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ABSTRACT 

 
 

 This technical report presents a detailed description of a new PBL 

parameterization incorporated into the UCLA-GCM. 

 The PBL parameterization presented here is an extension of the parameterization 

already used in the UCLA-GCM based on a single mixed layer with variable depth 

(Randall, 1976 and Suarez et al., 1983).  The new version uses multiple layers while 

approximately maintaining the advantages of the original parameterization.  In this 

parameterization, the bulk formulation is used for the effects of convectively active large 

eddies and a newly introduced K-closure formulation is used for the effects of diffusive 

small eddies.  The bulk formulation, which is originally introduced by Randall, Branson, 

Zhang, Moeng and Krasner (unpublished, partially based on Krasner, 1993), is based on a 

predicted bulk turbulence kinetic energy and explicitly determined PBL-top entrainment.  

The entrainment formulation used in this parameterization is discussed by Randall and 

Schubert (2004) and Stevens (2002).   
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1. Introduction 

 

It has been widely recognized that the planetary boundary layer (PBL) plays a crucial 

role in the climate system.  The representation of PBL processes, however, remains one of the 

major unresolved issues in climate modeling due to the complexity of the physical processes 

involved.  The situation is especially serious for the PBL with a stratocumulus cloud layer 

inside. 

 The scale of turbulence in the PBL can be classified into two categories: the quasi-local 

small eddies and the non-local large eddies.  This has led to two separate approaches in the 

formulation of PBL processes in atmospheric models: one emphasizes the small eddies by 

parameterizing their effects through a K-closure formulation (Louis, 1979) and the other 

emphasizes the large eddies by parameterizing their effects through a bulk approach, which 

implicitly includes the diffusive effects by assuming a well-mixed PBL (Lilly, 1968).  In later 

years, the K-closure formulation has been extended to include non-local effects by skewing the 

K-profile and including a countergradient flux term (Troen and Mahrt, 1986; Holtzlag and 

Moeng, 1991; Holtslag and Boville, 1993). 

The behavior and structure of the clear convective PBL is relatively well understood 

and, therefore, its realistic simulation is the starting point of any comprehensive PBL 

parameterization.  It is widely accepted that the two approaches mentioned above perform 

reasonably well in simulating major aspects of clear PBL. If the PBL top is higher than the 

condensation level, a cloudy sublayer forms within the PBL near the top.  In this sublayer, 

turbulence is primarily driven by the convection due to the radiative cooling near the cloud top.  

Therefore, the cloud-topped PBL can be maintained even without positive buoyancy due to a 
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surface heat flux.  The mixed-layer approach comprises a straightforward formulation of 

turbulence fluxes in such a PBL (Lilly, 1968) while the K-closure approach does not. 

 A PBL parameterization based on the mixed-layer approach complemented by 

Deardorff’s (1972) bulk parameterization for the variable-depth PBL is incorporated into the 

UCLA GCM (Randall 1976, Suarez et al. 1983).  In this model, the layer next to the lower 

boundary is designated as the PBL, which acts as a well-mixed layer (see Fig. 1a).  The 

parameterized mass entrainment (detrainment) into (out of) the PBL at the PBL top contributes 

to the rate of change of the PBL depth. The PBL temperature, moisture and wind fields are 

predicted using the parameterized surface fluxes and the fluxes associated with the entrainment 

(or detrainment) through the PBL top. 

 The use of a variable-depth well-mixed PBL greatly simplifies parameterization of PBL 

cloud processes.  In particular, formulation of physical processes concentrated near the cloud 

top is much more tractable with this approach.  The successful simulation of time-averaged 

stratocumulus cloud incidence with a recent version of the UCLA GCM (Li et al. 1999) is 

largely due to this advantage.  The approach has disadvantages, however, some of which are 

listed below.  First, it does not allow the vertical variation of the horizontal velocity within the 

PBL.  Vertical resolution required for representing low-level baroclinicity, therefore, may be 

lost, especially when the PBL is deep.  Moreover, even conservative thermodynamic variables, 

such as the moist static energy and the total water mixing ratio, which are assumed to be well-

mixed in the bulk approach, are not always well-mixed in reality, especially for the stable PBL.  

Secondly, an inevitable large jump in the vertical resolution between the PBL and the layer 

above in high vertical resolution models can cause large truncation errors. 
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 The majority of climate models do not explicitly treat the PBL clouds.  Among the ones 

with explicit treatment, for example, Gordon and Stern (1982) and Sud and Walker (1992) use 

an empirical formulation based on relative humidity; Hansen et al. (1983) uses a prognostic 

cloud water formulation; Suarez et al. (1983), Randall et al. (1989) and the model we present 

here use the mixed-layer approach for the treatment of PBL clouds.  A comprehensive review 

about the performance of the PBL cloud treatments can be found in Wyngaard and Moeng 

(1990).  More recently, Lock et al. (2000) developed a formulation in which the treatment is 

based on an extended empirical relative humidity formulation.  Lock’s scheme is now used in 

the UKMO and GFDL models. 

 In recent years, there are efforts to incorporate the variable-depth PBL approach in the 

models based on the local and non-local K-formulations to improve the simulation of PBL 

cloud incident (Beljaars and Viterbo, 1998; Lock et al., 2000; Grenier and Bretherton, 2001).  

In these applications, the PBL is not an explicit model layer such as the one discussed in 

previous two paragraphs, but the PBL depth is diagnosed or predicted, locating the PBL-top 

anywhere between the levels of the model that are more or less fixed in space.  Then, the PBL-

top jump is generally obtained through an extrapolation technique from above and below. In 

this approach, therefore, the difficulty in maintaining a physically consistent PBL-top jump 

remains as a major problem. 

 An interesting approach gaining momentum is the mass-flux concept based on a 

convective circulation model (see Arakawa 1969, Arakawa 2000).  The concept has been 

applied to the PBL parameterization problem for more than three decades by several authors.  

Most recent examples are Lappen and Randall (2001a,b,c), Bretherton et al. (2004), McCaa 

and Bretherton (2004), Soares et al. (2004) and Siebesma et al. (2007).  The mass-flux concept 
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appears to be useful in parameterizing the horizontal structure of the PBL, especially in 

determining the horizontal cloud distribution in transition from stratus to stratocumulus 

regimes.  We recognize this approach as complimentary to the parameterization we discuss in 

this here. 

In this technical note, we propose a hybrid approach that introduces multiple model 

layers within the PBL to resolve its internal structure, while retaining the advantages of the 

bulk parameterization (see Fig. 1b).  In this approach, the bulk formulation is used for the 

effects of convectively active large eddies, and a K-closure formulation is used for the effects 

of diffusive small eddies as in Randall (1976).  Simulated profiles in the PBL are allowed to 

deviate from well-mixed profiles.  The deviations are, however, assumed to be small for 

thermodynamic conservative variables in formulating bulk properties of the PBL. 

 

 

Fig. 1. Schematic representation of parameterized PBL a) based on a single layer as in current UCLA GCM and b) 

based on the multi-layers.  Lower panel illustrates typical vertical profiles of the potential temperature  and the 

total water mixing ratio r. 

 

We implemented this approach in vertically discrete models, using a vertical coordinate 

system in which the PBL-top is a coordinate surface shared by both the free atmosphere and 
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the PBL.  In this way, as we mentioned earlier, the formulation of the processes that are highly 

concentrated near the PBL top becomes more explicit.  When the PBL does not have a well-

defined top, such as the left-over “daytime” PBL in evening, the definition of this coordinate 

system becomes ambiguous.  In such a situation, the coordinate can be viewed as an arbitrarily 

chosen coordinate. 

  A major advantage of such a hybrid parameterization is in the simulation of the PBL 

processes during the surface frontogenesis.  The multi-layer formulation allows vertical wind 

shears to be developed and maintained within the PBL due to the vertically varying pressure 

gradient force, while the potential temperature is nearly well mixed in the vertical.  In this way, 

we may expect more realistic simulations of extratropical cyclones and better prediction of 

low-level cloud distributions in the middle latitudes with this parameterization. 

The PBL-top entrainment (or detrainment), PBL cloud processes and the surface fluxes 

are formulated following a new approach based on the predicted bulk turbulence kinetic energy 

(TKE), originally introduced by Randall, Branson, Zhang, Moeng and Krasner (1998, personal 

communications; hereafter, RBZMK).  The most important aspects of this approach can be 

found in Krasner (1993), Zhang et al. (1996), Randall et al., (1998) and Randall and Schubert 

(2004).  The bulk properties of the PBL to be used in our formulations are obtained by mass-

weighted vertical averaging of the prognostic variables over the entire PBL. In the case of 

potential temperature, averaging is only over the sub-cloud layers. 

 We incorporated the multi-layer PBL parameterization into the UCLA GCM.  The 

results obtained by selected climate simulations will be presented in a forthcoming paper. 

 In the next section, we discuss the basic governing equations for the free-

atmosphere/PBL system.  We discuss the vertical discretization of the equations for the PBL in 
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section 3.  The bulk PBL parameterization, which represents the effects of large convective 

eddies, are discussed in section 4.  In section 5, we discuss the K-closure formulation 

representing the effects of the small diffusive eddies.  Finally, a summary is presented in 

section 6. 
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2.  Continuous governing equations of the AGCM 

  

a. Vertical coordinate 

   

  The vertical coordinate system used in the model is presented in Suarez et al. (1983).  

The vertical domain is divided into three regions (Fig. 2), the boundaries of which are 

coordinate surfaces. The highest region extends from the model’s top ( pT = 1hPa ) to the mean 

 

 
  Fig. 2. Vertical structure and sigma coordinate of the model. 

 

tropopause level ( pI = 100 hPa ).  The middle region extends from the mean tropopause level 

down to the PBL top, pB , which varies in space and time.  The lowest region represents the 

PBL.  Within these regions, the definition of vertical sigma coordinate is given by, 

  

   STRA p pI( ) pI pT( )  for pT p pI , (2.1a) 

   TROP p pI( ) pB pI( )  for pI p pB  (2.1b) 

and 

   PBL 1+ p pB( ) pS pB( ) for pB p pS  (2.1c) 
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where p is pressure and pS the surface pressure.  Accordingly, = 2  at the Earth’s 

surface, = 1  at the PBL top, = 0 at the mean tropopause level, and = 1 at the 

model’s top.  The coordinate surface at the PBL top ( = 1 ) represents an infinitesimally thin 

transition layer (a.k.a. inversion layer) that separates the PBL air below from the free 

atmosphere air above. 

