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1-Hybrid isentropic-sigma vertical coordinate and governing equations 
in the free atmosphere 

  
 This section describes the equations in the free atmosphere of the model.  We first 
discuss the generalized vertical coordinate and describe the -  hybrid vertical coordinate 
selected for the model.  Then we introduce the vertical mass flux equation unique for 
such a generalized vertical coordinate and briefly discuss the upper and lower boundary 
conditions.  We next describe the vertical grid and vertical discretization in the free 
atmosphere.   The equations governing the dry dynamics closely follow Konor and 
Arakawa (1997).  

 

1.1 Vertical coordinate 
 
The vertical coordinate is defined by  
 
  F ,( )  (1) 
and 
 
  G p, pB( ) . (2) 
 
Since  is the vertical coordinate, it is required that F ,( )  be a monotonic function of 
height.  Here we select F as a monotonically increasing function of height and, therefore, 
the most straightforward choice for G is the same.  Now we make the following choice 
 
  F ,( ) f ( ) + g( )  (3) 
 
and 
  g( ) go 1 e( ) , (4) 

 
where 
  go 1 1 e T( )  (5) 

 
Equations (4) and (5) yield g T( ) =1  where T = G pT , pB( )  at the top of the atmosphere 

pT  = constant and g B( ) = 0  at the bottom of the free atmosphere (or at the PBL-top). 
Note that the function g( )  smoothly and exponentially approaches to 1 with height.  
The rate of approach is controlled by the constant , which is currently 10. 
 
 Requiring F > 0  guaranties the monotonousness of  with height, which 
requires df d + dg d + g > 0  from (3).  Since g > 0  and d g d > 0  between 

T  and B , we can satisfy the requirement by replacing  and d d  with their 
unreachably small values min  and d d( )

min
, respectively.  Then we write  
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d f
d

+ min

d g
d

+ g
g 

 

 

 
min

= 0 . (6) 

 

In (6), 
d g
d

= go e = go g( )  and 
d f
d

, where f is the unknown.  By vertically 

integrating (6) with respect to , we obtain 
  

  f ( ) =
 

 

 

 
min

go T( )
1
g 1( )

 

  
 

  
( )min g 1( ) , (8) 

 
where we used f T( ) = 0  and g T( ) = 1.  Using (3), (4) and (8) in (1), we obtain an 
expression for the vertical coordinate as 
 

  F ,( ) = ( )min + ( )min[ ]g  

 

 

 
min

go T( )
1
g 1( )

 

  
 

  
. (9) 

 
Definition for G p, pB( ) : 
 
 So far no specific definition is needed for G p,pB( ) .  Here we discuss a couple 

of choices for G p,pB( ) .  An obvious choice for G p,pB( )  is a linearly decreasing 
function of p, which can be written as 

  G p,pB( )
pB p
pB pT

. (10) 

 
Since this expression is very simple and straightforward, we use it in the development 
stage of the model.  With (10), the partial derivatives become 
 

  

G

p

 

 
 

 

 
 
pB

=
1

pB pT

G
pB

 

 
 

 

 
 
p

=
p pT
pB pT( )

2

 

 

 
 

 

 
 

 . (11) 

 
However, when (10) is used, dependency of  on pB does not vanish completely in the 
middle and upper model atmosphere, which is not desirable in a GCM with a variable 
PBL since it may cause excessive vertical dissipation of moisture and tracers.  In the next 
subsection, we discuss a different expression for G p,pB( ) , which limits the dependency 
of  on pB near the PBL top and eliminates it entirely in the middle and upper model 
atmosphere. 
 
A new definition for G p, pB( ) : 
 
 To define G , we first define 
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G1 p, pB( )
pB0 pC
pB 0 pT

 

 
 

 

 
 
pB p
pB pC

       for pB p pC ,  (12) 

 
where pC  is a constant pressure, maybe chosen slightly 
smaller then a possible minimum of pB ,   pC = pS - 200mb  is a 
reasonable selection, and pB 0  is a standard constant value of 
pB . Then 

 

  G2 p( )
pB 0 p
pB0 pT

    for  pC p pT  . (13) 

 
Now for simplicity, we define 

  ˜  
pB p
pB pC

. (14) 

 
 By using (14) in (12) and (13), we respectively write  
 

  G1
˜  ( )

pB 0 pC
pB 0 pT

˜     for   0 ˜  1 (15) 

and 
 

  G2
˜  , pB( )

pB0 pB
pB 0 pT

+
pB pC
pB 0 pT

˜      for  1 ˜  
pB pT
pB pC

 (16) 

 
Now we require that 
 

  
G
˜  

= a
G1

˜  
+ b

G2

˜  
, (17) 

 

with a + b =1.  We select a
1
2

1 tanh ˜  ˜  C( )[ ]{ }  and it results in 

b
1
2

1+ tanh ˜  ˜  C( )[ ]{ } .  With this choice, we satisfy the following 

 

 
G
˜  

G1

˜  
  as  ˜  0 ,      (18) 

  

 
G
˜  

G2

˜  
  as  ˜  

pB pT
pB pC

       (19) 

and 
 

 
G
˜  

=
1
2

G1

˜  
+

G2

˜  
 

 
 

 

 
 
  for  ˜  = ˜  C .    (20) 

λ

G

G2

G1

pT

pC

pB

p

0 1

λ ≡

pB0 - pC

pB0 - pT

λ

G

G2

G1

G

pT

pC

pB

p

0 1

λ ≡

pB0 - pC

pB0 - pT
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We can satisfy (17) by 
 

 
  

G p, pB( )
1
2
pB0 pC
pB 0 pT

pB p
pB pC

1
nCosh

pC p
pB pC

 

 
 

 

 
 

 

 
 
 

 

 
 
 
 

     +
1
2
pB pC
pB0 pT

pB p
pB pC

+
1
nCosh

pC p
pB pC

 

 
 

 

 
 

 

 

 
 

 

 

 
 
+ C ,      (21) 

 
where we choose  

  C
1
2

nCosh( )
pB pB0
pB0 pT

 

 
 

 

 
  (22) 

 
to satisfy G = 0  for p = pB .  Equations (21) and (22) yield 
 

  
G
p

 

 
 

 

 
 

pB

1
2
pB0 pC
pB0 pT

1
pB pC

+
1

pB pC
tanh

pC p
pB pC

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

                           +
1
2
pB pC
pB0 pT

1
pB pC

1
pB pC

tanh
pC p
pB pC

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 (23) 

 
and 
 

  
G
pB

 

 
 

