (middle) w+w+, and (bottom) w+u+ equations. The red lines are the
zero lines.
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sure diffusion term, while the three plots in the right-
hand column show profiles of the return-to-isotropy
term. Figure 10 compares the return-to-isotropy term in
the heat flux (w+T) equation.

We have obtained very nice agreement between the
LES and our parameterization for the return-to-
isotropy term, especially in the two variance equations.
In the w+u+ and w+T equations, there are some differ-
ences up high near the inversion. In Fig. 10, the R51 '
L75 and the new parameterizations show a slight posi-
tive value close to the surface, while the literature sup-
port negative values here (e.g., Wyngaard and Coté
1971). The R51 plus L75/ZL79 parameterization does a
reasonable job in the u+u+ equation except in the lower
quarter of the PBL. However, it does not handle the
w+w+ return-to-isotropy term well. For the w+u+ return-
to-isotropy term, it does an excellent job in the upper
PBL, but performs poorly down low. The disagreement
between the R51 plus L75/ZL79 parameterization and
the LES can likely be attributed to the calculation of
the turbulent length scale and the choice of constants.
In this simulation, we have calculated the length scale
using Bougeault and André (1986) and used the con-
stants listed in the original L75 papers. While there is
disagreement about the optimal choice for these length
scales and constants, changing their values should
mostly affect the magnitude of the curves (the shape of
the curve will be affected in a minimal way as the rela-
tive importance of the R51 and L75/ZL79 terms

changes with the choice of constants). Tuning the
length scale and choice of constants to fit the LES
curves may make the R51 plus L75/ZL79 agreement
closer in the w+u+ and w+w+ equations. However, it will
not help the lower half of the u+u+ equation, which
clearly has the wrong shape. In any case, tuning con-
stants to fit data is not an optimal approach.

In the left-hand columns of Fig. 9, we compare the
LES diffusion term to that of the new parameteriza-
tion.2 The agreement is very good in the lower 2⁄3 of the
PBL. Near the inversion, the parameterization does not
perform very well, except in the w+w+ equation. Since
this problem does not manifest itself in the return-to-
isotropy plots, it is likely related to the difference in the
slope of the pressure profile (the return-to-isotropy
term does not involve derivatives of the pressure). De-
spite the reason for the disagreement, it is pretty clear
that the pressure diffusion term is not negligible for this
case. It is the same order of magnitude as the return-
to-isotropy term in the w+w+ and w+u+ equations. The
studies of Wyngaard and Coté (1971) and McBean and
Elliot (1975) support the importance of this term.

4. Discussion

In this paper, we have described a simple new way
to represent the pressure terms in PBL mass-flux mod-
els. This method requires no specific tuning of param-
eters. The new parameterization is based on the as-
sumption that coherent structures dominate the PBL
physics. We idealize the geometry of these structures
and diagnose the perturbation pressure. We have con-
sidered two geometries: plumes (Wangara, day 33; An-
dré et al. 1978) and rolls (Glendening 1996). We simu-
lated both cases using the LES model of Khairoutdinov
and Randall (2003). In both cases, our simple geometri-
cally based parameterization allowed us to represent
the pressure terms in the Reynolds stress equations
more accurately than the standard parameterizations of
R51 and L75/ZL79. The closest agreement to standard
parameterizations was found for the Cheng et al.
(2002). For the cases analyzed here, the pressure–
diffusion term is not negligible. This supports the con-
clusions of Wyngaard and Coté (1971) and McBean and
Elliot (1975).

2 We note here that the diffusion term in the u+u+ equation is
given by ,(p+u+)/,x, which should be identically zero if averaged
horizontally over the LES domain. In Fig. 9, it is not equal to zero.
This is because the averaging was done over the roll structure
(indicated by the white boxes in Fig. 8) and not, over the whole
LES domain. However, it is small (an order of magnitude smaller
than the same term in w+w+ equation).

FIG. 10. A comparison of LES, parameterized, and R51 and L75
values for the pressure return-to-isotropy in the w+T+ equation.
The red line is the zero line.
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Figure 11 summarizes our approach with a flowchart.
The parameterization requires the values of wu, wd, Bu,
and Bd [as defined in Eq. (20)] that are diagnosed in the
mass-flux model. The plume geometry requires two ad-
ditional variables (either Ru or Rd) and ". The latter is
also diagnosed in the ADHOC model. The former is
calculated as discussed in LR05.