 In general the mass variable is defined by 

 

    m
p

. (2.2) 

From (2.1a) to (2.1c), we obtain corresponding mass variables for three vertical regions as 

 

   mSTRA pI pT( ) I T( )  for T I , (2.3a) 

   mTROP pB pI( ) B I( )  for I B   (2.3b) 

and 

   mPBL pS pB( ) S T( )  for B S , (2.3c) 

 

respectively.  Note that mSTRA is a constant and, according to the selection of  given above, 

I T( ) = B I( ) = S B( ) = 1. 

 

b. Mass continuity equation 

 In general, the continuity equation for a vertical coordinate is given by  

 

   

 
t

m + mv( ) + m( ) = 0 , (2.4) 

 

where is the horizontal del operator taken along constant surfaces, v the horizontal 

velocity and the “vertical velocity” defined by 
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D

Dt
. (2.5) 

 

In (2.4), m is the vertical mass flux trough coordinate surface.  The material time derivative 

in (2.5) is defined by 

 

   

 

D

Dt t
+ v + . (2.6) 

 

For mass conservation, we assume that there is no vertical mass fluxed at the model top and the 

surface, 

 

   
 
m( )T = m( )S = 0 . (2.7) 

 

If we apply (4) to three vertical regions, we obtain 

 

   
 

mSTRAv( ) + m( ) = 0   for T I , (2.8a) 

   
 

mTROP

t
+ mTROPv( ) + m( ) = 0   for I B , (2.8b) 

and 

   
 

mPBL

t
+ mPBLv( ) + m( ) = 0   for B S , (2.8c) 

 

respectively.  Note that the continuity equation for the uppermost region (2.8a) becomes a 

diagnostic equation that is used to determine the vertical mass flux.  The pressure tendency 

equations can be obtained by vertical integration of (2.8b) and (2.8c) and using (2.3b) and 

(2.3c) as 
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t
p + mTROPv( ) d

I

+ m( ) m( )I = 0 for I < B

pB
t
+ mTROPv( ) d

I

B

+ m( )B m( )I = 0 for = B

 (2.9a)

    
 

and 

  

 
t

p
pB
t
+ mTROPv( ) d

B

+ m( ) m( )B = 0 for B < < S

pS
t

pB
t
+ mPBLv( ) d

B

S

m( )B = 0 for = S

. (2.9b) 

 
 

In deriving (2.9a) from (4), we assumed pT t( ) = 0 and
 
m( )T = 0 .  In (2.9b), we 

used
 
m( )S = 0 .  The determination of the vertical mass fluxes will be discussed later. 

 

c. Thermodynamic equation 

  

 The thermodynamic equation can be generally written as 

 

   

 
t

m( ) + mv( ) + m( ) =
mQ

, (2.10) 

 

where  is the potential temperature, Q the diabatic heating per unit mass, cp p p0( )  the 

Exner function, cp the specific heat of dry air under constant pressure, p0=1000hPa the standard 

pressure, R cp , R the gas constant for dry air.  For PBL, the thermodynamic equation is 

given by  

 

   

 
t

mPBL( ) + mPBLv( ) + m( ) =
mPBLQ + g

F
+G , (2.11) 
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where g is the gravitational acceleration, F  the turbulent flux of potential temperature and G  

the additional effects.  Positive values of F  correspond to upward fluxes.  The determination 

of the turbulent fluxes and the additional effects will be discussed later.  

 

d. Moisture equation 

 

 The model predicts the water vapor mixing ratio q for the free atmosphere (top two 

regions) from  
   

   

 
t

mq( ) + qmv( ) + qm( ) = mC , (2.12) 

 

where C is the condensation rate for unit mass.  For the PBL, the model predicts the total water 

mixing ratio r from  

 

   

  
t

mPBLr( ) + rmPBLv( ) + rm( ) = mPBLR + g
Fr +Gr , (2.13) 

 

where R is the rain drop generation rate, Fr the turbulent flux of total water and Gr represents 

additional effects. Positive values of Fr correspond to upward fluxes.  Note that
 
r = q + , 

where is the liquid water mixing ratio.  The liquid water mixing ratio can be obtained 

from = r q and q = q if r > q , where q* is the saturation mixing ratio. 

 

e. Momentum equation 

  

 The momentum equation for the free atmosphere is given by 

 

   

 
t

v + v v +
v

= p( ) fk v , (2.14) 
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where is the geopotential height, f the Coriolis parameter and k the unit vector in the 

positive z direction.  The moment equation for the PBL can be written as  

 

   

 
t

v + v v +
v

= p( ) fk v +
g

mPBL

Fv +
Gv

mPBL

, (2.15) 

 

where Fv is the turbulent momentum flux and Gv the additional effects.  The pressure gradient 

force term in (2.4) and (2.15) in a coordinate can be written as 

 

   p = +
p

m . (2.16) 

The geopotential height is determined using the hydrostatic equation given by 

   = . (2.17) 

 

f. Vertical mass flux equation 

  

 The equation that determines the vertical mass fluxes within the uppermost region can 

be obtained by vertical integral of (2.8a) as 

 

   
 

m( ) = mSTRAv( ) d
T

     for  T I .   (2.18) 

 

Through the time derivative of (2.1b) and using (2.9a), the equation that determines the vertical 

mass flux in the middle region can be obtained as 

 

 m( ) = m( )B + 1( ) m( )I + mTROPv( ) d
I

B

mTROPv( ) d
I

  

    for I B .  (2.19) 

 

In (2.19), the PBL-top mass vertical flux is obtained from  
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m( )B = g E D MB( ) , (2.20) 

 

where E and D are the PBL-top entrainment and detrainment rates, respectively, and MB is the 

cumulus mass flux through the PBL top.  For an entraining PBL, E>0 and D=0 while, for a 

detraining PBL, D>0 and E=0. In (2.19),
 
m( )I is obtained from (2.18).  Finally, following 

the procedure used to obtain (2.19), the vertical mass flux within the PBL can be obtained as 

 

  
 

m( ) = 2( ) m( )B + 1( ) mPBLv( ) d
B

S

mPBLv( ) d
B

  

    for B S .  (2.21) 

 

Note that I = 0  and B = 1 in (2.19), and I = 0 in (2.21).  

 

g. Determination of turbulent flux of potential temperature in the PBL 

 

 The potential temperature  is not a conserved quantity for a saturated atmosphere due 

to the condensation heating. On the other hand, the moist static energy (h + + Lcq  and 

h + + Lcq  for saturated air) and the total water mixing ratio r, are conserved.  In this 

model, we first determine the turbulent fluxes of the conserved quantities h and r and then 

determine the turbulent flux of  from 

    

   

F
1
Fh LcFr( ) for an unsaturated layer

F
1

1+( )
Fh for a saturated layer

, (2.22) 

 

where Fh and Fr are the turbulent fluxes of h and r, respectively, Lc is the latent heat of 

condensation L
cp

q T( )
p

, where T is the temperature. 
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3. Discrete equations of the PBL 

 

In this document, we focus on the discretization of equations for the PBL.  The reader 

is referred to Arakawa and Suarez (1983) for the discretization of equations in the free 

atmosphere. 

  

a. Vertical grid 

  

 A portion of the vertical grid for the lower free atmosphere and the PBL is shown in 

Fig. 3.  The vertical domain of the model is divided into M number of layers.  L layers from the 

top are assigned to the free atmosphere and M–L layers from the surface are assigned to the 

PBL. At the PBL-top, an infinitesimally thin transition layer (a.k.a. inversion layer) separates 

the PBL from the free atmosphere.   The variables are staggered following the Lorenz grid. 

  

 

 

  Fig. 3. Vertical grid in the PBL and lower free atmosphere. 
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The prognostic variables are placed at the model layers and, turbulent fluxes are placed at the 

interfaces of those layers.  The quantities at the upper boundary of the transition layer (B
+
) are 

obtained by an extrapolation from the lowest two layers of the free atmosphere.  The values of 

conserved quantities, such as total water mixing ratio and moist static energy, at the lower 

boundary of the transition layer (B
–
) are assumed be equal to those at layer L+1.  The potential 

temperature at B
–
 is obtained by an extrapolation from below.  While this way of determining 

B–
is not fully justifiable for a cloud topped PBL, it requires less computations. 

 

b. Mass continuity equation 

  

 The discrete mass continuity equation for the PBL can be obtained by the sigma-

weighted vertical sum of (2.8c) as 

 

  

  

mPBL

t
+

1

( )PBL
mv( ) ( )

=L+1

M

m( )B = 0 , (3.1) 

 

where 

 

  

mPBL p( )PBL ( )PBL
p( )PBL pM +1 2 pL+1 2

( )PBL M +1 2 L+1 2

( ) +1 2 1 2 for = L +1,...,M

. (3.2) 

 

To obtain (3.1),
 
m( )M +1 2

= 0 is assumed, where M +1 2  and S are interchangeable. In 

(3.1), m( )B is the vertical mass flux at the PBL top, where B and L +1 2  are 

interchangeable. For convenience, we omit the subscript PBL in mPBL  hereafter.  The 
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vertically discrete versions of pressure tendency and surface pressure tendency equations given 

by (2.9b) are  

 

 

  

p
+1 2

t
=

pB
t

mkvk( )( )k
k=L+1

m( )
+1 2

+ m( )B  for  
 
= L +1,..,M 1   (3.3a) 

 

and 

 

  

  

pS
t

=
pB
t

mkvk( )( )k
k=1

L

+ m( )B , (3.3b) 

 

respectively. 

