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FOREWORD 
 

 This technical report presents a detailed description of the large-scale 

condensation process and PBL parameterization incorporated into the generalized 

coordinate model originally developed by Konor and Arakawa (1997). 

 The incorporation procedure for the large-scale condensation closely follows 

Konor and Arakawa (2000) since the generalized vertical coordinate is virtually an 

isentropic coordinate for a large part of the vertical domain. 

 The PBL parameterization presented here is an extension of that used in the 

UCLA-GCM, which is based on a single mixed layer with variable depth (Randall, 1976 

and Suarez et al., 1983).  Our version uses multiple layers while approximately 

maintaining the advantages of the original parameterization.  In this parameterization, the 

bulk formulation is used for the effects of convectively active large eddies and a newly 

introduced K-closure formulation is used for the effects of diffusive small eddies.  The 

bulk formulation, which is originally introduced by Randall, Branson, Zhang, Moeng and 

Krasner (unpublished, partially based on Krasner, 1993), is based on a predicted bulk 

turbulence kinetic energy and explicitly determined PBL-top entrainment.  The 

entrainment formulation is discussed by Randall and Schubert (2004).   
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1-Introduction 

 

 An advantage of using a hybrid vertical coordinate, which combines an isentropic 

coordinate with a sigma-type coordinate near the Earth’s surface with a smooth transition 

between them, is well recognized.  Detailed discussions on this topic can be found in 

Bleck and Benjamin (1993) and Konor and Arakawa (1997).  Here we focus on the 

incorporation of condensation and PBL processes into our generalized vertical coordinate 

model, which is primarily designed to operate with an isentropic-sigma hybrid vertical 

coordinate (Konor and Arakawa, 1997).  The incorporation of condensation process 

closely follows Konor and Arakawa (2000) since the hybrid coordinate we consider here 

is closed to an isentropic coordinate for a large part of the model’s vertical domain. 

 In an isentropic coordinate, the vertical mass redistribution is solely through 

heating while the horizontal mass distribution is through horizontal advection along an 

isentropic surface. It is then easier to keep track of the budgets of prognostic variables in 

a discrete system with an isentropic coordinate than in that with a pressure-based 

coordinate.  It should be noted, however, the way in which heating can be incorporated 

into a model with an isentropic coordinate is different from that into a model with a 

pressure-based coordinate.  This is because the pressure distribution on the isentropic 

surfaces determines the thermal structure in an isentropic coordinate model while, in a 

pressure coordinate model, the potential temperature distribution determines the thermal 

structure as discussed by Konor and Arakawa (2000) in detail. 

It has been widely recognized that the planetary boundary layer (PBL) plays a 

crucial role in the climate system.  The representation of PBL processes, however, 

remains one of the major unresolved issues in climate modeling due to the complexity of 

the physical processes involved.  The situation is especially serious for the PBL with a 

stratocumulus cloud layer inside. 

 The scale of turbulence in the PBL can be classified into two categories: the 

quasi-local small eddies and the non-local large eddies.  This has led to two separate 

approaches in the formulation of PBL processes in atmospheric models: one emphasizes 

the small eddies by parameterizing their effects through a K-closure formulation (Louis, 

1979) and the other emphasizes the large eddies by parameterizing their effects through a 

bulk approach, which implicitly includes the diffusive effects by assuming a well-mixed 
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PBL (Lilly, 1968).  In later years, the K-closure formulation has been extended to include 

non-local effects by skewing the K-profile and including a countergradient flux term 

(Holtzlag and Moeng, 1991; Holtslag and Boville, 1993). 

The behavior and structure of the clear convective PBL is relatively well 

understood and, therefore, its realistic simulation is the starting point of any 

comprehensive PBL parameterization.  It is widely accepted that the two approaches 

mentioned above perform reasonably well in simulating major aspects of clear PBL. If 

the PBL top is higher than the condensation level, however, a cloudy sublayer forms 

within the PBL near the top.  In this sublayer, turbulence is primarily driven by the 

convection due to the radiative cooling near the cloud top.  Therefore, the cloud-topped 

PBL can be maintained even without positive buoyancy due to a surface heat flux.  The 

mixed-layer approach comprises a straightforward formulation of turbulence fluxes in 

such a PBL (Lilly, 1968) while the K-closure approach does not. 