For the Wangara case the Richardson number (Ri) is
large and positive, while for the G96 case it is negative.
For intermediate cases, a simple interpolation based on
Ri may provide a good estimate of the pressure terms.
This idea will be explored in future work.
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APPENDIX A

Radial Solution for the Perturbation Pressure in
the Axisymmetric Case

a. Inner cylinder

Equation (10) is rewritten here as

$

$r #r
$

$r !p(

) "$' r
$2

$z2 !p(

) " !

)r#!$"r

$r "2

' 2
$w
$r

$"r

$z
' !$w

$z "2

' !"r

r "2$' rB.

#A1$

Within the inner cylinder, (,w/,r) ! 0 so that second
term on the rhs of (A1) vanishes. Using Eq. (4) and its
radial derivative, we can rewrite Eq. (A1) for the inner
cylinder as

$

$r #r
$

$r !p(

) "$! rBu )
3r
2 !$wu

$z "2

) r
$2

$z2 !p(

) "
for r % Ri. #A2$

Here, Bu is defined by Eq. (20), and is independent of
r. We integrate (A2) from r ! 0 to r ! r, and use
boundary condition (14) to get

$

$r !p(

) " !
r
2 #Bu )

3
2 !$wu

$z "2$
)

1
r &

0

r

#r
$2

$z2 !p(

) "$ dr

for r % Ri . #A3$

Further integration of (A3) from r ! 0 to r ! r gives

p(#r$

)
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p(#0$

)
' Bu!r2

4 " )
3r2

8 !$wu

$z "2

) &
0

r

%1
r &

0

r

#r
$2

$z2 !p(

) "$ dr) dr

for r ' Ri , #A4$

which can be rewritten as

p(#r$

)
!

p(#0$

)
' Bu!r2

4 " )
3r2

8 !$wu

$z "2

)
$2

$z2 %&
0

r

'1
r &

0

r

#rp($ dr( dr)
for r ' Ri. #A5$

Note that p+(0) is unknown at this stage. As special
cases of (A3) and (A4), we have, respectively,

FIG. 11. Method of implementation of the new pressure
parameterization in the LR01a/LR05 model.
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Using Leibniz’s rule, we can pull the z derivatives out of
the integral in (A7) and write
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We use the form given by (A8) as opposed to that given
by (A7) because (A8) is easier to evaluate in the con-
text of a finite difference model such as ADHOC2.

b. Updraft–downdraft boundary

Now consider the boundary at r ! Ri, where both w
and %r are, in general, discontinuous. As noted in Eq.
(16), the pressure must be continuous across this
boundary. The radial pressure gradient can be discon-
tinuous, however.

We begin by rewriting Eq. (3) as
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Square both sides of (A9), and rearranging gives
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Substitute this into (A1) to obtain
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It is not straightforward to radially integrate (A11)
across r ! Ri because the first two terms on the rhs
involve products of quantities that “go to infinity”
there. To proceed, we use a coordinate transformation
as follows:

! $

$z"r
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where r̂ ( (r/Ri). We apply (A12) to w, and substitute
the result into (A9) to obtain

$"r

$r
'

"r

r
! )#!$w

$z "r̂
)

$Ri

$z !$w
$r "$. #A13$

Applying (A12) to 9r and using (A13) and (A9), we get
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Substituting (A14) and (A12) applied to w in the brack-
ets on the rhs of (A11), we obtain
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We substitute (A15) and (A12) applied to . into (A11)
to obtain
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Equation (A16) is equivalent to (A11) with one impor-
tant exception. The only quantities on the rhs of (A16)
that go to infinity across the updraft–downdraft bound-
ary are (,w/,r) and (,.+% /,r). Everything else remains
finite. Thus, we can radially integrate this across the
updraft–downdraft boundary.

The only term left to address with the coordinate

transformation is the (,2/,z2)(p+/-) term of (A16). We
apply (A12) to this term to get
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Using (,/,r)[r(,/,r)(p+/-)] ! r(,2/,r2)(p+/-) ' (,/,r)(p+/
-), we can write (A17) as
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$r !p(

) "+
! r# $2

$z2 !p(

) "$
r̂

' #!$Ri

$z "2

) r
$2Ri

$z2 ) 2
$Ri

$z ! $

$z"
r̂
$ $

$r !p(

) " ' !$Ri

$z "2 $

$r #r
$

$r !p(

) "$.