 

c. Thermodynamic equation 

 

 The vertically discrete version of the thermodynamic equation for the PBL (2.11) 

applied to the model layers is given by 

 

 

  

m( )L+1
t

+ mv( )L+1 +
m( )

L+1

=
mQ

L+1

+
g

( )L+1
F( )

L+3 2
+ G( )

L+1
 (3.4a) 

 

and 

 

m( )

t
+ mv( ) +

m( )
=

mQ
+

g

( )
F( )

+1 2
F( )

1 2
+ G( )  

                                                                                             for
 

= L + 2,...,M ,    (3.4b) 

 

In these equations, upward flux F( )  has positive values.  In (3.4a), FB
–
, where B

–
 and L+1/2 are 

interchangeable, is implicitly considered with the vertical potential temperature flux through the 

PBL top. The derivation of (3.4a) and (3.4b) is discussed in Appendix A.  The convergence of 

vertical potential temperature fluxes for the uppermost PBL layer is defined by 
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m( )
L+1

1

( )L+1
L+3 2 m( )L+3 2

ˆ
L+1 2 m( )L+1 2 , (3.5a) 

 

where  

  

ˆ
L+1 2 B+ for m( )B > 0

ˆ
L+1 2 B

for m( )B < 0
. (3.5b) 

 

In (3.5b),
B+  and

B–
are obtained by extrapolations from above and below, respectively. The 

convergence of vertical potential temperature fluxes for other layers are defined by 

 

 

 

m( )
1

( ) +1 2 m( )
+1 2 1 2 m( ) 1 2

for = L + 2,...,M  (3.5c) 

 

and 

 

 

 

m( )
M

1

( )M
M 1 2 m( )M 1 2

. (3.5d) 

 

In (3.5a), (3.5c) and (3.5d), the potential temperature at the interfaces is defined by 

 

    

 

+1 2

+1 +1 2( ) +1 + +1 2( )
+1( )

       for
 
= L +1,...,M 1 . (3.6) 

 

In (3.4a) and (3.4b), the turbulent fluxes F( )  are calculated from 

 

 

 

F( )
+1 2

=
1

+1 2

Fh( )
+1 2

L Fr( )
+1 2

for a dry interface

F( )
+1 2

= Fh( )
+1 2 +1 2 1+ +1 2( ) for a saturated interface

, (3.7) 
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 where

 

+1 2

L

cp
q T( )

p
+1 2

, and Fh  and Fr  are convective eddy fluxes of moist static 

energy and total mixing ratio of water given by 

 

  

 

h
+1 2 = + + Lq( )

+1 2

r
+1 2 q

+1 2

for a dry interface

h
+1 2 = + + Lq( )

+1 2

r
+1 2 = q +1 2 + +1 2

for a saturated interface

, (3.8) 

 

respectively.  In (3.8), 
 

+1 2 is defined by (3.6), and the definitions of 
 

+1 2  and 
 
r

+1 2  will be 

given later in this section.  The turbulent fluxes 
 
Fh( )

+1 2
 and 

 
Fr( )

+1 2
in (3.7) are reserved for the 

convective large eddies that are determined from the bulk parameterization.  The turbulent flux 

due to small (diffusive) eddies and additional effects such as the roots of cumulus clouds are 

included in G( ) .  The formulation of G( ) will be discussed later in this text. 

 

d. Moisture equation 

 

 From the moisture equation (2.13), the vertically discrete equation to predict the water 

mixing ratio r is given by 

 

 

   

mr( )L+1
t

+ mrv( )L+1 + mr( )
L+1

= mRL+1 +
g

( )L+1
Fr( )

L+3 2
+ Gr( )

L+1
 (3.9a) 

 

and 

 

 
mr( )

t
+ mrv( ) + mr( ) = mR +

g

( )
Fr( )

+1 2
Fr( )

1 2
+ Gr( )  

   for
 

= L +1,...,M     (3.9b) 
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The convergence of vertical moisture fluxes for the uppermost layer in the PBL is defined by 

 

 mr( )
L+1

1

( )L+1
rL+3 2 m( )L+3 2 r̂L+1 2 m( )L+1 2 , (3.10a) 

 

where 

  

  

r̂L+1 2 q
B+ for m( )B > 0

r̂L+1 2 r
B

for m( )B < 0
. (3.10b) 

 

In (3.10b), q
B+  is obtained by an extrapolation from above and r

B–
rL+1 . The convergence of 

vertical moisture fluxes for the other layers are given by 

 

  mr( )
1

( )
r

+1 2 m( )
+1 2

r 1 2 m( ) 1 2
for = L + 2,..,M 1  (3.10c) 

 

and 

  mr( )
M

1

( )M
rM 1 2 m( )M 1 2

. (3.10d) 

 

In (3.10a), (3.10c) and (3.10d), the total water mixing ratio at the interfaces are obtained from 

 

  
 

r
+1 2

r
+1 + r

2
for

 
= L +1,...,M 1 . (3.11) 

 

In (3.9a) and (3.9b), Fr is the turbulent fluxes due to large convective eddies. The turbulent flux 

due to small (diffusive) eddies and additional effects such as the roots of cumulus clouds are 

included in Gr.  The formulation of Gr will be discussed later in this text. 

 

e. Momentum equation 
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 From (2.15), the vertically discrete momentum equation applied to the PBL layers can 

be written as 

 

  

vL+1

t
+ vL+1 vL+1 +

v

L+1

= p( )
L+1

f k vL+1 +
g

mPBL ( )L+1
Fv( )

L+3 2
+
Gv( )

L+1

mPBL

 

    (3.12a) 

and 

 

v
t
+ v v +

v
= p( ) f k v +

g

mPBL ( )
Fv( )

+1 2
Fv( )

1 2{ } +
Gv( )
mPBL

 

    for  = L + 2,...,M .   (3.12b) 

 

In (3.12a) and (3.12b), the vertical momentum advection for the uppermost layer is defined by 

 

 

  

v

L+1

1

m( )L+1

1

2
vL+2 vL+1( ) m( )L+3 2 + vL+1 v̂L+1 2( ) m( )B , (3.13a) 

 

where 

  

  

v̂L+1 2 v
B+ for m( )B > 0

v̂L+1 2 v
B

for m( )B < 0
. (3.13b) 

 

In (3.13b), v
B+ and v

B–
are obtained by extrapolations from above and below, respectively.  

The vertical momentum advection for the other layers is defined by 

 

  

v 1

2m( )
v

+1 v( ) m( )
+1 2

+ v v 1( ) m( ) 1 2
  for 

 
= L +1,..,M 1 

   (3.13c) 

and 
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v

M

1

2m( )M
vM vM 1( ) m( )M 1 2

. (3.13d) 

 

where the subscript PBL is omitted in mPBL .  In (3.13a), (3.13c) and (3.13d), 
 
Fv( )

L+3 2
and 

  
Fv( )

+1 2
 are the turbulent momentum fluxes due to large convective eddies. 

 
Gv( )

L+3 2
and 

  
Gv( )

+1 2
 represent the additional effects such as the turbulent fluxes due to the small 

(diffusive) eddies and roots of cumulus clouds.  Formulations of these terms will be discussed 

later in this text.  

 The vertically discrete version of the pressure gradient force (2.16) is given by 

 

 

p( ) = m

1

m
+1 2 1 2( ) 1 2 +1 2( ) pB( )   

m( )

m
+1 2 1 2( ) +1 2 +1 2( ) + 1 2 1 2( ) B 1 2 +1 2( ) . (3.14) 

 

Note that (3.14) for a single becomes identical to the pressure gradient force term introduced 

by Suarez et al. (1983).  Derivation of (3.14) is given in Appendix B. 

 The vertically discrete version of the hydrostatic equation (2.17) within the PBL is 

given by 

  

 
 

=
+1 + +1 +1 2( ) +1 + +1 2( )   for

 
= M 1,..L +1  (3.15a) 

 

and, at the lower layer, 

 

  M = S + S M( ) M . (3.15b) 

 

In these equations, the Exner function for the model layers are defined by 
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p
+1 2 +1 2 p 1 2 1 2

R cp +1( ) p +1 2 p 1 2( )
. (3.16) 

 

The pressure for the layers can be obtained from
 
p po

1 cp . 

  

f. Vertical mass flux equation 

 

 The discrete version of the vertical mass flux equation for the PBL (2.21) can be 

written as 

 

m( )
+1 2

= 1( ) mkvk( )( )k
k=1

L

mkvk( )( )k
k=L+1

+ 2( ) m( )B  

   for
 

= L +1,...,M 1.    (3.17) 

 

At the PBL-top, the vertical mass flux is determined by 

 

  m( )B = g E D MB( ) , (5.26) 

 

where E and D are the PBL-top entrainment and detrainment rates, respectively, and MB is the 

upward cumulus mass flux through the PBL top.  For an entraining PBL, E > 0 and D = 0 

while, for a detraining PBL, D > 0 and E = 0.  The entrainment E and MB are determined by the 

bulk PBL and the cumulus parameterizations, respectively. 

 

4. Discretization of PBL processes 

 

a. Turbulence fluxes due to large convective eddies 
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 It is assumed that the turbulence fluxes of v, h and r due to large convective eddies 

change linearly in the vertical within PBL.  If  represents v, h or r, the flux for the interface 

+1/2 within the PBL can be written as 

 

 
 

F( )
+1 2

=
+1 2 B( ) F( )

S
+ S +1 2( ) F( )

B
 for

 
= L +1, ,M 1 ,   (4.1) 

 

where F( )
S
 and F( )

B
 are the surface and PBL-top fluxes at level B  of  determined by 

the bulk parameterization discussed later in this text.  According to the coordinate used in this 

model, B = 1  and S = 2 . 

 

b. Turbulence fluxes due to small eddies 

 

 In the hybrid PBL parameterization being described here, the turbulent flux F due to 

small eddies is determined through a K-closure formulation given by 

 

  
 

F( )
L+1 2

= 0 ,  (4.2a) 

  

 

F( )
+1 2 +1 2 K +1 2

+1

z( )
+1 2

T( )
+1 2

 for 
 

= L +1, ,M 1   (4.2b) 

  
 

F( )
M +1 2

0   (4.2c) 

 

where  represents v, h or r, is the density, K the diffusion coefficient,
 

z( )
+1 2

z z
+1  

and T the transport.  Similar to (3.17), the fluxes of the potential temperature can be written as  

 

  

 

F( )
+1 2

=
1

+1 2

Fh( )
+1 2

Lc Fr( )
+1 2

for a dry interface

F( )
+1 2

= Fh( )
+1 2 +1 2 1+ +1 2( ) for a saturated interface

. (4.3) 
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Note that, for a dry interface,
 

Fq( )
+1 2

= Fr( )
+1 2

. 

 

c. Effects of small eddies, cumulus mass flux and radiation 

  

 This subsection describes the discretization of additional effects (G) in the 

thermodynamic, moisture and momentum equations.  If  represents v,  or r, the additional 

effects can be included by 

 

 G( )
L+1

g

( )L+1
F( )

L+3 2
+ L+1

c( )

B+ B( )MB R( )
B+

, (4.4a) 

 

 

G( )
g

( )
F( )

+1 2
+ F( )

1 2
+

c( )

B+ B( )MB  for 
 
= L + 2, ,M 1 (4.4b) 

 

and 

 

 

 

G( )
M

g

( )M
F( )

M 1 2
+ M

c( )

B+ B( )MB .  (4.4c) 

 

A detailed derivation of (4.4a) to (4.4c) is given in Appendix A.  The determination of 

B+ and 
B

is discussed above in this section for each quantities.   In (4.4a), R( )
B+

is the 

upward radiation flux of  at B+
.   For , R

B+ , where we ignore the subscript, represents 

the net longwave radiation.  There is no radiative transfer of the momentum and 

moisture, Rv( )
B+ = Rr( )

B+ = 0 .  The effect of cumulus roots is also incorporated 

through
 

c( )

B+ B( )MB , where
 

c( ) is the fractional contribution factor 

satisfying

 
m
c( )
=

m=L+1

M

1 . 
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4. Bulk PBL parameterization 

 

 Here we describe the bulk PBL parameterization originally described by Randall, 

Branson, Zhang, Moeng and Krasner (RBZMK, 1998, unpublished manuscript).  In this 

parameterization, i) the bulk turbulence kinetic energy (TKE) for the PBL is predicted, ii) the 

square root of the predicted TKE is used for the bulk velocity in determining the surface fluxes, 

and iii) an explicit formulation based on the predicted TKE is used to determine the PBL-top 

entrainment rate.  Additionally, this parameterization has a simplified PBL-top entrainment 

instability formulation, which is incorporated into the expression that determines the 

entrainment rate.  