 

 
 
p

1
2
pB0 pC
pB 0 pT

pC p

pB pC( )
2 1 + tanh

pC p
pB pC

 

 
 

 

 
 

 

 
 
 

 

 
 
 
 

 
  

+
1
2

1
pB0 pT

1+
1
nCosh

pC p
pB pC

 

 
 

 

 
 

pC p
pB pC

tanh
pC p
pB pC

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

  
  

1
2 pB0 pT( )

nCosh ( )  (24) 

 

 

1.2- Generalized vertical mass flux equation 
 
 Since  is the vertical coordinate of the model, we require 
 

  0 =
t

 

 

 

 
F ,( ) . (30) 

Then using (1) and (2) in (30), we obtain 
 

  0 =
F 

 

 

 t
 

 

 

 
+

F 

 

 

 t
 

 

 

 
. (31) 
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In (31), t( )  can be obtained from (2) as 

 

  
t

 

 

 

 
=

G
p

 

 
 

 

 
 

pB

p
t

 

 

 

 
+

G
pB

 

 
 

 

 
 

p

pB
t

 

 

 

 
. (32) 

 
Using (32), equation (31) can be rewritten as 
 

  0 =
F 

 

 

 t
 

 

 

 
+

F 

 

 

 

G
p

 

 
 

 

 
 

pB

p
t

 

 

 

 
+

F 

 

 

 

G
pB

 

 
 

 

 
 

p

pB
t

 

 

 

 
. (33) 

 
The thermodynamic equation for the system is 
 

  
  t

 

 

 

 
= v ˙  +

Q
. (34) 

 
The pressure tendency and surface pressure tendency equations for the system are 
 

  
p
t

 

 

 

 
= mv( ) d

= T

+ m ˙  ( )  (35) 

 
and 

  
  
pB
t

= mv( )d
= T

B

+ m ˙  ( )
B

, (36) 

 
respectively.  By using (34), (35) and (36) in (33), the equation that determines the 
generalized vertical mass flux can be obtained as 
 

  
F 

 

 

 
m

F 

 

 

 

G
p

 

 
 

 

 
 

pB

 

 
 

  

 

 
 

  

˙  =
F 

 

 

 
v +

Q 
 
 

 
 
 
 

  +
F 

 

 

 

G
p

 

 
 

 

 
 
pB

mv( ) d
= T

 

  
 

  
+

G
pB

 

 
 

 

 
 
p

mv( )d
= T

B

+ m ˙  ( )
B

 

  
 

  

 

 
 

  

 

 
 

  
. (37) 

 
The vertically discrete version of the generalized vertical mass flux equation (37) will be 
discussed later in this text. 

 

1.3 Upper and Lower boundary conditions 

 

 The upper boundary (upper most interface, T ) is an isentropic surface 

( T T = constant ).  We assume that pT = constant  and m˙  ( )
T

= 0  {i.e. 
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˙  T =
Q 
 

 

 
T

= 0}.  The lower boundary (lowest interface, B ), which coincides with the 

PBL top, is a sigma type, B = f B( ) = constant .  The vertical mass flux m˙  ( )
B
 is 

primarily determined from PBL top entrainment/detrainment and cumulus mass flux from 

PBL into cumulus clouds. 

 

1.4 Vertical grid in the free atmosphere 

 

  

l

l+1/2

l-1/2

1/2

1

L+1/2

L

L-1/2

L-1

L+1/2

L+1

L+3/2

m

   θ   q   m~

   θ   q   m~

   θ   q   m~

m

m

m

  θFA  qFA  mFA~

   θ   q   m~

  θBL  qBL  mBL~

   θ   q   m~

m

Vertical Structure of the Model in the Free Atm.

Q  C

Q=0

Q  C

Q  C

QFA  CFA

QBL  RBL 

Q  R

B

T

ζ

ζ

ζ

ζ
B

ζ

ζ
∼

ζ=0

ζ
∼

ζ
B

ζ
∼

ζ
∼

ζ
∼

ζ
B

ζ
B

B

ζ  p=p
T

ζ  p

ζ  p

ζ  p

ζ  p

ζ  p

ζ  p

M+1/2S

F
re

e
 A

tm
o
s
p
h
e
re

P
B

L

ζ=0  
  Fig. 1. Vertical grid used in the discretization. 
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1.5- Vertically discrete equations in the free atmosphere 

 
1.5.a. Mass continuity equation 
 
 The vertically discrete version of the mass continuity equation applied to the 
model layers within the free atmosphere is given by 
 

  
    

m
t

+ mv( ) +
1

( )
m ˙  ( )

+1 2
m ˙  ( )

1 2

 

  
 

  
= 0     for  

  
= 1,2,..,L , (38) 

 
where  
 

  

m p( ) ( )

p( ) p +1 2 p 1 2

( ) +1 2 1 2

 

 

  

 

 
 

  for   = 1,2,...,L , (39) 

 

and 
    
m˙  ( )

+1 2
 is the vertical mass flux carried at the interfaces of the model layers.  We 

assume that, at the top of the atmosphere, 
  
m˙  ( )

1 2
= 0 .  The vertical mass flux at the 

PBL-top, 
  
m˙  ( )

L +1 2
, where L +1 2  and B are interchangeable, is determined by 

entrainment/detrainment parameterization.  The vertically discrete pressure tendency 
equations can be obtained by vertically summing (38) with (39) as 

 

  

    

p +1 2

t
= mkv k( )( )

k
k=1

+ m ˙  ( )
+1 2

for = 1,2,...,L 40.a( )

pB
t

= mkvk( )( )
k

k=1

L

+ m ˙  ( )
B
, 40.b( )

 

 

 
 

 

 
 

 

 
where we assumed that pT t( ) = 0 , where subscript 1 2  and T  are interchangeable. 

 
1.5.b. Thermodynamic equation 
 
 The vertically discrete version of the thermodynamic equation within the free 
atmosphere applied to the interfaces of the model layers are given by 
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1 2

t
= 0 41.a( )

+1 2

t
+ v( ) +1 2 +

 

 
 

 

 
 

+1 2

˙  +1 2 = Q( )
+1 2

for = 1,2,...,L 1 41.b( )

L+1 2

t
+ vL L+1 2 + ˙  

 

 
 

 

 
 
L+1 2

= Q( )
L+1 2

41.c( )

 

 

 
 
 
 

 

 
 
 
 

. 