#A18$

Substitute this into (A16) and rearrange to get

#1 ' !$Ri

$z "2$ $

$r #r
$

$r !p(

) "$! )2*r
$w
$r #!$"r

$z "
r̂

) !$w
$z"

r̂

$Ri

$z $' r!$w
$z"

r̂

2

' "r!$w
$z"

r̂

'
"r

2

r +
' r

g
*0
#!$*("

$z "
r̂

)
$Ri

$z !$*("
$r "$) *r# $2

$z2 !p(

) "$
r̂

' #!$Ri

$z "2

) r
$2Ri

$z2 ) 2
$Ri

$z ! $

$z"
r̂
$ $

$r !p(

) "+. #A19$

We can now integrate (A19) across the boundary. The only terms that make a finite contribution to the
integral are the ones that involve (,w/,r) and (,.+% /,r). The (,/,r)(p+/-) terms do not contribute because (p+/-)
is continuous across the boundary. We find that

#1 ' !$Ri

$z "2$Ri*# $

$r !p(

) "$
Ri'&

) # $

$r !p(

) "$
Ri)&

+ ! )2 &
Ri)&

Ri'&

r
$w
$r #!$"r

$z "
r̂

) !$w
$z "

r̂

$Ri

$z $ dr

) Ri

$Ri

$z
g
*0

1#*("$d ) #*("$u2. #A20$
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The integrand is a delta function times a step function. Unlike the delta function squared in Eq. (A11), this can
be integrated. The result is

#1 ' !$Ri

$z "2$Ri*# $

$r !p(

) "$
Ri'&

) # $

$r !p(

) "$
Ri)&

+ ! )Ri#wd ) wu$*#!$"r

$z "
r̂
$

Ri'&

' #!$"r

$z "
r̂
$

Ri)&

)
$Ri

$z !$wd

$z
'

$wu

$z "+ ) Ri

$Ri

$z
g
*0

1#*("$d ) #*("$u2

#A21$

or

*# $

$r !p(

) "$
Ri'&

) # $

$r !p(

) "$
Ri)&

+ ! )# wd ) wu

1 ' !$Ri

$z "2$*#!$"r

$z "
r̂
$

Ri'&

' #!$"r

$z "
r̂
$

Ri)&
+

)
$Ri

$z % #wd ) wu$!$wo

$z
'

$wi

$z " '
g
*0

1#*("$d ) #*("$u2

1 ' !$Ri

$z "2 ) . #A22$

Equation (A22) describes the jump in the pressure gradient across the updraft–downdraft boundary. All quantities
are known from ADHOC2 (see LR05)

c. Outer cylinder

Combining (A6) and (A22), we obtain

# ,

$r !p(

) "$
Ri'&

!
Ri

2 #Bu )
3
2 !$wu

$z "2$)
1
Ri

&
0

Ri)&

#r
$2

$z2 !p(

) "$ dr )# wd ) wu

1 ' !$Ri

$z "2$*#!$"r

$z "
r̂
$

Ri'&

' #!$"r

$z "
r̂
$

Ri)&

+ )
$Ri

$z % #wd ) wu$!$wd

$z
'

$wu

$z " '
g
*0

1#*("$d ) #*("$u2

1 ' !$Ri

$z "2 ) . #A23$

This is essentially an inner boundary condition for the outer region.
Using Eq. (6) and its radial derivative, the pressure Eq. (A1) for the outer cylinder is

1
r

$

$r #r
$

$r !p(

) "$'
$2

$z2 !p(

) " ! )
1
2 !Ro

4

r4 ' 3"!$wd

$z "2

' Bd. #A24$

Outward integration of (A24) from r ! Ri ' 0 to r ! r gives

$

$r !p(

) " !
Ri

r # $

$r !p(

) "$
Ri'&

'
1
4r #!Ro

4

r2 )
Ro

4

Ri
2" ) 3#r2 ) Ri

2$$!$wd

$z "2

'
Bd

2r
#r2 ) Ri

2$

)
1
r &

Ri'&

r

#r
$2

$z2 !p(

) "$ dr for Ri % r ' Ro. #A25$
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Integrating a second time, we find that

p(#r$

)
!

p(#Ri ' &$

)
' *Ri# $

$r !p(

) "$Ri'&

'
1
4 !)