 As in Suarez et al. (1983), we consider three regimes for the PBL as schematically 

shown in Fig.  4.   The first regime is the clear deepening PBL such as clear daytime PBL over  

 

 
 

Fig. 4. Schematic representation of the different PBL regimes considered in the PBL parameterization.  The 

subscripts G and SS denote ground and sea surface, respectively, and they can be used interchangeably. 

 

land. In this regime, the TKE increases typically due to the buoyancy generated by the 

warming of Earth’s surface due to solar heating, and consequently the PBL tends to deepen by 

entraining air from the free atmosphere.   The second regime is the night-time situation over 
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land.  After sunset, due to the sudden loss of the buoyancy generation, the TKE decreases and 

then the PBL collapses, leaving a large part of PBL air to the free atmosphere. Unlike the 

deepening PBL case, there is no well-defined PBL top during this transition, which is this 

difficult to simulate in a discrete model.  Yet, this process is an essential part of the PBL-free 

atmosphere interaction.  For that reason, we pay a special care on realistically simulating this 

process in our model.  The technique we used will be discussed later in this text.  After this 

transition, the PBL typically starts deepening again with a relatively slow rate due to the shear 

contribution to the TKE generation during the night-time. In the parameterization we also 

consider the cloud-topped PBL regime, which is often observed over the colder oceans of the 

cost of California and Peru and over the high-latitude snow-covered land.  In this regime, the 

TKE is maintained by the buoyancy generated by radiative cooling near the top of the cloud 

layer. 

 

a. Determination of bulk quantities for multi layer PBL 

 

 Suarez et al. (1983) predicts the PBL velocity, the potential temperature and the total 

water mixing-ratio for the subcloud layer of the PBL.  Unlike their parameterization, here we 

predict the velocity, potential temperature, total water mixing ratio for each of the multiple 

layers within the PBL.  Therefore, we must define the bulk properties to be used in the bulk 

parameterization.  We define a bulk value of  denoted by PBL  as  

 

  PBL

1

dp
pB

pS
p( )dp

pB

pS
, (4.1) 

where 
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1 for r < q T , p( )

0 for r q T , p( )
. (4.2) 

 

If the entire PBL is saturated, we define PBL = pS( ) .  In the discrete system, we first 

interpolate the quantities into a high vertical resolution grid and then use (4.1) and (4.2) to 

determine the bulk quantities PBL  and rPBL  for the entire PBL. 

 

b. Bulk turbulence kinetic energy equation 

  

 The bulk turbulence kinetic energy (TKE) for the mixed-layer ePBL  is predicted by 

 

  
ePBL
t

=
ePBL
p( )PBL

gE +
g

p( )PBL
B + S D( ) +

ePBL
m

mv( ) , (4.3) 

 

where p( )PBL = pS pB , E is the entrainment rate, B is the buoyancy generation, S is the 

shear generation, D is the dissipation of TKE and m is the mass of the PBL defined 

by m p( )PBL S B( ) .  Reader is referred to Krasner (1993) for the detail derivation of 

(4.3).  Some aspect of the derivation of (4.3) is discussed in Appendix C.  The buoyancy 

generation is given by 

 

  B
Fsv
p

dp
pB

pS
, (4.4) 

 

where Fsv is the turbulent flux of virtual dry static energy defined by sv = v + , where v  

is the virtual potential temperature, which is defined by v Tv p po( ) .   Tv  is the virtual 

temperature is defined by
  Tv T 1+ 0.608q( ) , where q and  are the mixing ratios of 

water vapor and liquid water, respectively.  The shear generation is formally given by 
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  S Fv
v
zzS

zB
dz , (4.5) 

 

where  Fv  is the turbulent momentum flux.  In our model, however, we only consider low-level 

shear to calculate S , which will be discussed later in this text.  The dissipation of TKE in (4.3) 

is expressed by 

  
 
D C PBL ePBL( )

3 2
, (4.6) 

 

where C is a constant (C 1 according to Moeng and Sullivan, 1994), which remains to be 

determined, and PBL  is the averaged density in the PBL given by PBL p( )PBL B S( ) . 

 Equation (4.3) is valid only for the “turbulent (deepening) state”, for which formally 

ePBL > 0  (in our model, ePBL > emin ).  If there is a tendency toward ePBL < emin , it is assumed 

that the mixed-layer is in “collapsing state”, for which we let ePBL = emin  

and p( )PBL = p( )min , where emin  and p( )min  are properly chosen lower limits of ePBL  

and p( )PBL , respectively.  The PBL maintains the “collapsed state” until ePBL > emin  again.  

We are currently using p( )min = 10 hPa and emin = 10
3 m2sec2 . 

 

c. Determination of surface fluxes 

  

 The surface fluxes of momentum, heat and moisture are defined by 

  

  

Fv( )
S SCUCUMax 1 vM , 1ePBL

1 2{ }vM

F( )
S SCUCT Max 2 vM , 2ePBL

1 2{ } S M( )

Fq( )
S SCUCT Max 2 vM , 2ePBL

1 2{ } q TS , pS( ) qM k

, (4.7) 
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where S is the density at the lowest PBL layer, CU and CT the surface exchange coefficients 

computed following Deardorff (1972), v  the vector wind velocity, the subscript M denotes the 

lowermost PBL layer, ePBL  the TKE, S  Earth’s surface potential temperature, TS  the surface 

temperature, pS the surface pressure and k a coefficient that represents the ground wetness.  The 

coefficient k takes the value of one for water surfaces, and a value close to zero for arid lands. The 

parameters 1 , 1  , 2  and 2 are scale coefficients empirically determined to obtain realistic 

simulated fluxes.  We are currently using 1 = 1.0 , 1 = 5.5  , 2 = 0.7  , 2 = 4.0 .  Reader is 

referred to Zhang et al. (1996) for the use of the square root of TKE as the velocity scale in the 

surface flux formulation. 

 

d. Determination of bulk turbulent fluxes, buoyancy and PBL-top entrainment 

 

A) Clear deepening PBL (typically G > PBL ): 

 

 Typical vertical profiles of r, q, , s +  , h and h* are shown in Fig. 5 for clear 

deepening PBL.  Note that, for this case, r = q. 

 

 

 Fig. 5.  Typical vertical profiles of r, q, , s, h, h*, F
r
, F

h
 and  Fsv

 for clear deepening PBL. 

 

Within the PBL, the conserved quantities, namely q, , s and h, are vertically well mixed while 
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h* decreases nearly linearly with height.  The turbulence fluxes of the total water Fr  and moist 

static energy Fh F + LFr , where F = Fs , are positive and linearly decreases with height 

from their surface values, Fr( )
S

and Fh( )
S
= S F( )

S
+ L Fr( )

S
, respectively.   The surface 

fluxes F( )
S

and Fr( )
S

Fq( )
S

are given by (4.7) and the PBL-top fluxes are given by 

 

  
Fr( )

B
= E r( )B

Fh( )
B

= E h( )B
, (4.8)  

 

where ( )
B

( )B+ ( )B .  The turbulence flux of the virtual dry static energy Fsv , which is 

given by Fh + 0.608 PBL L( )Fr or F + 0.608 PBLFr , linearly decreases with height 

from a positive value at the surface, Fsv( )
S
> 0 , to a negative value at the PBL-top, Fsv( )

B
< 0 .  

There is a well-established empirical relationship between Fsv( )
S

 and Fsv( )
B

 for clear 

deepening PBL given by 

 

   Fsv( )
B

= k Fsv( )
S

, (4.9) 

 

where k 0.2 .  The buoyancy generation (4.4) for this case becomes 

 

  
  
B Fsv( )

S
+ Fsv( )

B
pS pB( ) pS + pB( ) , (4.10) 

 

where  

 

Fsv( )
B

= Fh( )
B
+ 0.608 B PBL L( ) Fr( )

B
= B F( )

B
+ 0.608 B PBL Fr( )

B

Fsv( )
S
= Fh( )

S
+ 0.608 S PBL L( ) Fr( )

S
= S F( )

S
+ 0.608 S PBL Fr( )

S

. (4.11) 

 

In (4.11), we used B F( )
B

= F( )
B

L Fr( )
B

and r q .  Following RBZMK (1998, 
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unpublished manuscript), the PBL-top entrainment is determined from 

 

  

  

E
2kC

1 k
PBL ePBL

g sv( )
B

z( )PBL
ePBL B PBL

, (4.12) 

 

where
 
ePBL ePBL emin .  We assume that  sv( )

B
= B ( )B + 0.608 r( )B  is positive and use 

the typical value of C 1  (see Moeng and Sullivan, 1994).  A detailed derivation process of 

(4.12) is given in Appendix D. 

 

B) Collapsing PBL (typically G < PBL ): 

 

 

 

 Fig. 6.  Typical vertical profiles of r, q, , s, h , h*, F
r
, F

h
 and  Fsv

 for collapsing PBL. 

 

 For the collapsing case, the TKE is nearly zero and, therefore, the PBL is not well 

defined so that we choose h( )B = r( )B = 0 .  The turbulence fluxes are typically negative 

(see Fig. 6).  In our model, we assume that the PBL air detrains through its prognostically 

determined top with a finite rate while the TKE is set to its minimum value, ePBL = emin .  The 

detrainment rate D is calculated from an arbitrary relationship given by 
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   D
p( )max

g collapse

, (4.13) 

 

where we use values for p( )max  and collapse  given by 250 mb and 3 hours, respectively. 

 

C) Nighttime PBL ( G < PBL ): 

 

 After the collapse of the PBL, the TKE starts increasing again due to the shear 

contribution.  We treat this regime similar to the clear deepening PBL except the TKE here is 

generated by the shear rather than the buoyancy. 

 

D) Cloud-topped PBL (typically SS < PBL ): 

 

 A cloud layer forms in the upper PBL if the condensation level denoted by C is lower 

than the PBL-top.  The height of the condensation level can be determined by 

 

  pC pB + pS pB( )
rPBL qB0
qS qB0

,  (4.14) 

 

where qS = q TS , pS( ) , qB0 = q TB0 , pB( ) , TS S PBL cp  and TB0 B PBL cp  (see Fig. 7). 