 
Equation (41.a) is a result of choosing the upper boundary placed on an isentropic 
surface.  In (41.b) and (41.c), 
 

    
v( ) +1 2

+1m +1( )
+1

v +1 + m ( ) v

+1m +1( )
+1

+ m ( )

 

 

 
 

 

 

 
 

+1 2 for  = 1,2,...,L 1, (41.d) 

 
 

 
 

 

 
 

+1 2

m +1 2 +1 2 +1( )
1

2 +1m +1( )
+1

+ m ( )[ ]
for = 1,2,...,L 1 , (41.e) 

 
where 

  

  

+1 2p +1 2 1 2p 1 2

+1( ) p +1 2 p 1 2( )
1

2 +1 2 + 1 2( )

 

 

 
 

 

 
 

  for = 1,2,...,L , (41.f) 

 

  

  

˙  
 

 
 

 

 
 
L+1 2

1

mL+1 2 ( )
L+1 2

FA
ˆ  L+1 2 L+1 2( ) m ˙  ( )

L+1 2
+ L+1 2 L( ) m ˙  ( )

L

 

  
 

  
, (41.g) 

 

  

ˆ  L+1 2 L+1 2 if m ˙  ( )
L+1 2

< 0

ˆ  L+1 2 L+1 2
BL if m ˙  ( )

L+1 2
> 0

 

 
 

 
 
. (41.h) 

 
 
In (41.h), superscript BL denotes values from the upper most level of the PBL, which is 

also indexed by L +1 2 .  In the equations above, we use     +1 2 c p p +1 2 po( )  and, if it 

is necessary, 
  
p po c p( )

1

. 

 
 When we consider condensation process only, heating Q can be written as  
 
  

  
Q

+1 2 = LC +1 2 . (42) 



Celal S. Konor  Release 1.1     3/21/08  

9 

 
 
1.5.c. Vertical mass flux equation for temporally- and vertically-discrete system 
 
 
 Let us define , p and pB  as the deviation of respected variables due to 
horizontal advection and physical processes at models grid points.  Note that a significant 
portion of pB  is due to PBL-top entrainment.  Then we define 
 
  F( ) = F + ,p + p, pB + pB( ) F , p, pB( ) . (43) 
 
Since F  remains unchanged on  surfaces, F( )  must be compensated by the vertical 
advection, therefore, 
 

  F( ) + t( )
F 

 

 

 

G
p

 

 
 

 

 
 
pB

m ˙  t( )
F 

 

 

 

 

 
 

 

 
 ˙  = 0 , (44) 

 
where t( )  is the time step.  From (44), we obtain the vertical mass flux equation for the 
time-discrete case 
 

  m ˙  =
F( )

t( )
F 

 

 

 

1
m

 

 
 

 

 
 t( )

F 

 

 

 

G
p

 

 
 

 

 
 
pB

. (45) 

 
The solution of (45) requires iteration.  During the iteration,  and p  change following 

t( ) = ( ) ˙   and p t( ) = m ˙  , respectively.  ( ) , which is calculated from 
+  and p + p, and the PBL-top pressure (= pB + pB ) remain unchanged Iteration 

continues until calculated m ˙   becomes virtually zero.  Then the vertical mass flux is 

determined from m ˙  = pfinal pinitial( ) t( ) , where pfinal  and pinitial  ( p + p) are the 

pressure at the end and at the beginning of the iteration, respectively.  In the vertically 
discrete system, the vertical mass flux equation (45) is applied at the model interfaces. 
( )  must be consistent with the vertical finite difference term in the discrete 
thermodynamic equation given by (41e) and 41g).   
 
 
1.5.d. Moisture equation 
 
 At the upper most interface of the model, the equation that predicts the mass-
weighted water vapor mixing ratio is written as 
 

  
  

qm( )1 2

t
= qmv( )1 2

1

( )1 2

qm ˙  ( )
1

mC( )1 2 , (46) 
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where q  is the water vapor mixing ration and 
 
  qm( )1 2 q1 2m1 , (47a) 

    m1 2 m1, (47b) 

  ( )
1 2

( )
1
, (47c) 

  
  
qmv( )1 2 q1 2m1v1 , (47d) 

  
  
qm ˙  ( )

1

1
2
q3 2 m ˙  ( )

3 2
. (47e) 

 
Within the free atmosphere, the equation that predicts the mass-weighted water vapor 
mixing ratio is written as 
 
 

  
    

qm( )
+1 2

t
= qmv( )

+1 2

1

( )
+1 2

qm ˙  ( )
+1

qm ˙  ( )[ ] mC( ) +1 2 , (48) 

 
where 
 
  qm( )

+1 2 q +1 2m +1 2 , (49a) 

  
    
m +1 2

1
2( )

+1 2

( )
+1 m +1 + ( ) m[ ] , (49b) 

  
  

( )
+1 2

1
2
( )

+1
+ ( )[ ] , (49c) 

  
    
qmv( )

+1 2

q +1 2

2( )
+1 2

( )
+1 m +1v +1 + ( ) m v[ ], (49d) 

 
 

Definitions of 
    
qm ˙  ( )  will be discussed in more detail later in this text.  For convenience 

in the early versions of the model, we used 

    
qm ˙  ( )

1
2
q +1 2 m ˙  ( )

+1 2
+ q 1 2 m ˙  ( )

1 2

 

  
 

  
.  With this definition the vertical moisture 

advection scheme becomes a second-order centered finite differencing when m ˙   is 
uniform and  is constant.  Such a centered scheme may produce large dispersion errors 
and it cannot accurately represent the PBL-Free Atmosphere mass exchange process.   
 
 At the lower most interface of the free atmosphere, the equation that predicts the 
mass-weighted water vapor mixing ratio is written as 
 
 
 



Celal S. Konor  Release 1.1     3/21/08  

11 

qm( )
L +1 2

FA

t
= qmv( )

L +1 2

FA 1

( )
L +1 2

FA
ˆ q L +1 2 m˙  ( )

L +1 2
gMB

 

  
 

  
+ qL +1 2

BL gM B qm˙  ( )
L

 
 
 

 
 
 
 

    mC( )L+1 2 , (50) 

 
where 
 

  
  
qm( )

L+1 2

FA
qL+1 2
FA mL , (51a) 

    mL+1 2
FA mL , (51b) 

  ( )
L+1 2

FA 1
2
( )

L
, (51c) 

  
  
qmv( )

L+1 2

FA
qL+1 2
FA mLvL . (51d) 

 
In (50), we used upstream treatment for exchange associated with MB.  The mass-
weighted vertical mass flux at the lowest layer of the model is given by 

  
qm ˙  ( )

L

1
2

ˆ q L +1 2 m ˙  ( )
L +1 2

+ qL 1 2 m ˙  ( )
L 1 2

 

  
 

  
, where 

 

  
ˆ q L +1 2 qL +1 2

FA if m˙  ( )
L +1 2

gMB < 0

ˆ q L +1 2 rL +1 2
BL if m˙  ( )

L +1 2
gMB > 0

 

 
 

 
 
. (52) 

 

Following the argument above, the expression for 
  
qm ˙  ( )

L
 is modified to better represent 

the PBL-Free Atmosphere mass exchange process.  This will be discussed later in this 
text. 
 