 A PBL parameterization based on the mixed-layer approach complemented by 

Deardorff’s (1972) bulk parameterization for the variable-depth PBL is incorporated into 

the UCLA GCM (Randall 1976, Suarez et al. 1983).  In this model, the layer next to the 

lower boundary is designated as the PBL, which acts as a well-mixed layer (see Fig. 1a).  

The parameterized mass entrainment (detrainment) into (out of) the PBL at the PBL top 

contributes to the rate of change of the PBL depth. The PBL temperature, moisture and 

wind fields are predicted using the parameterized surface fluxes and the fluxes associated 

with the entrainment (or detrainment) through the PBL top. 

 The use of a variable-depth well-mixed PBL greatly simplifies parameterization 

of PBL cloud processes.  In particular, formulation of physical processes concentrated 

near the cloud top is much more tractable with this approach.  The successful simulation 

of time-averaged stratocumulus cloud incidence with a recent version of the UCLA GCM 

(Li et al. 1999) is largely due to this advantage.  The approach has disadvantages, 

however, some of which are listed below.  First, it does not allow the vertical variation of 

the horizontal velocity within the PBL.  Vertical resolution required for representing low-

level baroclinicity, therefore, may be lost, especially when the PBL is deep.  Moreover, 

even conservative thermodynamic variables, such as the moist static energy and the total 

water mixing ratio, which are assumed to be well-mixed in the bulk approach, are not 

always well-mixed in reality, especially for the stable PBL.  Secondly, an inevitable large 
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jump in the vertical resolution between the PBL and the layer above in high vertical 

resolution models can cause large truncation errors. 

 The majority of climate models do not explicitly treat the PBL clouds.  Among 

the ones with explicit treatment, for example, Gordon and Stern (1982) and Sud and 

Walker (1992) use an empirical formulation based on relative humidity; Hansen et al. 

(1983) uses a prognostic cloud water formulation; and Suarez et al. (1983), Randall et al. 

(1989)  and the model we present here use the mixed-layer approach for the treatment of 

PBL clouds.  A comprehensive review about the performance of the PBL cloud 

treatments can be found in Wyngaard and Moeng (1990).  More recently, Lock et al. 

(2000) developed a formulation in which the treatment is based on an extended empirical 

relative humidity formulation.  Lock’s scheme is now used in the UKMO and GFDL 

models. 

 In recent years, there are efforts to incorporate the variable-depth PBL approach 

in the models based on the local and non-local K-formulations to improve the simulation 

of PBL cloud incident (Beljaars and Viterbo, 1998; Lock et al., 2000; Grenier and 

Bretherton, 2001).  In these applications, the PBL is not an explicit model layer such as 

the one discussed in previous two paragraphs, but the PBL depth is diagnosed or 

predicted, locating the PBL-top anywhere between the levels of the model that are more 

or less fixed in space.  Then, the PBL-top jump is generally obtained through an 

extrapolation technique from above and below. In this approach, therefore, the difficulty 

in maintaining a physically consistent PBL-top jump remains as a major problem. 

 An interesting approach gaining momentum is the mass-flux concept based on a 

convective circulation model (see Arakawa 1969, Arakawa 2000).  The concept has been 

applied to the PBL parameterization problem for more than three decades by several 

authors.  Most recent examples are Lappen and Randall (2001a,b,c), Bretherton et al. 

(2004), and McCaa and Bretherton (2004).  The mass-flux concept appears to be useful in 

parameterizing the horizontal structure of the PBL, especially in determining the 

horizontal cloud distribution in transition from stratus to stratocumulus regimes.  We 

recognize this approach as complimentary to the parameterization we discuss in this here. 

In this technical note, we propose a hybrid approach that introduces multiple 

model layers within the PBL to resolve its internal structure, while retaining the 

advantages of the bulk parameterization (see Fig. 1b).  In this approach, the bulk 
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formulation is used for the effects of convectively active large eddies, and a K-closure 

formulation is used for the effects of diffusive small eddies as in Randall (1976).  

Simulated profiles in the PBL are allowed to deviate from well-mixed profiles.  The 

deviations are, however, assumed to be small for thermodynamic conservative variables 

in formulating bulk properties of the PBL. 

We implemented this approach in vertically discrete models, using a vertical 

coordinate system in which the PBL-top is a coordinate surface shared by both the free 

atmosphere and the PBL.  In this way, as we mentioned earlier, the formulation of the 

processes that are highly concentrated near the PBL top becomes more explicit.  When 

the PBL does not have a well-defined top, such as the left-over “daytime” PBL in 

evening, the definition of this coordinate system becomes ambiguous.  In such a situation, 

the coordinate can be viewed as an arbitrarily chosen coordinate. 