 

 

  

 

Fig. 7. Typical vertical profiles of the temperature T 

and the potential temperature  in a cloud-topped PBL. 
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 In this case, only in subcloud layer,  and s are conserved and, therefore, there are 

constant.  Within the cloud layer,  and s generally increase with height (see Fig. 8) while r  

 

 

 

  Fig. 8.  Typical vertical profiles of r, q, , s, h , h*, F
r
, F

h
 and F

sv
 for cloud-topped PBL. 

 

and h remain uniform throughout the PBL. Fsv is usually negative in the subcloud layer if the 

surface is colder than the PBL.  It is generally positive in the cloud layer, however, due to 

turbulence generated by radiative cooling near the top of the cloud.  We can define the fluxes 

as follows: 

 

Within the cloud layer (p<pC): 

 

  
  
Fsv Fs + 0.608Fq F( ) , (4.15) 

 

Within the cloud layer, the air is saturated, in which the liquid water-mixing ratio is given 

by
 

r q .   We define the fluxes on the right hand side of (4.15) as 

 

  Fs = Fh LcFq =
1

1+
Fh , (4.16a) 
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  Fq = Fq =
Lc 1+( )

Fh  (4.16b) 

and 

  F = Fr F
q
= Fr

Lc 1+( )
Fh , (4.16c) 

 

where
Lc
cp

q T( )
p
.  From (4.15), (4.16) and defining, we can write  Fsv  at the top of the 

PBL as 

 

  Fsv( )
B

=
B

Fh( )
B B PBL Fr( )

B
 (4.17) 

 

where
B

1+1.608
B B PBL L( ) 1+

B( ) . In (4.17), 

 

  Fr( )
B

= E r( )B = E q
B+ r

B( )  (4.18a) 

and 

  Fh( )
B

= E h( )B + R( )B = E h
B+ h

B( ) + R( )B . (4.18b) 

 

In (4.17a) and (4.18b), r
B

rL+1  and h
B+ B + + B + LqB+  

and h
B

= h
B B + B + LqB .   We used (A.3) with MB = 0  of Appendix A in writing 

(4.18a) and (4.18b).  The expression we use for the entrainment rate E in (4.18a) will be given 

later.  We write Fsv  at the bottom of the cloud level 

 

  

 
Fsv( )

C+

1

1+ C

1+
1.608 C PBL C

Lc
Fh( )

C C PBL Fr( )
C

, (4.19) 

where 
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Fh( )
C
=

Fh( )
S
pC pB( ) + Fh( )

B
pS pC( )

pS pB

Fr( )
C
=

Fr( )
S
pC pB( ) + Fr( )

B
pS pC( )

pS pB

. (4.20) 

 

Note that  Fsv  is discontinuous across condensation level while Fh  and Fr  are continuous (see 

Fig. 8). 

 

Within the subcloud layer (p>pC): 

 

   Fsv Fs + 0.608 Fq , (4.21) 

where 

 

  
Fs = Fh LcFr

Fq = Fr
 (4.22) 

 

Using (4.21) and (4.22),  Fsv at the condensation level and the surface are 

 

   Fsv( )
C– Fh( )

C
+ 0.608 C PBL Lc( ) Fr( )

C
. (4.23) 

and 

 

   

 

Fsv( )
S
= Fh( )

S
+ 0.608 S PBL Lc( )

Fh( )
S
= S F( )

S
+ 0.608 S PBL Fr( )

S

, (4.24)

  

 

respectively.  In (4.23), Fh( )
C

and Fr( )
C

 are given by (4.20).  In (2.24), Fr( )
S

Fq( )
S

. 

 Buoyancy generation for this case can be written as  

 

  
  
B Fsv( )

S
+ Fsv( )

C
pS pC( ) pS + pC( )  
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+ Fsv( )

C+ + Fsv( )
B

pC pB( ) pC + pB( ) . (4.25) 

 

Following Randall, Branson, Zhang, Moeng and Krasner (unpublished manuscript), we 

calculate the entrainment rate for a cloud topped PBL by 

 

  

  

E

b1 PBL ePBL + b̂2 g
z( )PBL
ePBL

R( )B
B PBL

1+ b2 g
z( )PBL
ePBL

sv svcrit

B PBL

, (4.26) 

 

where b1  is a constant and, b̂2 is defined by 
 
b2 1 e ePBL( )  with two constants b2  and .   In 

the model, b2 is multiplied by
 
1 e ePBL( ) , where  is arbitrarily chosen as 0.1 emin  to 

guarantee that E 0  as ePBL 0 .  The constants b1  and b2  must be chosen to satisfy 

b1 b2 = 2kC 1 k( )  and currently b1 0.4  and b2 0.8  are chosen.  The effect of cloud-top 

entrainment instability is included in (4.26) through the term with sv svcrit
, 

where

 

sv( )
crit

L 1.608 B B+

1+
B+( )

q B B+ cp , pB( ) q
B+ . Finally we 

assume R( )B RLW( )
B+ , where RLW  is the longwave radiation flux.  The entrainment 

formulation given by (7.26) is one of the formulas discussed in Stevens’ (2002) comparison 

paper.  The original derivation of (4.26) is discussed in details in Appendix D.  

   

 

e. Determination of shear generation 

 

 We discretize the shear generation (4.5) in the discrete system as 

  

  
 
S Fv( )

S
vM + 1

2 E v
B

2{ } , (4.27) 
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where M denotes the lowest layer of PBL.  In (4.27), we introduce a weighting factor S to 

limit the shear generation for buoyancy driven deep PBL while to keep it for a shallow PBL as 

 

  S

L

L + zB zS( )

3

, (4.28) 

 

where L is the Monin-Obukov length and is chosen as 10.  The Monin-Obukov length L is 

defined by  

 

  L = zM zS( ) M , (4.29) 

 

where zM and zS are the height of the first model layer and the surface, respectively.  In 

(4.29), M  is determined from 

   

 

For a stable boundary layer M 0.74 + 4.7 M( )

1+ 4.7 M( )
2 = Ri( )

M
> 0

For a neutral boundary layer M = 0

For an unstable boundary layer M = Ri( )
M
< 0

, (4.30) 

 

where 

 

  

   
Ri( )

M

g v( )
S v( )

M
zM zS( )

v( )
M

v
M

2 . (4.31) 

 

In (4.31), 
  v( ) is defined by 

 

  

  
v( )

S

cp Tv( )
S

S

cp TG 1+ 0.608 RH( )S q TG , pS( )

S

, (4.32) 
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where TG  is the ground temperature and RH( )S  is the relative humidity near the surface 

approximately given by RH( )S RH( )M +1 2
qM +1 2 q TS , pS( ) , where qM +1 2 rM  

for rM < q TS , pS( ) and qM +1 2 q TS , pS( ) for rM q TS , pS( ) .  

 

Determination of the PBL precipitation when pC> pS: 

 

 When pC > pS , where pC  is defined by (4.14), the precipitation (drizzle) takes place 

from the PBL to restore pC = pS .  From (4.14), we can approximately calculate the reduction 

of total water mixing ratio to achieve pC = pS  from   

 

  rPBL qS qB0( )
pC pS
pS pB

, (4.33) 

 

Using rPBL  calculated from (4.33), the precipitation rate is determined from 

 

  P = rPBL PBL z( )PBL t( ) . (4.34) 

 

where t( )  is the time interval used in the integration.  The raindrop generation can be 

distributed to the layers of PBL (proportional to their liquid water content) following 

 

  

  

R =
rPBL

=L+1

M . (4.34) 

 

Unstable PBL top (dry case): 

 

If PBL > B+ , it is assumed that the entrainment rate E increases until the instability is  
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Fig. 9. Treatment of the unstable PBL-top. 

 

eliminated (see Fig. 9).  The required entrainment rate E to eliminate the instability in a 

single time step t is 

 

  

 

E =
pB pB
g t

. (4.35) 

 

where pB  can be determined from the following two equations through an iteration 

 

  
 

B B B L 1 2( ) PBL B+( ) L 1 2 B+( ) , (4.36) 

 

  and 

  

 

PBL

pS pB( ) M
1
2 pB pB( )

B+

pS pB +
1
2 pB pB( )

. (4.37) 

 

It is assumed that potential energy released during the adjustment will contribute to 

turbulence kinetic energy following 

 

  

 

ePBL
PE( )PBL + PE( )B+

~

PE( )PBL
pS pB

, (4.38) 
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where PE( )PBL  and 
~

PE( )PBL  are the potential energy of the PBL before and after 

adjustment, and PE( )B+  is the potential energy of the entrained air during the adjustment. 

PE( )PBL and PE( )B+  can be calculated from 

 

  PE( )PBL
cp PBL

g po

1

+1
pB

+1 pS
+1( ) pS pB pS pS( )  (4.39a) 

and 

 

 PE( )B+

cp B+ + PBL( )
2g po

1

+1
pB

+1 pB
+1( ) pB pB pB pB( ) + zB pB pB( ) , (4.39b) 

 

respectively. These expressions for PE  are obtained from PE g zdz
z= z1

z2
= zdp

p= p1

p2
 

and z = z1 + 1 1( ) g .  In derivation of (4.39b), we assume that the origin of the 

entrained air is the lower half of the layer L has the properties of the L to be entrained.  

Then, the potential temperature of entrained air is 
 

=
B+ + PBL( ) 2 .  In the model, we 

apply “soft” adjustments obtained by multiplying E  and ePBL  by t dca , where dca  is 

the adjustment time scale typically 1 hour. 
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5. Formulation of the effects of small eddies 

  

 In the hybrid parameterization being described here, we determine the turbulent fluxes 

due to small eddies through a K-closure formulation based on Troen and Mahrt (1986) and 

Holtslag and Boville (1993).  In our application here, we have replaced the PBL mean velocity 

scales used by the original formulation by the square root of TKE to solely represent the effects 

of small eddies generated through a cascade process from the convective large eddies.    

  

a. General aspects of K-closure formulation 

 

 For an arbitrary quantity  (moist static energy, h and/or total water mixing ratio, r), 

turbulent fluxes due to small eddies are formulated as 

 

  F K
z

. (5.1) 

 

In (5.1), the diffusion coefficient is defined as 

 

  K kw z 1
z

z( )PBL

2

, (5.2) 

 

where k is the Von Karman constant and w  a characteristic turbulent velocity scale.  In (5.1), 

the transport term is given by
 

a w( )
S

ePBL z( )PBL , where a is a coefficient and 

w( )
S
 the surface flux of .  In the cloud layer, a large value is used for the diffusion 

coefficient instead of (5.2). 