Ro
4

Ri
2 ' 3Ri

2"!$wd

$z "2

)
Bd

2
Ri

2+ ln! r
Ri
"

)
1
8 !$wd

$z "2#Ro
4! 1

r2 )
1

Ri
2" ' 3#r2 ) Ri

2$$'
#r2 ) Ri

2$

4
Bd ) &

Ri'&

r

%1
r &

Ri'&

r

#r
$2

$z2 !p(

) "$ dr) dr

for Ri % r ' Ro. #A26$

We apply Leibniz’s rule to the last term in (A26) in order to pull the z derivatives out of the integral [see
explanation for Eq. (A8) where we did the same]. This gives

p(#r$

)
!

p(#Ri ' &$

)
' *Ri# $

$r !p(

) "$Ri'&

'
1
4 !)

Ro
4

Ri
2 ' 3Ri

2"!$wd

$z "2

)
Bd

2
Ri

2+ ln! r
Ri
"

)
1
8 !$wd

$z "2#Ro
4! 1

r2 )
1

Ri
2" ' 3#r2 ) Ri

2$$'
#r2 ) Ri

2$

4
Bd )

$2

$z2% &
#Ri'&$

r

1
r ' &

#Ri'&$

r

#rp$ dr( dr)
' #Rip#Ri$

$2Ri

$z2 ' 2
$

$z
1Rip#Ri$2

$Ri

$z $ln
r

Ri
for Ri % r ' Ro. #A27$

There is no contribution to p at r ! Ri because (,p/,r) is a step function there. Now, we use boundary condition
(16) in Eq. (A8) and plug the result into (A27) to obtain

p(#r$

)
!

p(#0$

)
' *Ri# $

$r !p(

) "$Ri'&

'
1
4 !)

Ro
4

Ri
2 ' 3Ri

2"!$wd

$z "2

)
Bd

2
Ri

2+ ln! r
Ri
"

)
1
8 !$wd

$z "2#Ro
4! 1

r2 )
1

Ri
2" ' 3#r2 ) Ri

2$$'
#r2 ) Ri

2$

4
Bd )

$2

$z2 % &
#Ri'&$

r

1
r ' &

#Ri'&$

r

#rp$ dr( dr)
' #Rip#Ri$

$2Ri

$z2 ' 2
$

$z
1Rip#Ri$2

$Ri

$z $ ln
r

Ri
' Bu!Ri

2

4 " )
3Ri

2

8 !$wu

$z "2

)
$2

$z2 % &
0

#Ri)&$

1
r '&

0

r

#rp$ dr( dr)
) !$2Ri

$z2 "' 1
Ri

&
0

#Ri)&$

#rp$ dr( ) 2!$Ri

$z " $

$z ' 1
Ri

&
0

#Ri)&$

#rp$ dr( for Ri % r ' Ro. #A28$

The total solution for the pressure field is given by Eqs. (A5) and (A28). The only thing left to do is to ensure that
the boundary condition given by (15) holds true in Eq. (A28).

To enforce this condition, we can apply (A25) at r ! Ro and use boundary condition (15) to get

0 ! Ri# $

$r !p(

) "$
Ri'&

'
1
4 #Ro

2!1 )
Ro

2

Ri
2" ) 3#Ro

2 ) Ri
2$$!$wd

$z "2

'
Bd

2 #Ro
2 ) Ri

2$ ) &
Ri'&

Ro #r
$2

$z2 !p(

) "$ dr.

#A29$

Substituting from (A23), we can rewrite (A29) as
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&
0

Ri)&

#r
$2

$z2 !p(

) "$ dr ' &
Ri'&

Ro #r
$2

$z2 !p(

) "$ dr ! #Bi!Ri
2

2 " '
Bo

2 #Ro
2 ) Ri

2$$
)

3Ri
2

4 !$wi

$z "2

'
1
4 #Ro

2!1 )
Ro

2

Ri
2" ) 3#Ro

2 ) Ri
2$$!$wo

$z "2

) Ri# wo ) wi

1 ' !$Ri

$z "2$*#!$"r

$z "
r̂
$

Ri'&

' #!$"r

$z "
r̂
$

Ri)&

+

) Ri

$Ri

$z % #wo ) wi$!$wo

$z
'

$wi

$z " '
g
*0

1#*("$o ) #*("$i2

1 ' !$Ri

$z "2 ) .