1.5.e. Vertical moisture fluxes 
 
 To calculate the vertical moisture fluxes at the layers, we will rewrite (48) by 
omitting horizontal advection and diabatic terms as   
 

  
  

mq( )
+1 2

t
=

1

( )
+1 2

qm ˙  ( )
+1

qm ˙  ( )[ ]  (53) 

 
Following Hsu and Arakawa’s (1990) positive-definite scheme, we define the vertical 

mass fluxes if m ˙  ( )  is upward [ m ˙  ( )
+

m ˙  ( )  and m ˙  ( ) 0 ] by 

 

  

qm ˙  ( ) m ˙  ( )
+ q +1 2 + q 1 2

2
m ˙  ( )

+
+ q 1 2 q +1 2( ) m ˙  ( )

+

ˆ  + q +1 2 q + 3 2( ) 

 
 

 

 
  

   for     = 1,2,...,L 1      (54) 
and 
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  qm ˙  ( )
L

m ˙  ( )
L

+

ˆ q L +1 2 . (55) 

 

We define the vertical mass fluxes if m ˙  ( )  is downward [ m ˙  ( ) m ˙  ( )  and m ˙  ( )
+

0 ] 

by 
 

  

qm ˙  ( ) m ˙  ( )
q +1 2 + q 1 2

2
m ˙  ( ) q +1 2 q 1 2( ) m ˙  ( ) ˆ  q 1 2 q 3 2( ) 

 
 

 

 
  

   for     = 2,3,...,L     (56) 
 
and 
 

  qm ˙  ( )
1

m ˙  ( )
1
q1 2 . 

 
In (54) and (56), 
 
  = 2 9 , (57a) 
 
 

  
  

± 1+
1 2
2

 

 

 

 

±  (57b) 

 
 

  
  
ˆ 

 
±

1 ˆ  
± , (57c) 

 
 

  
  

+

= ˆ  +
P

+1 2
2

P
+1 2
2

+ q
+1 2q 1 2

 

 

 

 

 

 

 

 

2

     for     = 1,2,...,L 1 , (57d) 

 
 

  
  

= ˆ  
P 1 2

2

P 1 2
2

+ q
+1 2q 1 2

 

 

 

 

 

 

 

 

2

     for     = 2,3,...,L , (57e) 

 
 

  
  
P

+1 2 q
+ 3 2 2q

+1 2 + q 1 2 + , (57f) 

 
 

  
  
m ˙  ( )

+

m ˙  ( )
+

m ˙  ( )
+1

+

, (57g) 

 
and 
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m ˙  ( ) m ˙  ( ) m ˙  ( )

1
. (57h) 

 
In (57f),  is an infinitesimally small positive constant. 
 
1.5.f. Correction step of moisture prediction 
 
 In the time discrete case, the solution of the vertical advection scheme discussed 
above is subject to over and under shooting errors.  To minimize these errors, we 
employed a procedure, which is based on the principle that the advection process cannot 
generate new maximums and minimums in the field.  Prior to the vertical advection, we 
locally determine the upper and lower bounds of advected values by 
 
 

  

qmax( )
1 2

= Max q1 2,q3 2{ }

qmin( )
1 2

= Min q1 2,q3 2{ }

 

 
 

  

for m ˙  ( )
1

> 0

qmax( )
1 2

= qmin( )
1 2

= q1 2 for m ˙  ( )
1

< 0

 

 

 
 

 

 
 

, (58a) 

 
 

  
qmax( )

+1 2
= Max q +1 2,q + 3 2{ } for m ˙  ( )

+1
> 0

qmax( )
+1 2

= Max q +1 2,q 1 2{ } for m ˙  ( ) < 0

 

 
 

 
 
 for = 1, 2, , L 1, (58b)  

 
 

  
qmin( )

+1 2
= Min q +1 2,q +3 2{ } for m ˙  ( )

+1
> 0

qmin( )
+1 2

= Min q +1 2,q 1 2{ } for m ˙  ( ) < 0

 

 
 

 
 
 for = 1, 2, , L 1. (58c) 

 
In (58b) and (58c), qL+1 2 qL+1 2

FA .  At the lowest interface of the free atmosphere, the 

estimated max and min values are 
 

  
qmax( )

L+1 2

FA
= Max qL+1 2

FA ,qL+1 2
BL{ } for m ˙  ( )

B
> 0

qmax( )L+1 2

FA
= Max qL+1 2

FA ,qL 1 2{ } for m ˙  ( )
B

< 0

 

 
 

 
 
, (58d) 

 

  
qmin( )

L+1 2

FA
= Max qL+1 2

FA ,qL+1 2
BL{ } for m ˙  ( )

B
> 0

qmin( )L+1 2

FA
= Max qL+1 2

FA ,qL 1 2{ } for m ˙  ( )
B

< 0

 

 
 

 
 
. (58e) 
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In (58a-e), 

  
q

+1 2  (for 
  
= 0,1, 2, , L ) are pre-advection values.  Then, after the advection, 

we apply corrections.  Now let us first express 
  
q

+1 2  for 
  
= 0,1, 2, , L  as post-advection 

values.  Then the correction process can be summarized as follows 
 

 

If m˙  ( )
L+1 2

> 0 , 

 

  

If qL+1 2
FA

< qmin( )
L+1 2

FA
qL+1 2
FA = qmin( )

L+1 2

FA

qL+1 2
BL = q +1 2

BL qmin( )
L+1 2

FA
qL+1 2
FA[ ]mL+1 2

FA ( )L+1 2

FA
m( )L+1 2

BL

 

 
 

 
 

 

 

If m ˙  ( )
L

> 0 : 

If qL+1 2
FA

> qmax( )
L+1 2

FA
qL 1 2 = qL 1 2 + qL+1 2

FA qmin( )
L+1 2

FA[ ]mL+1 2
FA ( )

L+1 2

FA
mL 1 2 ( )

L 1 2

qL+1 2
FA = qmax( )

L+1 2

FA

 

 
 

 
 

 

 

For 
  
= L 1,L 2, ,1   and  if 

  
m ˙  ( ) > 0 , 

 

  

If q +1 2 > qmax( )
+1 2

q 1 2 = q 1 2 + q +1 2 qmin( )
+1 2[ ]m +1 2( )

+1 2
m 1 2 ( )

1 2

q +1 2 = qmax( )
+1 2

 

 
 

 
 

 

  
where qL+1 2 qL+1 2

FA . 
 