 

 

b. Determination of fluxes in a dry PBL or in the subcloud layer 
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 In this subsection, we describe the determination of the turbulent fluxes for different 

type of PBL regimes.  

  

1. For the surface layer of a stable or neutral PBL: 

 

 In this regime, the surface fluxes are downward
 

w( )
S
0 .  Within the lowest 

portion of the PBL [ z z( )PBL 0.1 ], the characteristic turbulent velocity scale for heat and 

moisture is given by 

  

 

w h =
u*

h

, (5.3) 

 

where u* F
v( )

S
  and h is the dimensionless vertical temperature gradient given by 

  h 1+ 5
z

L
    for  0 z L 1    (5.4a)   

and 

  h 5 +
z

L
      for z L > 1  ,   (5.4b) 

where L is the Monin-Obukov scale defined by 

  

L
u*
3

k g vS( ) vw( )
S

   

where
  vw( )

S
F

v
( )

S
= F( )

S
+ 0.608 S Fr( )

S
.  The characteristic turbulent velocity 

scale for momentum wm is assumed identical to wh .  For this case, it is assumed that there is 

to transport with the small eddies, 0 .   
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2. For the outer PBL of a stable or neutral PBL: 

 

 Within the outer PBL [ z z( )PBL > 0.1 ], the characteristic turbulent velocity scale for 

heat and moisture is given by 

  w h = ePBL  (5.5) 

where 

  

= 1 if ePBL
u

h za( )

=
u

h za( ) ePBL
if ePBL >

u

h za( )

za 0.1 z( )PBL

. (5.6) 

 

In (5.6), the dimensionless vertical temperature gradient h is calculated from (5.4a) and 

(5.4b).  The characteristic turbulent velocity scale for momentum wm is assumed identical to 

wh .  For this case, it is assumed that there is to transport with the small eddies, 0 . 

 

3. For the surface layer of an unstable PBL: 

 

 In this regime, the surface fluxes are upward
 

w( )
S
> 0 .  Within the lowest portion 

of the PBL [ z z( )PBL 0.1 ], the characteristic turbulent velocity scales for heat, moisture and 

momentum are given by 

 

  w h =
u*

h

 and wm =
u*

m

 (5.7) 

where 
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  h 1 15
z

L

1 2

 and  m 1 15
z

L

1 3

. (5.8) 

where L is the Monin-Obukov scale defined by 

  

L
u*
3

k g vS( ) vw( )
S

   

where
  vw( )

S
F

v
( )

S
= F( )

S
+ 0.608 S Fr( )

S
.  For this case, it is assumed that there 

is to transport with the small eddies, 0 . 

 

4. For the outer PBL of an unstable PBL: 

  

 Within the outer PBL [ z z( )PBL > 0.1 ], the characteristic turbulent velocity scale for 

heat and moisture is given by 

  wh = ePBL . (5.9) 

 

and the characteristic turbulent velocity scale for momentum is given by 

 

  wm = Pr w h , (5.10) 

 

where the Prandl number Pr is determined from 

 

  

 

Pr 1.0 for 0 >B S

Pr 0.04 B S( ) +1.0 for 0 B S 10

Pr 0.6 for B S > 10

. (5.11) 

 

The formula given by (5.11) is a simplification of the relationship schematically shown in Fig. 

10. 
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Fig. 10. A schematic plot of Prantl number versus 

Buoyancy/Shear generations (B/S). 

 

For this case, the transport term for the heat and moisture is given by 

 

   h a
w( )

S

wh z( )PBL
. (5.12)    

 

Here we use a 0.75 , which is a fraction of that suggested by Troen and Mahrt (1986).  For 

momentum, m 0 is used. 
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6. Summary and discussions 

 

 In this technical report, we have presented a detailed description of the new PBL 

parameterization incorporated into the UCLA-AGCM. 

 The formulation of PBL processes remains one of the major unsolved problems in 

atmospheric general circulation modeling due complicated physical processes involved.  A 

detailed simulation of the behavior and structure of the PBL would require an extremely high 

vertical resolution with a complex parameterization of turbulence interacting with cloud 

microphysics and radiation.  This is usually impractical in most applications of a GCM.  In this 

paper, we have presented a parameterization to simplify formulation of the PBL processes 

using a bulk approach.  In this parameterization, we designate multiple variable-depth layers 

next to the lower boundary as the PBL.  The depth of the entire PBL is predicted trough a mass 

budget equation including contributions of the parameterized mass entrainment (detrainment) 

into (out of) the PBL through the PBL top.  To incorporate the variable-depth PBL into a 

GCM, a system of two coordinates is chosen as the vertical coordinate, one for the PBL and the 

other for the free atmosphere sharing the PBL top as a coordinate surface.  The temperature, 

moisture and wind fields within the PBL are predicted using the surface fluxes and the fluxes 

associated with the entrainment (or detrainment) through the PBL top and diffusive fluxes 

between the layers.  For this purpose, a hybrid parameterization is used, one of which is the 

bulk parameterization and the other a K-closure formulation.  The bulk parameterization is 

used in formulating turbulence fluxes due to convectively active large eddies, PBL-top 

entrainment (or detrainment), surface fluxes and PBL clouds, which is based on the predicted 

bulk TKE.  The K-closure formulation based on a bulk Richardson number is used for the 

effects of diffusive small eddies cascaded from the convective large eddies.  With this hybrid 
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parameterization, simulated profiles in the PBL are allowed to deviate from well-mixed 

profiles, although the deviations are small for thermodynamic conservative variables when 

TKE is large. 

 We have incorporated the multi-layer PBL parameterization into our generalized 

vertical coordinate model using a hybrid  coordinate (Konor and Arakawa, 1997).  

Motivated by the encouraging results obtained by this model, the multi-layer parameterization 

has also been incorporated into the UCLA GCM.  We will present the performance of the 

multi-layer PBL in climate simulations with the GCM in a forthcoming paper. 

 While our current multi-layer PBL parameterization significantly advances the 

parameterizations based on single-layer mixed-layer approach (e.g. Suarez et al., 1983), we are 

planning future improvements in  

  

1) the entrainment formulation, 

2) the K-closure formulation specifically designed to treat the diffusion within the subcloud 

layer (e.g. van Meijgaard and Ulden, 1998) 

3) the prediction of the TKE for each PBL layer (e.g. Bechtold et al., 1992), 

4) the parameterization of convection within the PBL by including an Arakawa-Schubert 

type cumulus scheme also operating in the PBL, and 

5) the parameterization of horizontal structure within the PBL by including a version of the 

mass-flux model (e.g. Lappen and Randall, 2001a-c). 
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APPENDIX A 

 

Discrete Pressure Gradient Force Term 
 

 

 Here we discuss the derivation of the pressure gradient force for the layers within the 

PBL.  The derivation procedure is based on the one followed by Suarez et al. (1983), in which 

each layer is assumed internally well mixed.  As far as the pressure gradient force is concerned, 

the single layer version of the multi layer model becomes identical to the traditional model 

described by Suarez et al. (1983).  

 The pressure on the coordinate surfaces within the PBL can be defined by 

 

   p = pS + m S( ) . (A.1) 

 

Note that the subscript PBL is omitted in mPBL .  The pressure gradient force on the sigma 

surfaces is 

 

  ( )p = +
p

p . (A.2) 

 

If we assume that the individual PBL layers are internally vertically well mixed, we can write the 

mean pressure gradient force (A.2) for the layer  as 

 

 

p( ) =
1

+1 2 1 2

( )d
1 2

+1 2

+
1

+1 2 1 2 p
p d

1 2

+1 2

. (A.3) 

 

Then using (A.1) and defining 

 

  

 

1

+1 2 1 2

( )d
1 2

+1 2

 (A.4) 
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in (A.3), we can rewrite (A.3) as 

 

  p( ) = +
1

+1 2 1 2 p
pS + m S( ) d

1 2

+1 2

. (A.5) 

 

Using the hydrostatic equation given by 

 

  
p
=
1

m
, (A.6) 

 

in (A.5), we further rewrite (A.5) as 

 

 

p( ) = +
1

m
+1 2 1 2( )

pS( ) d
1 2

+1 2

 

 +
1

m
+1 2 1 2( )

m( ) d
1 2

+1 2 1

m
+1 2 1 2( ) S m( ) d

1 2

+1 2

. (A.7) 

 

If we use 

  
 

+1 2 1 2 = d
1 2

+1 2

, (A.8) 

 

  
 

d =
1 2

+1 2

+1 2 +1 2 1 2 1 2 +1 2 1 2( )  (A.9) 

 

and 

  pS = pB B S( ) m , (A.10) 

 

which is obtained by applying del operator to (A.1), we obtain the pressure gradient force for 

layer  of the PBL is 
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p( ) =
1

m
+1 2 1 2( ) 1 2 +1 2( ) pB( )  

 

m( )

m
+1 2 1 2( ) +1 2 +1 2( ) + 1 2 1 2( ) B 1 2 +1 2( ) . (A.11) 
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APPENDIX B 

 

Derivation of the discrete budget equations for the PBL layers 

 

 

 Let us consider a general budget equation for an arbitrary quantity  applied to the 

layers of the PBL given by 

 

 

  

m( )L+1
t

+ mv( )L+1 +
1

( )L+1
L+3 2 m( )L+3 2 B

m( )L+1 2   

                        = mS( )L+1 +
g

( )L+1
F( )

L+3 2
F( )

B–
 , (B.1a) 

and 

 

  

m( )

t
+ mv( ) +

1

( ) +1 2 m( )
+1 2 1 2 m( ) 1 2

  

                       

 

= mS( ) +
g

( )
F( )

+1 2
F( )

1 2
   for

 
= L + 2, ,M , (B.1b) 

 

where S is the combined source and sink of .  Note that the subscript PBL is omitted again 

in mPBL .  In our equations, upward fluxes have positive values.  To determine F( )
B–

in (B.1a), 

we consider the budget equation for the infinitesimally thin transition layer between the free 

atmosphere and PBL (see Fig. B1).  
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   Fig. B1 

 

We assume that the transition layer is so thin that it has no storage.  Then, the budget equation 

for the transition layer becomes 

 

   0 =
B–
E + CMB + F( )

B–
+ R( )

B
+

B+E CMB R( )
B+

. (B.2) 

 

On the right hand side of (B.2), the first five and last four terms represent the contributions from 

B
–
 and B

+
 boundaries of the transition layer, respectively.  We assume that the 

quantity C within the cumulus updraft at the top of PBL and there is no turbulent flux at 

B
+
, F( )

B+
= 0 .    Using m( )B = g E MB( ) and defining R( )