 
 

   
Fig. 1. Schematic representation of parameterized PBL a) based on a single layer as in current UCLA GCM 
and b) based on the multi-layers.  Lower panel illustrates typical vertical profiles of the potential 
temperature  and the total water mixing ratio r. 

 
  A major advantage of such a hybrid parameterization is in the simulation 

of the PBL processes during the surface frontogenesis.  The multi-layer formulation 

allows vertical wind shears to be developed and maintained within the PBL due to the 

vertically varying pressure gradient force, while the potential temperature is nearly well 

mixed in the vertical.  In this way, we may expect more realistic simulations of 
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extratropical cyclones and better prediction of low-level cloud distributions in the middle 

latitudes with this parameterization. 

The PBL-top entrainment (or detrainment), PBL cloud processes and the surface 

fluxes are formulated following a new approach based on the predicted bulk turbulence 

kinetic energy (TKE), originally introduced by Randall, Branson, Zhang, Moeng and 

Krasner (personal communications; hereafter, RBZMK).  The most important aspects of 

this approach can be found in Krasner (1993), Zhang et al. (1996), Randall et al., (1998) 

and Randall and Schubert (2004).  The bulk properties of the PBL to be used in our 

formulations are obtained by mass-weighted vertical averaging of the prognostic 

variables over the entire PBL. In the case of potential temperature, averaging is only over 

the sub-cloud layers. 

 Motivated with the encouraging results obtained from this model, we incorporated 

the multi-layer PBL parameterization into the UCLA GCM.  The results obtained by 

selected climate simulations will be presented in a forthcoming paper . 

 In the next section, we discuss the vertical coordinate for the free-

atmosphere/PBL system.  The basic governing equations are presented in section 3.  The 

incorporation of condensation process into continuous system for the free atmosphere is 

discussed in section 4.  We discuss the vertical discretization of the equations for the free 

atmosphere and PBL in section 5.  The discretization of the PBL processes and the bulk 

PBL parameterization, which represents the effects of large convective eddies, are 

discussed in section 6 and 7, respectively.  In section 8, we discuss the K-closure 

formulation representing the effects of the small diffusive eddies.  In section 9, the free-

atmosphere/PBL exchange processes are discussed.  The additional discretization aspects 

of the model are presented in section 10.  In section 11, we present a numerical 

simulation of extratropical cyclone evolution.  Finally, a summary is presented in section 

12. 
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2- Vertical coordinate 

 
 We have incorporated a multi-layer PBL parameterization with variable PBL 

depth into the generalized vertical coordinate model (see Fig. 2).  A “massless” layer 

bounded by B+  and B  surfaces are added to the PBL top to represent the discontinuity 

in the predicted quantities between the free atmosphere and the PBL.  When it is 

necessary, we will denote B+  or B  otherwise B will denote the PBL-top.  Note that 

= + =  and p = p + = p  but, for example, + .  To include the 

parameterized PBL, we define the vertical coordinate as 

 

  
F ,( ) for pB p pT

F ( ) for pS p pB
, (2.1) 

 
wherepS , pB  and pT  are the pressures at the surface, PBL-top and the top of the model 

atmosphere, respectively, and pB p( ) pB pT( )
1
 and pS p( ) pS pB( )

1
. 

(Note that, unlike the conventional sigma, our  and  increase in height.) 

 

   

Fig. 2. The vertical structure of the model.  The shaded area represents 
the PBL. 
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 In the free atmosphere, where p pB , the vertical coordinate is a hybrid -  

coordinate used by Konor and Arakawa (1997), which can be briefly described as 

follows: F ,( ) f ( ) + g( ) , where g( )  is monotonic function of  satisfying 

g( ) = 0  at = B (=0) and g( ) = 1  at = T (=1).  To maintain  as a monotonic 

function of , it is required that df d = min dg d ( )
min
g , where min  and 

( )
min

 are properly chosen lower bounds of  and d d , respectively.  Following 

Konor and Arakawa (1997), we use g( ) 1 e a( ) 1 e a( )
1
, where a is a constant. 

(We currently use a=10.)   

 In the PBL, we use a -type coordinate defined by 

F ( ) B + S B( ) B( ) S B( )
1
, where S 0 , B 1 , B f 0( )  and 

S = B , where  is an arbitrarily prescribed constant less than 1. 