For = 1,2, ,L    and  if m ˙  ( ) > 0 , 

 

  

If q 1 2 < qmin( )
1 2

q 1 2 = qmin( )
1 2

q +1 2 = q +1 2 qmin( )
1 2

q 1 2[ ]m 1 2( ) 1 2
m +1 2( ) +1 2

 

 
 

 
 

 

 
   for 

  
= 1,2, ,L  

where qL+1 2 qL+1 2
FA . 

 

For 
  
= 1,2, ,L   and  if 

  
m ˙  ( ) < 0 , 

 

  

If q 1 2 > qmax( )
1 2

q 1 2 = qmax( )
1 2

q +1 2 = q +1 2 + q 1 2 qmax( )
1 2[ ]m 1 2( ) 1 2

m +1 2( ) +1 2

 

 
 

 
 

 



Celal S. Konor  Release 1.1     3/21/08  

15 

 
where qL+1 2 qL+1 2

FA . 
 

For 
  
= 1,2, ,L   and if 

  
m ˙  ( ) < 0 , 

If q +1 2 < qmin( )
+1 2

q 1 2 = q 1 2 qmin( )
+1 2

q +1 2[ ]m +1 2( )
+1 2

m 1 2( )
1 2

q +1 2 = qmin( )
+1 2

 

 
 

 
 

 

where qL+1 2 qL+1 2
FA .

 
    
During the correction process, no modification is made to the values if 

  
qmin( )

+1 2
q +1 2 qmax( )

+1 2   {i.e. 
  
q

+1 2 = q +1 2}. 

 
 
1.5.g. Momentum equation 
 
 The vertically discrete momentum equation applied to the model layers is given 
by 
 

  
    

v
t

+ v v + ˙  
v 

 
 

 

 
 = p( ) f kk v   for  

  
= 2,3,...,L , (59) 

 
where v is the horizontal velocity, f is the Coriolis parameter, k is the unit vertical vector.  
The vertical advection of momentum is defined by 
 

    

˙  
v 

 
 

 

 
 
1

1

2m1 ( )1

v 2 v1( ) m˙  ( )
3 2

60a( )

˙  
v 

 
 

 

 
 

1
2m ( )

v +1 v( ) m ˙  ( )
+1 2

+ v v 1( ) m˙  ( )
1 2

 

  
 

  
60b( )

for = 2, 3,...,L 1 60c( )

˙  
v 

 
 

 

 
 
L

1

mL ( )
L

v L +1 2 vL( ) m ˙  ( )
B

+
1

2
vL v L 1( ) m ˙  ( )

L 1 2

 

 
 

 

 
 60d( )

 

 

 
 
 
 
 

 

 
 
 
 
 

, 

 

where  v L+1 2 = v
B+

f
+ v L,v L 1( )  for 

  
m˙  ( )

B

< 0 , which is an extrapolation from above, 

and   v L+1 2 = v
B

f v L+ 2,v L+1( )  for 
  
m˙  ( )

B

> 0 , which is an extrapolation from PBL.  

Currently, we are using v
B
+ v

L
 and v

B
v

L+1 .   

 
1.5.h. Horizontal pressure gradient force 
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 The first term on the right hand side of (59) is the pressure gradient force given by 
 
  

  
p( ) = M + , (61) 

 
where the Montgomery potential is given by

  
M +  . 

 
 
1.5.i. Hydrostatic equation 
 
 The vertically discrete hydrostatic equation is given by  
 

  L = L+1 2 + L+1 2 L( ) L+1 2
FA  (62a) 

 
and 
 

  
  

1 = + 1 2( ) + 1 2 1( ) 1  for  
  
= L,L 1,...,1 . (62b) 

 
In (62a), B L+1 2  is obtained by vertically integrating hydrostatic equation within the 

PBL starting from the Surface. L+1 2
FA  is the predicted potential temperature at the lowest 

interface of the free atmosphere, which is also expressed as 
B+

 and B L+1 2  is the 

PBL-top Exner function.  The influence of the moisture on the geopotential height can be 
included in (62a) and (62b) by replacing the potential temperature by the virtual potential 
temperature given by   v 1 + 0.608q( ) .  The geopotential height at the interfaces can be 
calculated from  
 

  
  

1 2 = + 1 2( )   for  
  
= L,L 1,...,1 . (63) 

 
or 
 

  
  

+1 2 = +1 2( )   for  
  
= L,L 1,...,1 . (64) 
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2-Vertical discretization in the PBL 
 
 This section describes the vertical discretization in the PBL.  The PBL consists of 
multiple layers between the free atmosphere of the model and Earth’s surface.  A shared 
coordinate surface, referred as PBL-top, separates the free atmosphere from the PBL.  
The height of the PBL-top is predicted through a mass budget equation for the PBL.  The 
mass budget of the PBL is primarily controlled by the PBL-top entrainment and 
horizontal mass convergence within the PBL.  Konor and Arakawa (2000) discuss the 
rational behind the multi-layer PBL approach.  The vertical discretization within the PBL 
follows Arakawa and Konor (1996), which describe a sigma vertical coordinate model 
with a Charney-Phillips type vertical grid.  
 
 
2.1-Vertical coordinate in the PBL 
 
 A sigma type vertical coordinate is used in the PBL portion of model, which is given 
by 

  B 1 1( )
p pB
pS pB

 

 
 

 

 
 

 

 
 
 

 

 
 
 
 (65) 

 
with 

S
=

B
  and 0 < < 1.  The constant PBL mass is written by 

 

  
  
m

p
=
pS pB
B S

 (66) 

 
and p = pB +m B( ) .  
 