B
R( )

B+
R( )

B–
, we 

rewrite (A.2) as  

 

  
B–

m( )B + g F( )
B–

=
B+ m( )B g

B+ B–( )MB + g R( )
B

. (B.3) 

 

Using (B.3) in (B.1a), the budget equation for the uppermost layer of the PBL can be obtain as 

 

 

  

m( )L+1
t

+ mv( )L+1 +
1

( )L+1
L+3 2 m( )L+3 2 B+ m( )B   

   = mS( )L+1 +
g

( )L+1
F( )

L+3 2
+

g

( )L+1
B+ B–( )MB R( )

B
. (B.4) 
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 Now we include turbulent fluxes due to small eddies and effects of the cumulus roots into 

(B.4) and (B.1b) as 

 

m( )L+1
t

+ mv( )L+1 +
1

( )L+1
L+3 2 m( )L+3 2 B+ m( )B = mS( )L+1 +

g

( )L+1
F( )

L+3 2

  

   +
g

( )L+1
F( )

L+3 2
+ L+1

c( )

B+ B–( )MB R( )
B

, (B.5a) 

 

 
m( )

t
+ mv( ) +

1

( ) +1 2 m( )
+1 2 1 2 m( ) 1 2

= mS( )                       

 +
g

( )
F( )

+1 2
F( )

1 2
+

g

( )
F( )

+1 2
+ F( )

1 2
+

c( )

B+ B–( )MB     

    for
 

= L + 2, ,M .  (B.5b) 

and 

 

 
m( )M
t

+ mv( )M
1

( )M
M 1 2 m( )M 1 2

= mS( )M                        

   
g

( )M
F( )

M 1 2
+

g

( )M
F( )

M 1 2
+ M

c( )

B+ B–( )MB .   (B.5c) 

 

In (B.5a) to (B.5c), the tilde denotes turbulent fluxes due to small eddies.  Note that 

 

F( )
L+1 2

= F( )
M +1 2

= 0 .   

 Fig. B2 schematically shows the procedure, by which the effects of cumulus roots are 

included in the budget equations.   The procedure is based on the redistribution of the cumulus 
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  Fig. B2. 

mass flux effect
B+ B( )MB  into the all PBL layers through

 

c( )

B+ B( )MB , 

where
 

c( ) is a fraction contribution factor satisfying

 

c( )
=

=L+1

M

1. 
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APPENDIX C 

 

Derivation of the bulk TKE equation 
 

We can write the mass-weighted TKE equation as 

  

 

mePBL
t

=
mg

p( )PBL
B + S D( ) . (C.1) 

Note that the horizontal TKE convergence term is neglected.  The mass continuity equation for 

the PBL can be given by 

  
m

t
= mv( ) +

m

p( )PBL
gE . (C.2) 

 

By multiplying (C.2) by ePBL and using the result in (C.1), we obtain 

  

  

  

ePBL
t

=
ePBL
p( )PBL

gE +
g

p( )PBL
B + S D( ) +

ePBL
m

mv( ) . (C.3) 
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APPENDIX D 

 

Entrainment Closure 

 

 The formulation discussed here was first implemented by Krasner (1993) in a one-

dimensional model and have been recently published by Randall and Schubert (2004).  Here we 

repeat the discussion for convenience. 

 

a. Dry clear PBL 

  

 The entrainment parameterization follows the ideas of Breidenthal and Baker (1985), 

Siems et al. (1990) and Breidenthal (1989).  The entrainment rate can be given by   

 

  E =
b1 B ePBL
1+ b2Ri

. (D.1) 

Here b1 and b2 are assumed to be constants, and the relevant Richardson number is 

 

  Ri
g v( )

B
z( )PBL

BePBL
. (D.2) 

 

To determine b1 and b2, we first consider the strong inversion (or highly stable) case.  In this 

case b2Ri >> 1 , and (D.1) becomes  

   

  E =
b1 B ePBL
b2Ri

. (D.3) 

 

Now we require that (D.3) satisfy 

 

  
 
F

v
( )

B
= k F

v
( )

S
, (D.4) 
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where k 0.2 , under the condition that the entrainment, buoyancy generation and dissipation 

effects are in a balance yielding no TKE change. Then, using (4.3), we can write 

   

  

 

F
v

( )
S
+ F

v
( )

B

2

g z( )PBL

S

= C PBL ePBL( )
3 2

, (D.5) 

 

Here C 1  (according to Moeng and Sullivan, 1994).  Using (D.4) in (D.5), we find that 

 

  
1 k

2
F

v
( )

S

g z( )PBL

S

= C PBL ePBL( )
3 2

. (D.6) 

Now using 

  
 
F

v
( )

B
= E v( )

B
 (D.7) 

 

in (D.4), we obtain 

 

  F
v

( )
S
=
E v( )

B

k
. (D.8) 

 

Using (D.8) in (D.6) and after some arrangement, we obtain an alternative equation that 

determines the entrainment rate as 

 

  

 

E =
2kC

1 k
PBL ePBL

g v( )
B

z( )PBL

SePBL

. (D.9) 

 

A comparison of (D.9) to (D.1) ignoring the difference between S and B yields that 

 

  
b1
b2

2kC

1 k
. (D.10) 
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Since C=1 and k=0.2,  we find that b1 b2 0.5 .  Now we consider the neutral case, for which 

 

  Ri = 0  (D.11) 

 

and, therefore, 

 

  
 
F

v
( )

B
= 0 . (D.12) 

 

For this case, (D.1) should be consistent with 

 

  E = D Bw , (D.13) 

 

where D 0.2 and w* is the convective velocity scale of Deardorff (1970) in the present 

notation approximately given by  

 

  w =
g F

v
( )

S
z( )PBL

( )S

1 3

. (D.14) 

 

The relation (D.14) is obtained through LES by Deardorff (1974).  In this neutral (no-

inversion) case, (D.1) becomes 

   

  E = b1 B ePBL . (D.15) 

 

A comparison of (D.15) to (D.13) yields that 

 

  w
b1
D

ePBL  (D.16) 

 

Since 
 
F

v
( )

B
= 0  for the neutral case, (D.5) becomes  
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F

v
( )

S

g z( )PBL

PBL S

= 2C ePBL( )
3 2

. (D.17) 

 

Taking advantage of the similarity between (D.17) and (D.14) by ignoring minor differences, 

we find 

 

  w 2C( )
1 3

ePBL . (D.18) 

 

Comparing (D.16) to (D.18), we obtain b1 as 

 

  b1 D 2C( )
1 3

. (D.20) 

 

Since D 0.2 and C 1 , b1 0.25 , so that, b2 0.5 . 

 

b. Smoke-cloud topped PBL 

 

 This case considers a PBL topped with smoke cloud, with radiative cooling at its top, 

but no phase changes.  The presence of radiative cooling can affect the entrainment rate 

through two processes: i) it can increase the TKE and ii) it can cool the entraining air, thus 

making the inversion (PBL-top jump) appear to be weaker that it really is.  Through (D.1) and 

(D.2) the former process is already included in our formulation.  Yet the latter needs to be 

incorporated.  The method we use is based on a modification of the inversion strength to reflect 

the effect of reduced stability due to radiative cooling in the expression for Richardson number 

given by (D.2).  

 To do that, we employ a “mass flux” model.  According to Randall et al. (1992), in a 

situation schematically demonstrated in Fig. D1, we can write  

 

  d( )
B–

= E B+ + 1 E( )
B–
+ E

E
S dz

z
B–

z
B+ , (D.20) 
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Here  is an intensive arbitrary quantity, subscript d denotes a “downdraft” property, E is a 

“mixing parameter” given by 

 

  E =
BE

MB

, (D.21) 

 

where bar denotes average across updrafts and downdrafts, B is the fractional area covered by 

updraft, MB is a convective mass flux, and S is the source or sink of  within the inversion 

(transition) layer.  

 
 

Fig. D1. 

 

 If we choose h , then S dz
z
B–

zB+
= R( )B .  Note that R( )B > 0  for radiative 

cooling.  For this case, (D.20) becomes  

 

  hd( )
B–

= EhB+ + 1 E( )h
B–

E

E
R( )

B
. (D.22) 

Now we find the expression for the “effective” mean moist static energy at B+ level h
B+( )

eff
 

form 

 

  EhB+ + 1 E( )h
B–

E

E
R( )

B
= E h

B+( )
eff
+ 1 E( )h

B–
, (D.23) 
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which immediately becomes 

 

  h( )
eff

= h
B+

R( )
B

E
. (D.24) 

 

In (D.24), we define h( )
eff

h
B+( )

eff
h
B–

.  Now we modify the definition of the Richardson 

number (D.2).  We first write 

 

  v( )
eff

= v( )
B

1

B

R( )
B

E
 (D.25) 

 

and, then, the Richardson number using (D.25) as 

 

  

 

Ri( )
eff

g z( )PBL

B–
ePBL

v( )
B

1

B

R( )
B

E
. (D.26) 

 

Using (D.26) in (D.1), we obtain 

 

 

  

 

E =
b1 B–

ePBL

1+ b2
g z( )PBL

B–
ePBL

v( )
B

1

B

R( )
B

E

. (D.27) 

 

By rearranging the terms in (D.27), we obtained the equation that determines the entrainment 

rate for a PBL topped by smoke cloud as 

 

  

 

E =

b1 B–
ePBL + b2

g z( )PBL
ePBL B B–

R( )
B

1+ b2
g z( )PBL v( )

B

B–
ePBL

 (D.28) 

or 
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  E =

b1 B–
ePBL + b2

g z( )PBL
ePBL B B–

R( )
B

1+ b2Ri
 (D.29) 

 

Under the strong inversion, neglecting “1” in the denominator of (D.28), the entrainment 

equation (D.29) becomes 

 

 

  

 

E =
b1
b2

B–

ePBL( )
3 2

g z( )PBL
+

R( )
B

B– B

B

v( )
B

. (D.30) 

 
c. Water-cloud topped PBL 

 

 Now we write 

 

  rd( )
B–

= ErB+ + 1 E( )r
B–

. (D.31) 

 

Since the air is saturated, we can write 

 

 

  
 
svd( )

B–
sv( )

B–
=

B–
hd( )

B–
h
B– B–

L rd( )
B–

r
B–

, (D.32) 

 

 

where B B B L .  Using (D.22) in (D.32), we obtain 

 

svd( )
B–

sv( )
B–

=
B– EhB+ + 1 E( )h

B–
E

E
R( )

B
h
B– B–

L ErB+ + 1 E( )r
B–

r
B–

 

   (D.33) 

 

After some arrangements, (D.33) becomes 
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  svd( )
B–

sv( )
B–

= E B–
h( )