#A30$

Enforcing (A30) is a way to insure that the boundary
condition given by (15) is true. We cannot enforce
(A30) by choosing the value of Ro, because Ro would
then vary with height, and that would conflict with our
assumption that Ro is independent of height. We cannot
enforce (A30) by choosing the value of Ri, because Ri is
already determined by the cloud model. It appears that
the only way to enforce (A30) is by using it to deter-
mine the quantity on its lhs; that is,

&
0

Ri)&

#r
$2

$z2 !p(

) "$ dr ' &
Ri'&

Ro #r
$2

$z2 !p(

) "$ dr.

APPENDIX B

Derivation of Pressure Parameterization for the
u!u! and w!w! Equations for the Clear

Convective Case

The expressions needed for the u+u+ and w+w+ equa-
tions are

$

$t
u(u( 7 )2

u(

)

$p
$x

and
$

$t
w(w( 7 )2

w(

)

$p
$z

. #B1$

For the plume case, we can write

$p
$x

!
$p
$r

cos# and U( ! u( cos#, #B2$

where & is the angle between the radial vector and the
x axis and U+ is the total perturbation wind vector. This
allows us to write (B1) as

$

$t
u(u( 7 )2

U(

)

$p
$r

cos2#. #B3$

We know ,p+/,r for the updraft and downdraft from
Eqs. (A3) and (A25), respectively. We can derive an
expression for U+ if we use the continuity equation for
axisymmetric motion (see LR05),

1
r

$

$r
#rU($ ! )

$

$z
w(. #B4$

Integrating (B4) in r, we get

U( ! )
r
2

$wu

$z
for r ' Ri #B5$

and

U( !
1
2r

#Ro
2 ) r2$!$wd

$z " for Ri % r ' Ro. #B6$

We can express the rhs of (B3) using

u(

)

$p
$x

!
U(

)

$p
$r

cos2# !
1

+Ro
2 ,&

0

Ri

&
0

2+

U(

)

$p
$r

' &
Ri

Ro

&
0

2+

U(

)

$p
$r- cos2# d#r dr. #B7$
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Using (A3), (A25), (B5), and (B6), in (B7) and integrating in & and r, we get

u(

)

$p
$x

!
1
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2*)Ri
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16 !$wu

$z "#Bu )
3
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$z "2$'
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'

1
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4
'

3Ri
4

4 "3

) !Ro
6
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2Ri
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Ri
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Bd

16Ro
2 !$wd

$z "1Ro
4 ) Ri

42

)
1

R0
2%&

0

Ri

r
2 !$wu

$z "'&
0

r

r
$2

$z2 !p
)" dr( dr) '

1
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2%&

Ri

Ro

#r2 ) Ro
2$

2 !$wd

$z "' &
#Ri'&$

r

r
$2

$z2 !p
)" dr( dr) .

#B8$

APPENDIX C

Horizontal Solution for the Pressure in the
Roll Case

a. The updraft and downdraft

We begin by radially integrating Eq. (40) over the
updraft region, using the expression given by (36) for
u(x). We also use the mass-flux assumption that the
vertical velocity and potential temperature are horizon-
tally uniform within the updraft. We can then write (40)
for the updraft as

$2

$x2 !p(

) " ! )2!$wu

$z "2

' Bu )
$2

$z2 !p(

) "
for x0 % x % x1. #C1$

Integration of (C1) from x ! x0 ' 0 to x ! x gives

$

$x !p(

) " ! # $

$x !p(

) "$x0'&

' #x ) x0$#)2!$wu

$z "2

' Bu$
) &

x0'&

x

$2

$z2 !p(

) " dx for x0 % x % x1.