 

 

3- Basic governing equations 

 
 Here we present the basic governing equations including moist processes for the 

generalized vertical coordinate system.  The mass continuity equation is given by 

 

  
   t

m + mvv( ) + m�( ) = 0  for T > > S ,    (3.1) 

where  
  

 
m p  (>0). (3.2) 

 

  
m�( ) is the vertical mass flux, and  

� D Dt  is the “vertical velocity”.  The material 

time-derivative is given by
  
D Dt t( ) + v + � .  The pressure tendency 

equations can be obtained by vertically integrating (3.1) and (3.2) as 
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t
p = mvv( )d

T

+ m�( ) for T > > B 3.3a( )

t
pB = mvv( )d

B

T

+ m�( )
B

for = B 3.3b( )

t
p =

t
pB mvv( )d

B

+ m�( ) m�( )
B

for B > > S 3.3c( )

t
pS = t

pB mvv( )d m�( )
B

for = S 3.3d( )
S

B

, 

 

where we assumed pT t( ) = 0 .  In (3.3a) to (3.3c), the vertical mass flux 
 
m�( )  for 

T > > B  is yet to be determined and the PBL-top mass flux 
  
m�( )

B
 will be determined 

by physical parameterizations.   

 The thermodynamic equations used in the model are   

 

 

   

t
+ v + � =

Q
T B+

3.4a( )

t
m( ) + m v( ) + m�( ) = m

Q
g
F
+G

B
> S 3.4b( )

, 

 

where cp p po( )  is the Exner function, Q is diabatic heating rate per unit mass, F is 

the convective eddy fluxes of the potential temperature and G  is the additional effects in 

the PBL such as those due to diffusive eddy flux and cumulus roots.  In the free 

atmosphere, we use the advective form (3.4a) to predict the potential temperature to 

automatically satisfy t( ) = 0  when = .  When we only consider condensation 

process, the heating rate Q  is given by 

 
  Q = LC , (3.5) 

 
where L  is the latent heat and C  is the condensation rate.  

 At present, liquid water is carried as a prognostic variable only within the PBL.  

For this case, the moisture budget equations are given by 
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t
mq( ) + qmvv( ) + qm�( ) = mC T B+

3.6a( )

t
mr( ) + rmvv( ) + rm�( ) = mR g

Fr +Gr B
> S 3.6b( )

,   

 
where q  and r  are the mixing ratios of water vapor and total water, respectively.  The 

liquid water-mixing ratio is then given by � = r q  if r > q  and � = 0  if r q , where 

q  is the water vapor saturation mixing ratio.  In (3.6b),  R is the rate of raindrop 

generation, Fr is the convective eddy fluxes of the moisture. Gr represents additional 

effects in the PBL such as those due to diffusive eddy flux and cumulus roots. 

 The momentum equations used in the model are 

 

   

t
v + v v +

v � = p( ) f k v T B+
3.7a( )

t
v + v v +

v � = p( ) f k v
g

m

F
v +
G

v

m B
> S 3.7b( )

,  

 

where p( )  is the horizontal pressure gradient force, 
 
F

v
is the convective eddy fluxes 

of the momentum. 
 
G

v
represents additional effects in the PBL such as those due to 

diffusive eddy flux and cumulus roots.  With the  coordinate, the horizontal pressure 

gradient force can be expressed as 

 
  p = M + , (3.8) 

 
where M  ( + ) is the Montgomery potential.   

 The hydrostatic equation used in the model is  

 

  
  

= m
p v

, (3.9) 
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where 
 v

 is the virtual potential temperature defined by 

 
    v

1+ 0.608q �( ) . (3.10) 

 

The hydrostatic equation (3.9) is used to determine the geopotential height . 

 
 In the hybrid coordinate = F ,( ) ,  remains unchanged on each coordinate 

surface.  We therefore require that 

 

  0 =
t
F ,( ) for T B . (3.11) 

 
From (3.11) we can derive a diagnostic relationship that determines the vertical mass flux 

  
m�( ) .  To do this, first expressing the right hand side of (3.11) as 

 

  
F

t
+

F

pB p

pB
t

+
p

pB

p

t
= 0  (3.12) 

 

and then using (3.3a) and (3.3b), we obtain  

 

  

   

F 1

m

F

p
pB

m�( ) = F Q
v +  

  

   