 In the model, we first prescribe y, p( )  field between pS y( )  and pT  to be used in the 

determination of the  coordinate.  Then we define pB y( )  to represent the initial PBL-
top. We then prescribe the function g( )  and obtain the corresponding f ( )  as discussed 
in subsection 1.a.  This gives us B  and, with a prescribed , S .  Form (65) and (66), 
we can obtain = p( )  and m, respectively, for the PBL.   
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2.2. Vertical grid in the PBL 
 

L+1/2

L

L-1/2

M+1/2

M

m+1/2

m-1/2

m

L+1/2

L+1

L+3/2

m

  θFA  qFA  mFA~

   θ   q   m~

  θBL  qBL  mBL~

   θ   q   m~

   θ   q   m~

   θ   q   m~

   θ   q   m~

m

m

m

Q  C

QFA  CFA

QBL  RBL   (Fψ)
B

Q  R

Q  R

Q  R

Q  R  (Fψ)
S

(Fψ)    Kψ

(Fψ)    Kψ

(Fψ)    Kψ

S

B

ζ

ζ
B

ζ

ζ

ζ

ζ

∼

ζ

∼

ζ

∼

ζ

∼

ζ
B

ζ
B

ζ
B

B

ζ  p

ζ  p

ζ  p

ζ  p

ζ  p

ζ  p

ζ  p ζ
S
=0

Lower Portion of the Vertical Grid
F

r
e

e
 A

tm
                            P

B
L

 
 
 
2.3. Vertically discrete equations in the PBL 
 
2.3.a. Continuity and Vertical mass flux Equations 
 
 The continuity equation within the PBL is given by 
 

  
m
t

=
1

( )
PBL

mv( )k
k=L+1

M

( )
k

+ m ˙  ( )
B

 

 
 

 

 
 . (67) 

 
Here we make following definitions 
 

  

p( )
m

pm+1 2 pm 1 2

p( )
PBL

pS pB

( )
m m+1 2 m 1 2

( )
PBL S B

 

 

 
  

 

 
 
 

, (68) 

 
where we used m as vertical index.  From (67) and (68), we can obtain pressure tendency 
equations within the PBL as 
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pm+1 2

t
=

pB
t

+ mv( )
k

( )
k

k=L+1

m

+ m ˙  ( )
m+1 2

m ˙  ( )
B

pS
t

=
pB
t

+ mv( )
k( )

k
k=L +1

M

m ˙  ( )
B

 

 

 
 

 

 
 

. (69) 

 
The PBL-top mass flux is determined from the entrainment/detrainment and cumulus 
mass flux by  
 

  
  
m˙  ( )

B
= g E MB( ) , (70) 

 

where negative E corresponds to detrainment.  A limiting procedure is applied to 
  
m˙  ( )

B
  

[or m˙  ( )
L+1 2

] to prevent the PBL to get very deep or shallow.  It is assumed that the 

limiting procedure modifies E while MB remains unchanged.  The equation that 
determines the vertical mass flux within the PBL is written as  
 

  
m ˙  ( )

m+1 2
=

S m+1 2( )
S B( )

m ˙  ( )
B

+
m+1 2 B( )
S B( )

mv( ) k
k=L +1

M

( )
k

mv( )k
k=L +1

m

( )
k
. 

   (71) 
 
 
2.3.b. Thermodynamic Equation 
 
At the lowest interface of the free-atmosphere (FA), the vertically discrete 
thermodynamic equation is written by 
 

  mL+1 2
L+1 2

t
+ mv( )L+1 2 L+1 2

 

 
 

 

 
 

FA

+ m˙  
 

 
 

 

 
 
L+1 2

FA

=
mQ( )

L+1 2

FA

L+1 2

, (72) 

 
where 

m˙  
 

 
 

 

 
 
L+1 2

FA
1

( )
L+1 2

FA
ˆ  L+1 2 L+1 2

FA( ) m˙  ( )
L+1 2

gMB
 

  
 

  
+ L+1 2

BL
L+1 2
FA( )gMB

 
 
 

 

  
  
+ L+1 2

FA
L( ) m˙  ( )

L
}  (73) 

 
and 

 
ˆ  L+1 2 L+1 2

FA if m˙  ( )
L+1 2

gMB < 0

ˆ  L+1 2 L+1 2
BL if m˙  ( )

L+1 2
gMB > 0

 

 
 

 
 
. (74) 
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In (73) and (74), we used upstream treatment for the exchange associated with MB.  On 
the other hand, at the Upper most interface of the PBL (BL), the vertically discrete 
thermodynamic equation is written by 
 

  
m L+1 2

t
+ mv( )L+1 2 L+1 2

 

 
 

 

 
 

BL

+ m˙  
 

 
 

 

 
 
L+1 2

BL

 

  
=

mQ( )
L+1 2

BL

L+1 2

g

( )
L+1 2

BL F( )
L+1 F( )

L+1 2[ ] + G( )
L+1 2 , (75) 

 
where 

 

  m˙  
 

 
 

 

 
 
L+1 2

BL
1

( )
L+1 2

BL L+1 L+1 2
BL( ) m˙  ( )

L+1
+ L+1 2

BL ˆ  L+1 2( ) m˙  ( )
L+1 2

gMB
 

  
 

  
 
 
 

 
 
 
.(76) 

 
 

  

  

mv( )
L+1 2

BL mvL+1 2
BL

vL+1 2
BL vL+1

( )
L+1 2

BL 1
2

( )
L+1

m˙  ( )
L+1

1

2
m˙  ( )

L+3 2
+ m˙  ( )

L+1 2

 

  
 

  

 

 

 
 
  

 

 
 
 
 

. (77) 

 
In (76), we used upstream treatment for the exchange associated MB.  Note that F  and 
G  in (75) represent turbulent fluxes and other PBL processes in the PBL.  They should 
not be mistaken by the functions used in the definition of the vertical coordinate in 
subsection 1.a and 1.b. 
 
 Within the PBL, the vertically discrete thermodynamic equation is written by 
 

m m+1 2

t
+ mv( )m+1 2 m+1 2

 

 
 

 

 
 + m˙  ( )

m +1 2

 

 
 

 

 
 
m +1 2

 

  
=

mQ( )
m +1 2

m+1 2

g
( )

m+1 2

F( )
m +1

F( )
m[ ] + G( )

m +1 2    for  m = L +1,L + 2, , M 1,(78) 

 
where 
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m˙  ( )

m +1 2

 

 
 

 

 
 
m +1 2

1

( )
m+1 2

m +3 2 m +3 2 m 1 2 m 1 2

2 m +1 2

pm +3 2 pm 1 2( ) m +1 2

2pm+1 2
m +1 2

 

 

 
 

 

 

 
 
m˙  ( )

m+1 2

 
   for  m = L +1,L + 2, , M 1, (79) 
 

  

mv( )
m +1 2

1

2( )
m +1 2

mv( )
m+1 ( )

m+1
+ mv( )

m ( )
m[ ]