#C2$

Here we allow the possibility that (,/,x)(p+/-) is discon-
tinuous at the updraft–downdraft boundary. Integrat-
ing a second time gives

p(

)
! !p(

) "x0

' #x ) x0$# $

$x !p(

) "$x0'&

'
#x ) x0$2

2

3 #)2!$wu

$z "2

' Bu$
) &

x0'&

x

' &
x0'&

x

$2

$z2 !p(

) " dx( dx for x0 % x % x1.

#C3$

In (C3), we have written (p+/-)x0 rather than (p+/-)x0'0,
since the pressure must be continuous.

For the downdraft, corresponding to (C2), we have

$

$x !p(

) " ! # $

$x !p(

) "$x1'&

' #x ) x1$

3 #)2!$wd

$z "2

' Bd$) &
x1'&

x

$2

$z2 !p(

) " dx

for x1 % x % x2 , #C4$

and corresponding to (C3)

p(

)
! !p(

) "x1

' #x ) x1$# $

$x !p(

) "$x1'&

'
#x ) x1$2

2

3#)2!$wd

$z "2

' Bd$) &
x1'&

x

' &
x1'&

x

$2

$z2 !p(

) "dx(dx

for x1 % x % x2. #C5$

A special case of (C2) is
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# $

$x !p(

) "$x1)&

! # $

$x !p(

) "$x0'&

' Lu#)2!$wu

$z "2

' Bu$
) &

x0'&

x1)&

$2

$z2 !p(

) " dx, #C6$

where Lu is defined by (32). Similarly, a special case of
(C3) is

!p(

) "x1

! !p(

) "x0

' Lu# $

$x !p(
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'
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2
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x

$2

$z2 !p(

) " dx( dx. #C7$

A special case of (C4) is

# $

$x !p(

) "$x0)&

!

# $

$x !p(

) "$x1'&

' Ld#)2!$wd

$z "2

' Bd$
) &

x1'&

x2)&

$2

$z2 !p(

) " dx. #C8$

Here we have used the periodicity of the rolls to replace
[(,/,x)(p+/-)]x2)0 by [(,/,x)(p+/-)]x0)0. Finally, a special
case of (C5) is

!p(

) "x0

! !p(

) "x1

' Ld# $

$x !p(

) "$x1'&

'
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2
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) &
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x

$2

$z2 !p(

) " dx( dx. #C9$

Adding (C7) and (C9), we find that

2*Lu# $

$x !p(

) "$
x0'&

' Ld# $

$x !p(

) "
x1'&

$+ !

' 2#!Lu

$wu

$z "2
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' #C ' D$, #C10$

where

C ( 2 &
x0'&

x1)&

' &
x0'&

x

$2

$z2 !p(

) " dx( dx and

D ( 2 &
x1'&

x2)&

' &
x1'&

x

$2

$z2 !p(

) " dx( dx. #C11$

Equation (C10) will be used later.
Note that it is not possible to solve for either (p+/-)x0

or (p+/-)x1
without further information; only their dif-

ference is determined. To complete the solution, we
assume that the domain average of the perturbation
pressure is zero; that is,

&
x0'&

x1)&

p dx ' &
x1'&

x2)&

p dx ! 0. #C12$

Substitute into (C12) from (C3) and (C5):
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x
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$x !p(
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'
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3
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x1'&

x
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#C13$

Adding (C6) and (C8) gives
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0 ! *# $

$x !p(
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) # $
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) # $
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+ ) 2#Lu!$wu

$z "2

' Ld!$wd

$z "2$
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x1)&

$2

$z2 !p(
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x2)&

$2

$z2 !p(

) " dx(. #C14$

b. The updraft–downdraft boundary

The horizontal pressure gradient can be discontinuous
at the updraft–downdraft boundary when the boundary
is tilted. In addition, vertical derivatives can be infinite
at the boundary when it is tilted. Thus, in order to
integrate the pressure equation [Eq. (40)] across this
boundary, we introduce the coordinate transformation

! $

$z"x
! ! $

$z"x̂
)

$x1

$z ! $

$x", #C15$

where x̂ ( x ) x1(z) is defined so that it is independent
of height along the boundary. Using (C15) applied to u,
w, and ., and referring to (11) and (35), we can rewrite
(40) as
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#C16$

We also need to deal with the [(,2/,z2)(p+/-)]x term on the lhs of (C16). Using (C15) for this term and substituting
the result into the lhs of (C16), we rearrange to obtain
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$
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$z !p(