F

pB p

mvv( )d
B

T

+ m�( )
B
+

p
pB

mvv( )d
T

.(3.13) 

 
Here we have used pT t( ) = 0 .  Equation (3.13) is a generalized vertical mass flux 

equation.  When F ,   m
�( )B = 0  and  

� � , (3.13) yields  

 

  
   
m �( ) = mvv( )d

T

1( ) mvv( )d
B

T

, (3.14) 

 
which is equivalent to the vertical mass flux equation for a  coordinate. (Note that, in 

our definition of the vertical coordinate,  increases with height.)  On the other hand, 
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when F  and 
� � , (3.13) yields 

 

  
 
� =

Q
, (3.15) 

 

which is the vertical mass flux for the isentropic coordinate.   

 
 Within the PBL  also remains unchanged on each coordinate surface.  We 

therefore require that 

 

  0 =
t
F ( ) for B S . (3.16) 

 
From (3.16), we can derive a diagnostic relationship that determines the vertical mass 

flux 
  
m�( )  within the PBL.  To do this, we first express the right hand side of (3.16) as 

 

pB p,pS

pB
t

+
p

pB ,pS

p

t
+

pS p,pB

pS
t

= 0 for B S . (3.17) 

 
Then using (3.3b) to (3.3d) in (3.17), we obtain the equation that determines the vertical 

mass flux within the PBL as 

 

 
   
m�( ) = m�( )

B
+ mvv( )d

B

1( ) mvv( )d
S

B

for B S .    (3.18) 

 

Note that we can also write = S( ) S B( )
1
 within the PBL. 

 
 
 

4-Formulation of large-scale condensation within the free atmosphere 

 

 As in (3.11), we are requiring 

 

  
t
F ,( ) = 0 for T B  (4.1) 
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in the free atmosphere.  Now let us consider the large-scale condensation process, in 

which condensation heating at a given  changes  and p  locally while pB  is not 

directly effected.   Then, from (4.1), we can write 

 

  
F

t
+

F

p
pB

p

t
= 0 . (4.2) 

 

 When only the direct effects of condensation process are considered, (3.4a) and 

(3.3a) give 
 

  

 

t
=
Q �

t
p = m�

. (4.3) 

 
We can then obtain an equation that determines the “vertical velocity” induced by 

condensation heating by eliminating the terms with time derivatives between (4.3) and 

(4.2) as  

 

  � = A
Q

, (4.4) 

 

where A is defined by 

 

  

 

A
F( )

F( ) ( ) m F( ) p( )
pB

. (4.5) 

 

A is a parameter between 0 and 1 that relates  
�  to heatingQ .  For an isentropic 

coordinate, F , equation (4.5) yields  A=1 since F( ) = 1  and F( ) = 0 .  The 

“vertical velocity” then becomes  
� � = Q  implying that the heating and the vertical 

mass flux are directly related. (For more detail see Konor and Arakawa, 2000.)  For 

F , on the other hand, since yields A = 0  since F( ) = 0  and F( ) = 1 .  

Then � = 0  so that the vertical mass flux is not directly related to the heating in the sense 
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that only the mass continuity equation determines the vertical mass flux. 

 The change in the water vapor mixing ratio due to condensation is determined by  

 

  
t
q = C A

Q q
. (4.6) 

 
For a saturated atmosphere, q = q ,p( ) , water vapor mixing ratio is controlled by 

potential temperature and pressure. When the advection terms are restored in (4.6), the 

rate of condensation depends upon the vertical mass flux.  Then the primary effect of 

condensation heating due to saturation on the flow is to modify, often to reduce 

depending upon the lapse-rate, the effective static stability of the atmosphere.  This issue 

for an isentropic coordinate is discussed by Konor and Arakawa (2000) in detail. 

 

 

5- Vertical grid and discretization of equations 

 

5.a. Vertical grid 

 
 The atmosphere is divided into L+M layers identified by integer indices and 

L+M+1 interfaces of the layers identified by half-integer indices (see Fig. 3).  These 

indices increase downward (while  increases upward).  The free atmosphere occupies L 

layers from the top of the model atmosphere, which is the upper most coordinate surface 

identified by T or 1/2, to the PBL top, which is also a coordinate surface identified by B 

or L+1/2.  The PBL is divided into M layers from the PBL-top to the surface, which is 

identified by S or M+1/2.  In the free atmosphere, horizontal velocity v and mass m are 

predicted for the model layers, while the potential temperature  and the water vapor 

mixing ratio q are predicted for the interfaces of the layers where vertical velocity �  is 

carried. 
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B

S

T

L+1/2

M+1/2

1/2

l+1/2

l-1/2

l

m+1/2

m-1/2
m

L+1

M

l+1

l-1

L

1

v  m

v  m

v  m

v  m

v  m

v   θ  r  R

ζ  

        θ  ζ  q  Q  C

        θ  ζ  q  Q  C

B+

B-

v   θ  r  R

v   θ  r  R

ζ  

θ  q  Q  C ζΒ

θ   q   ζΤ=0

m

 
  Fig. 3. Vertical grid used in the discretization. 