( )
m +1 2

1
2

( )
m +1 + ( )

m[ ]

 

 

 
 

 

 
 

 for m = L +1,L + 2, , M 1, 

   (80) 
 
At the lowest interface of the PBL, the vertically discrete thermodynamic equation is 
written by 
 

  
m M+1 2

t
+ mv( )M+1 2 M+1 2  

  
=

mQ( )
M+1 2

M+1 2

g
( )

M+1 2

F( )
M+1 2 F( )

M[ ] + G( )
M+1 2 , (81) 

 
where 

 

mv( )
M+1 2 mvM+1 2

vM+12 vM

( )
M+1 2

1

2
( )

M

 

 

 
  

 

 
 
 

. (82) 

 
2.3.c. Moisture Equation 
 
 The moisture equation applied to the upper most interface of the PBL (BL) can be 
given by 
 

  

mq( )
L +1 2

t
+ qmv( )

L +1 2

 

 

 
 

 

 

 
 

BL

+
1

( )
L +1 2

BL qm˙  ( )
L +1

ˆ q L +1 2 m˙  ( )
L +1 2

gMB
 

  
 

  
+ qL +1 2

BL gM B

 
 
 

 
 
 

 

  

  
= mC( )L+1 2

g

( )
L+1 2

BL Fq( )
L+1

Fq( )
L+1 2

 

  
 

  
+ Gq( )

L+1 2
, (83)  

 
where   
 
  

    
qmv( )

L+1 2

BL
qL+1 2mvL+1 2

BL , (84a) 
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qm˙  ( )

L+1
qL+3 2 m˙  ( )

L+1
if m˙  ( )

L+1
> 0

qm˙  ( )
L+1

qL+1 2
BL m˙  ( )

L+1
if m˙  ( )

L+1
< 0

 

 
 

 
 

 (84b) 

 
and 
 

  
ˆ q L +1 2 qL +1 2

FA if m˙  ( )
L +1 2

gMB < 0

ˆ q L +1 2 qL +1 2
BL if m˙  ( )

L +1 2
gMB > 0

 

 
 

 
 
. (84c) 

 
Note that Fq  and Gq  in (83) represent turbulent fluxes and additional PBL processes in 

the PBL.  They are different from the functions used in the definition of the vertical 
coordinate in subsection 1.a and 1.b. The predicted qL+1 2

BL  is further corrected using a 

procedure similar to the one described for the free atmosphere. We will discuss this 
procedure later in this text. 
 
 The moisture equation applied to the interfaces within the PBL can be given by 
 

      

mq( )
+1 2

t
+ qmv( )

m +1 2
+

1

( )
m +1 2

qm ˙  ( )
m+1

qm ˙  ( )
m[ ]  

 = mC( )m +1 2

g
( )

m +1 2

Fq( )
m+1

Fq( )
m[ ] + Gq( )

m+1 2
, (85) 

where 
 

  
    
qmv( )

m+1 2

qm+1 2

( )
m +1 2

mvm+1( )
m+1 + mvm ( )

m[ ]  (86a) 

and 

  
qm˙  ( )

m
qm +1 2 m˙  ( )

m
if m˙  ( )

m
> 0

qm˙  ( )
m

qm 1 2 m˙  ( )
m
if m˙  ( )

m
< 0

 

 
 

 
 

. (86b) 

 
 

In (86b), m˙  ( )
m

1
2
m˙  ( )

m +1 2
+ m˙  ( )

m 1 2{ }  for m = L +1,L + 2, ,M 1 . The predicted q 

is further corrected using a procedure similar to the one described for the free 
atmosphere. We will discuss this procedure later in this text.  The moisture equation 
applied to the lowest interface of the PBL can be given by 
 

    

mq( )
M +1 2

t
+ qmv( )

M +1 2 +
1

( )
M+1 2

qM+1 2 m ˙  ( )
M+1 2

qm ˙  ( )
M
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= mC( )M+1 2

g
( )

M+1 2

Fq( )
M+1 2

Fq( )
M

 

  
 

  
+ Gq( )

M+1 2
 (87) 

 
where 

 
    
qmv( )

M+1 2 qM+1 2mvM (88a) 

 
and 
 

  
qm˙  ( )

M
qM+1 2 m˙  ( )

M
if m˙  ( )

m
> 0

qm˙  ( )
M

qM 1 2 m˙  ( )
M
if m˙  ( )

m
< 0

 

 
 

 
 

. (88b) 

 

In (88b), m˙  ( )
M

1
2
m˙  ( )

M 1 2
.  A correction procedure on the predicted qM+1 2  is 

discussed below. 
 
 
2.3.d. Correction step of moisture prediction 
 
 The estimated max and min values at the upper most level of the PBL are 
 

  
qmax( )

L+1 2

BL
= Max qL+3 2,qL+1 2

BL{ } for m˙  ( )
B

> 0

qmax( )L+1 2

BL
= Max qL+1 2

BL ,qL+1 2
FA{ } for m˙  ( )

B
< 0

 

 
 

 
 
, (89a) 

 

  
qmin( )

L+1 2

BL
= Max qL+3 2,qL+1 2

FA{ } for m˙  ( )
B

> 0

qmin( )L+1 2

BL
= Max qL+1 2

FA ,qL+1 2
BL{ } for m˙  ( )

B
< 0

 

 
 

 
 
. (89b) 

 
The estimated max and min values at the interfaces within the PBL are 
    

 
qmax( )

m +1 2
= Max qm +1 2 ,qm + 3 2{ } for m˙  ( )

m +1
> 0

qmax( )
m +1 2

= Max qm +1 2 ,qm 1 2{ } for m˙  ( )
m

< 0

 

 
 

 
 
 for m = L +1,L + 2, ,M 1 , 

   (89c)  
 

 
qmin( )

m +1 2
= Min qm +1 2 ,qm + 3 2{ } for m˙  ( )

m +1
> 0

qmin( )
m +1 2

= Min qm +1 2 ,qm 1 2{ } for m˙  ( )
m

< 0

 

 
 

 
 
 for m = L +1,L + 2, ,M 1 .  