) "$
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+. #C17$

We can now do the integral across the boundary. The only terms that make finite contributions to the integral are
the ones that involve (,w/,x) and (,.+% /,x). The terms involving (p+/-) on the second line of the rhs of (C17) do not
contribute because (p+/-) is continuous across the boundary. We obtain

#1 ' !$x1

$z "2$*# $

$x !p(
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) # $
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g
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The integrand of the integral in (C18) now has the form of a delta function times a step function. Evaluating the
integral and using wx1)0 ! wu, wx1'0 ! wd, (.+%)x1)0 ! (.+%)u, and (.+%)x1'0 ! (.+%)d, we find, after rearranging, that
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g
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The corresponding result for the x0 boundary can be obtained by using a suitably altered definition of x̂, and is very
similar to (C19):
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We can now use (C19) and (C20) in (C14), to obtain
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This can only be interpreted as a constraint on 5x1)0
x0'0(,2/,z2)(p+/-) dx ' 5x2)0

x1'0(,2/,z2)(p+/-) dx. Substituting from
(C6) into (C19) and from (C8) into (C20), we obtain, respectively,
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Subtracting (C23) from (C22) gives a nice symmetrical form:
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where
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Equation (C24) can be combined with (C10) to solve for the two unknowns [(,/,x)(p+/-)]x1'0 and [(,/,x)(p+/-)]x0'0.
Multiply (C24) by Lu, add to (C10), and simplify to obtain

2# $

$x !p(

) "$x1'&

! 2
Lu

2

L #2!$wu

$z "2

) Bu$)
Ld#Lu ) Ld$

L #2!$wd

$z "2

) Bd$'
1
L

#C ' D$ '
Lu

L
#E ) F$

'
Lu

L
#wu ) wd$'%#!

$u
$z"x̂

$
x1'&

' #!$u
$z"x̂

$
x1)&

1 ' !$x1

$z "2 ) ' %#!
$u
$z"x̂

$
x0'&

' #!$u
$z"x̂

$
x0)&

1 ' !$x0

$z "2 )(
'

Lu

L '
$x1

$z

1 ' !$x1

$z "2 '

$x0

$z

1 ' !$x0

$z "2(*#wu ) wd$!$wu

$z
'

$wd

$z " '
g
*0

1#*("$u ) #*("$d2+. #C26$

Similarly, multiply (C24) by Ld, subtract from (C10), and simplify to obtain
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We can now substitute (C26) and (C27) into (C5) and (C3), respectively, to get
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Evaluating the (single) integrals, we get
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Substituting (C26) and (C27) into (C29), this equation
can be solved for the (p+/-)x0'0, the only unknown
left. We now have known expressions for (p+/-)x0'0,
[(,/,x)(p+/-)]x0'0, and [(,/,x)(p+/-)]x1'0, and thus, the
total solution for the pressure as a function of x and z
[given by Eqs. (41) and (42)] is known.

APPENDIX D

Implementation Method for the Axisymmetric
Free Convective Case

The solution for the pressure is given by Eqs. (21)
and (22). These equations contain the unknowns p+(0)

and (,p/,r)Ri'0. The solution for p+(0) is given by Eq.
(24) and contains the additional unknown (p)Ri'0. The
solution for (p)Ri'0 term is given by Eq. (A8) if we use
boundary condition (16). The solution for (,p/,r)Ri'0 is
given by Eq. (A23).

To solve this complex set of equations, we do the
following steps:

1) Neglect all terms that contain double integrals of p
and double derivatives with respect to z. This in-
cludes the last term in Eq. (21), the last three lines of
Eq. (22), the last two lines of Eq. (24), the last term
on the first line of (A23), and the last three terms of
Eq. (A8). Once these are set to zero, the equations
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contain only known quantities and can be solved
directly for the pressure, p.

2) Integrate the expression we get for the pressure and
evaluate the integral terms that we initially ne-
glected.

3) Evaluate the double derivative terms (that we ne-
glected) using the finite difference methods dis-
cussed in section 2a.

4) Plug the values obtained from steps 2 and 3 back
into Eqs. (21), (22), (24), (A8), and (A23), and re-
solve the equations.

5) Iterate by going back to step 2 until the solution
converges.
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