B B–
L r( )B B–

R( )
B

E
. (D.34) 

 

Now let us define
 B–

h( )
B B–

L r( )B sv( )
B

sv( )
crit

 following Randall (1980) and 

rewrite the right hand side of (D.34) as  

 

 

 
E B–

h( )
B B–

L r( )B B–

R( )
B

E E sv( )
B

sv( )
crit B–

R( )
B

E
. (D.35) 

 

 

Phase changes and radiative cooling make the inversion seem weaker than it really is. We 

define
 
s

vB+( )
eff

by 

  
 
svd( )

B–
= E s

vB+( )
eff
+ 1 E( ) sv( )

B–
, (D.36) 

so that 

  svd( )
B

sv( )
B
= E sv( )

eff
, (D.37) 

 

where
 

sv( )
eff

= s
vB+( )

eff
sv( )

B–
.  A comparison of (D.35) to (D.37) shows that 

  
 
sv( )

eff
= sv( )

B
sv( )

crit B

R( )
B

E
. (D.38) 

 

To obtain the equation that determines the entrainment rate for this case, we first write the 

Richardson equation (D.2) in terms of the virtual static energy as 

  

 

  

 
Ri

g sv( )
B

z( )PBL

B B–
ePBL

. (D.39) 
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Then, replacing  sv( )
B

by sv( )
eff

 in (D.39) and substituting the result into (D.1), we find 

 

  E =
b1 B–

ePBL

1+ b2
g z( )PBL
B B–

ePBL
sv( )

B
sv( )

crit B–

R( )
B

E

 (D.40) 

 

After some arrangements, we obtain the equation that determines the entrainment rate for a 

water-cloud topped PBL as 

 

  

 

E =

b1 B–
ePBL + b2

g z( )PBL
B B–

ePBL
B–

R( )
B

1+ b2
g z( )PBL
B B–

ePBL
sv( )

B
sv( )

crit

. (D.41) 

 

 

 

 



PBL Parameterization  References 

 

 References: 1 

Acknowledgments. We thank Professor David Randall for providing the bulk PBL 

parameterization used in this study and for his support for the ongoing research.  We also thank 

to Mr. Gabriel Casez Boezio for his valuable help in implementing the PBL parameterization 

to the UCLA-GCM and performing climate simulations.  

 

 

References 

 

Arakawa, A., 1969: Parameterization of cumulus clouds.  Proceedings of the WMO/IUGG 

Symposium on Numerical Weather Prediction, Tokyo, 1968, Japan Meteorological 

Agency, IV-8-1 to IV-8-6. 

Arakawa, A., and M.J. Suarez, 1983: Vertical differencing of the primitive equations in sigma-
coordinates.  Mon. Wea. Rev., 111, 34-45. 

Arakawa, A., 2000: A personal prospective on the early development of general circulation 

modeling at UCLA.  In General Circulation Model Development: Past, Present, and 

Future, D. A. Randall Ed, Academic Press, 1-65. 

Beljaars, A. and P. Viterbo, 1998: Role of the boundary layer in a numerical weather prediction 

model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, 

Eds., Elsevier, 287-304. 

Bechtold, P., C. Fravalo and J. P. Pinty, 1992: A model of marine boundary-layer cloudiness for 

mesoscale applications. J. Atmos. Sci.,  49, 1723-1744. 

Breidenthal, R. E. and M. B. Baker, 1985: Convection and entrainment across stratified 

interfaces. J. Geophys. Res., 90D, 13055-13062.  

Breidenthal, R. E., 1992: Entrainment at thin stratified interfaces: The effects of Smith, 

Richardson and Reynolds numbers. Phys. Fluids A, 4, 2141-2144. 

Bretherton, C. S., J. R. McCaa and H. Grenier, 2004: A New Parameterization for Shallow 

Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary 

Layers. Part I: Description and 1D Results. Mon. Wea. Rev., 132, 864-882. 

Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary 

boundary layer and for Rayleigh convection. J. Atmos. Sci.,  27, 1211-1213. 

Deardorff, J. W., 1972: Parameterization of the planetary boundary layer for use in general 

circulation models. Mon. Wea. Rev., 100, 93-106. 

Deardorff, J. W., 1974: Three-dimensional numerical study of the height and mean structure of a 

heated planetary boundary layer. Bound. Layer Meteor.,  7, 81-106. 

Gordon, C. T., and W. F. Stern, 1982:  A description of the GFDL global spectral model. Mon. 

Wea. Rev, 110, 625-644.  

Grenier, H. and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models 

and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 

129, 357-377. 

Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Reudy, and L. Travis, 1983:  

Efficient three-dimensional global models for climate studies: Model I and II. Mon. Wea. 

Rev, 111, 609-662. 

Holtslag, A. A. M. and C. –H. Moeng, 1991: Eddy diffusivity and countergradient transport in 

the convective atmospheric boundary layer. J. Atmos. Sci.,  48, 1690-1698. 



PBL Parameterization  References 

 

 References: 2 

Holtslag, A. A. M. and B. A. Boville, 1993: Local versus nonlocal boundary-layer 
diffusion in a global model. J. Climate, 6, 1825-1842. 

Konor, C. S., and A. Arakawa, 1997: Design of an atmospheric model based on a generalized 

vertical coordinate.  Mon. Wea. Rev., 125, 1649-1673. 

Krasner, R. D., 1993: Further Development and Testing of a Second-Order Bulk Boundary Layer 

Model.  M.S. Thesis, Department of Atmospheric Science, Colorado State University. 

131 pp. 

Lappen, C.-L. and D. A. Randall, 2001: Toward a unified parameterization of the boundary layer 

and moist convection. Part I: A new type of mass-flux model. J. Atmos. Sci.,  58, 2021-

2036.  

Lappen, C.-L. and D. A. Randall, 2001: Toward a unified parameterization of the boundary layer 

and moist convection. Part III: Simulations of clear and cloudy convection. J. Atmos. Sci.,  

58, 2037-2051.  

Lappen, C.-L. and D. A. Randall, 2001: Toward a unified parameterization of the boundary layer 

and moist convection. Part II: Leteral mass exchanges and subplume-scale fluxes. J. 

Atmos. Sci.,  58, 2052-2072. 

Li, J.-J. F., A. Arakawa and C. R. Mechoso, 1999: Revised planetary boundary layer moist 

processes in the UCLA General Circulation Model. Tenth Symposium on Global Change 

Studies, 10-15 January 1999, Dallas, Texas, American Meteorological Society.  

Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion.  Quart. J. Roy. 

Meteor. Soc., 94, 292-309. 

Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin and R. N. B. Smith, 2000: A new boundary 

layer scheme. PartI: Scheme description and single-column model tests. Mon. Wea. Rev., 

128, 3187-3199. 

McCaa, J. R. and C. S. Bretherton, 2004: A New Parameterization for Shallow Cumulus 

Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. 

Part II: Regional Simulations of Marine Boundary Layer Clouds. Mon. Wea. Rev., 132, 

883-896. 

Moeng, C. –H. and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary 

boundary layer flows. J. Atmos. Sci.,  51, 999-1022. 

Randall, D. A., 1976: The interaction of the planetary boundary layer with large-scale 

circulations.  Ph.D. Thesis, Department of Atmospheric Sciences, UCLA, 247 pp. 

Randall, D. A., Q. Shao, and C. –H. Moeng, 1992: A second-order bulk boundary layer model. J. 

Atmos. Sci., 49, 1903-1923. 

Randall, D. A., M. A. Branson, C. Zhang, C.-H. Moeng and R. D. Krasner, 1998: An updated 

bulk boundary layer parameterization. Unpublished. 

Randall, D. A., R. D. Harshvardhan, D. A. Dazlich and T. G. Corsetti, 1989:  Interactions among 

Radiation, Convective, and Large-Scale Dynamics in a General Circulation Model, J. 

Atmos. Sci, 46, 1943-1970. 

Randall, D. A., and W. H. Schubert, 2004: Dreams of Stratocumulus sleeper. In Atmospheric 

Turbulence and Mesoscale Meteorology. Edited by E. Fedorovich, R. Rotunno and B. 

Stevens. Cambridge University Press. 279 pp. 

Siebesma, A. P., P. M. M. Soares and J. Teixeira, 2007:  Interactions among Radiation, 

Convective, and Large-Scale Dynamics in a General Circulation Model, J. Atmos. Sci, 

64, 1230-1248.  

Siems, S. T., C. S. Bretherton, M. B. Baker S. Shy, and R. E. Breidenthal, 1990: Buoyancy 

reversal and cloud top instability. Quart. J. Roy. Meteor. Soc., 116, 705-739. 



PBL Parameterization  References 

 

 References: 3 

Soares, P. M. M., P. M. A. Miranda, A. B. Siebesma and J. Teixeira., 2004: An eddy-

diffusivity/mass-flux parameterization for dry and shallow cumulus convection. Quart. J. 

Roy. Meteor. Soc., 130, 3365-3383. 

Stevens, B., 2002: Entrainment in stratocumulus-topped mixed layers. Quart. J. Roy. Meteor. 

Soc., 128, 2663-2690. 

Suarez, M. J., A. Arakawa and D .A. Randall, 1983: The parameterization of the planetary 

boundary layer in the UCLA general circulation model:  formulation and results. Mon. 

Wea. Rev., 111, 2224-2243. 

Sud, Y. C. and G. K. Walker, 1992: A review of recent research on improvement of physical 

parameterizations in the GLA GCM.  In Physical Processes in atmospheric models, D. R. 

Sikka and S.S. Singh (eds.), Wiley Eastern Ltd., New Delhi, 422-479. 

Takacs, L. L., 1985: A two-step scheme for the advection equation with minimized dissipation 

and dispersion errors. Mon. Wea. Rev., 113, 1050-1065. 

Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to 

surface evaporation. Boun.-Layer Meteor., 37, 129-148. 

van Meijgaard, E. and A. P. van Ulden, 1998: A first-order mixing and condensation scheme for 

nocturnal stratocumulus. Atmos. Res., 45, 253-273. 

Wyngaard, J. C., and C.-H. Moeng, 1990:  A global survey of PBL models used within GCMs.  

In proceedings of PBL model evaluation workshop:  European Centre for Medium-Range 

Forecasts, P. Taylor and J. C. Wyngaard (Eds.), 14-15 August, 1989, Reading, U.K., 

World Climate Research Program Series 42, WMO/TD 378. 

Zhang, C., D. A. Randall, C. –H. Moeng, M. Branson, K. A. Moyer, and Q. Wang, 1996: A 

surface flux parameterization based on the vertically averaged turbulence kinetic energy. 

Mon. Wea. Rev ., 124, 2521-2536. 