   (89d) 
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In (89c) and (89d), qL+1 2 qL+1 2
BL .  At the lower boundary, the estimated max and min 

values are given by 
 

  

qmax( )
M+1 2

= qmin( )
M+1 2

= qM+1 2 for m˙  ( )
M

> 0

qmax( )
M+1 2

= Max qM+1 2,qM 1 2{ }

qmin( )
M+1 2

= Min qM+1 2 ,qM 1 2{ }

 

 
 

 
 

for m˙  ( )
M

< 0

 

 

 
 

 

 
 

 (89e) 

 

If m˙  ( )
M

> 0 : 

If qM+1 2 > qmax( )
M+1 2

qM 1 2 = qM 1 2 + qM+1 2 qmin( )
M+1 2[ ]( )

M+1 2
( )

M 1 2

qM+1 2 = qmax( )
M+1 2

 

 
 

 
 

 

 

For m = M 1,M 2, ,L +1  and  if m˙  ( )
m

> 0 , 

 

  

If qm+1 2 > qmax( )
m+1 2

qm 1 2 = qm 1 2 + qm+1 2 qmin( )
m+1 2[ ]( )

+1 2
( )

1 2

qm+1 2 = qmax( )
m+1 2

 

 
 

 
 

 

  
where qL+1 2 qL+1 2

FA . 

 
 

If m˙  ( )
L+1 2

> 0 : 

If qL+1 2
BL

> qmax( )
L+1 2

BL
qL+1 2
FA = qL+1 2

FA + qL+1 2
FA qmin( )

L+1 2

FA[ ]m( )
L+1 2

BL
mL+1 2
FA ( )

L+1 2

FA

qL+1 2
BL = qmax( )

L+1 2

BL

 

 
 

 
 

 

 
 

If m˙  ( )
L+1 2

> 0 , 

 

  

If qL+1 2
FA

< qmin( )
L+1 2

FA
qL+1 2
FA = qmin( )

L+1 2

FA

qL+1 2
BL = q +1 2

BL qmin( )
L+1 2

FA
qL+1 2
FA[ ]mL+1 2

FA ( )L+1 2

FA
m( )L+1 2

BL

 

 
 

 
 

 

 

For m = L +1, ,M 2,M 1  and  if m˙  ( )
m

> 0 , 
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If qm+1 2 < qmin( )
m+1 2

qm+1 2 = qm+1 2 + qm 1 2 qmin( )
m 1 2[ ]( )

m 1 2
( )

m+1 2

qm 1 2 = qmax( )
m 1 2

 

 
 

 
 

 

  
where qL+1 2 qL+1 2

FA . 

 
 

For m = L +1,L + 2, ,M 1  and if m˙  ( )
m

< 0 , 

If qm+1 2 < qmin( )
m+1 2

qm 1 2 = qm 1 2 qmin( )
m+1 2

qm+1 2[ ]( )
m+1 2

( )
m 1 2

qm+1 2 = qmin( )
m+1 2

 

 
 

 
 

 

 
where qL+1 2 qL+1 2

FA . 

 
 

For m = L +1,L + 2, ,M 1  and if m˙  ( )
m

< 0 , 

 

If qm 1 2 < qmin( )
m 1 2

qm+1 2 = qm+1 2 qmin( )
m 1 2

qm 1 2[ ]( )
m 1 2

( )
m+1 2

qm 1 2 = qmin( )
m 1 2

 

 
 

 
 

 

 
 
 
 
2.3.e. Momentum Equation 
 
 The vertically discrete momentum equation applied to the layers in the PBL is 
given by 
 

  

vL+1

t
+ vL+1 v L+1 + ˙  

v 

 
 

 

 
 
L+1

=

p( )
L+1

f k v L+1

g
m( )

L+1

Fv( )
L+ 3 2

+
Gv( )

L+1

m
76a( )

vm

t
+ vm v m + ˙  

v 

 
 

 

 
 
m

=

p( )
m

+f k vm

g

m( )
m

Fv( )
m +1 2

Fv( )
m 1 2{ } +

Gv( )
m

m

m = L + 2,...,M 76b( )

 

 

 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 

, 
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where the vertical momentum advection is 
 

  

˙  
v 

 
 

 

 
 
L+1

1

m( )L+1

1

2
vL+ 2 vL+1( ) m˙  ( )

L+ 3 2
+ vL+1 v L+1 2( ) m˙  ( )

B

 

 
 

 

 
 77a( )

˙  
v 

 
 

 

 
 
m

1
2m( )

m

v m+1 v m( ) m˙  ( )
m +1 2

+ v m vm 1( ) m˙  ( )
m 1 2

 

  
 

  

for m = L +1, ..,M 1 77b( )

˙  
v 

 
 

 

 
 
M

1

2m( )
M

vM vM 1( ) m˙  ( )
M 1 2

77c( )

 

 

 
 
 
 
 

 

 
 
 
 
 

. 

 

In (77a), we formally define   v L+1 2 = v
B+

f
+ v L,v L 1( )  for m˙  ( )

B

< 0 , which must be 

an extrapolation from above, and   v L+1 2 = v
B

f v L+ 2,v L+1( )  for m˙  ( )
B

> 0 , which 

must be an extrapolation from PBL.  Currently, we are using v
B
+ v

L
 and v

B
v

L+1 .   

 
 
2.3.f. Horizontal pressure gradient force 
 
On the right hand side (77a) and (77b), the vertically discrete pressure gradient force is 
given by 
 

  
  

p( ) =
1
m

m( )m +
1

pm+1 2 pm 1 2( ) m+1 2 pm+1 2 m 1 2 pm 1 2[ ]   

      for  m = L +1,L + 2, ,M    (78) 
 
 
2.3.g. Hydrostatic equation 
 
 The geopotential height within the PBL is determined by vertically summing the 
hydrostatic equation starting from the surface where M+1 2 S  is prescribed.  The 

vertically discrete hydrostatic equation is given by 
 

   M = M+1 2 +
pM+1 2 pM 1 2( )
2pM+1 2

M+1 2 M+1 2, (79a)  

   

  m = m+1 +
pm+ 3 2 pm 1 2( )
2pm+1 2

m+1 2 m+1 2    for   m = M 1,M 2, ,L +1. (79b) 

 
At the top of the PBL, the geopotential height is calculated from 
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   L+1 2 = L+1 +
pL+ 3 2 pL+1 2( )
2pL+1 2

L+1 2 L+1 2
BL , (79c) 

where B L+1 2 .  At the interfaces of layers, the geopotential height can be calculated 

from 

  m 1 2 = m +
pm+1 2 pm 1 2( )
2pm 1 2

m 1 2 m 1 2    for   m = M,M 1, ,L + 2  (79d) 

or 

  m+1 2 = m

pm+1 2 pm 1 2( )
2pm+1 2

m+1 2 m+1 2    for   m = M 1,M 2, ,L +1  (79e) 