 

 
Following Konor and Arakawa (2000), condensation rate C and condensation heating Q 

are calculated at the same level with  and q.  In the PBL, v,  and total water mixing 

ratio r are predicted for the layers, as well as the rate of raindrop generation R.  The 

vertical mass flux at the top of the PBL, 
  
m�( )

B
, is determined through the PBL 

parameterization. 

 

5.b. Discrete equations for the free atmosphere 

 
Mass continuity equation: 
 
 The vertically discrete version of the mass continuity equation (3.1) applied to the 

model layers within the free atmosphere is given by 

 

  
   

m�

t
+ mvv( )� +

1

( )�
m�( )

�+1 2
m�( )

� 1 2
= 0 for � = 1,2,..,L , (5.1) 

 
where  
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m� = p( )� ( )�
p( )� = p�+1 2 p� 1 2

( )� = �+1 2 � 1 2

for � = 1,2,...,L , (5.2) 

 

and 
 
m�( )

�+1 2
 is the vertical mass flux carried at the interfaces of the model layers.  Note 

that ( )� < 0  in our indexing.  We assume that, at the top of the atmosphere, 

 
m�( )

1 2
= 0 .  The vertical mass flux at the PBL-top, 

 
m�( )

L+1 2
, where L +1 2  and B are 

interchangeable, is determined by entrainment/detrainment parameterization.  The 

vertically discrete pressure tendency equations can be obtained by vertically summing 

(5.1) with (5.2) as 

 

  

   

p�+1 2

t
= mkvk( )( )k

k=1

�

+ m�( )
�+1 2

for � = 1,2,...,L 5.3a( )

pB
t
= mkvk( )( )k

k=1

L

+ m�( )
B
, 5.3b( )

 

 
where we assumed that pT t( ) = 0 , where subscript 1 2  and T  are interchangeable. 

 

 
Thermodynamic equation: 
 
 The vertically discrete version of the thermodynamic equation within the free 

atmosphere (3.4a) applied to the interfaces of the model layers are given by 

 

 

 

1 2

t
= 0 5.4a( )

�+1 2

t
+ v( )�+1 2 +

�
�+1 2

= Q( )�+1 2 for � = 1,2,...,L 1 5.4b( )

L+1 2

t
+ vL L+1 2 +

�
L+1 2

= Q( )
L+1 2

5.4c( )

. 
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Equation (5.4a) is a result of choosing the upper boundary placed on an isentropic 

surface.  In (5.4c), L+1 2 can be referred as to + .  In (5.4b) and (5.4c), 

 

   
v( )�+1 2

�+1m�+1 ( )�+1v�+1 + �m� ( )� v�

�+1m�+1 ( )�+1 + �m� ( )�
�+1 2 for � = 1,2,...,L 1 ,(5.4d) 

 

 

�
�+1 2

�+1 2 �+1 �( )
1
2 �+1m�+1 ( )�+1 + �m� ( )�

m�( )
�+1 2

for � = 1,2,...,L 1 , (5.4e) 

 
where 

  

 

�
�+1 2p�+1 2 � 1 2p� 1 2

+1( ) p�+1 2 p� 1 2( )

�

1

2 �+1 2 + � 1 2( )
for � = 1,2,...,L  (5.4f) 

 

with 
  �+1 2 cp p�+1 2 po( ) .  In (5.4c), the vertical advection term is expressed by 

 

 

�
L+1 2

1

mL+1 2 ( )L+1 2
ˆ
L+1 2 L+1 2( ) m�( )

L+1 2
+ L+1 2 L( ) m�( )

L
, (5.4g) 

 

where ˆ L+1 2 = + = L+1 2  for 
  
m�( )

L+1 2
< 0  and ˆ L+1 2 = L+1  for

  
m�( )

L+1 2
> 0 .  See 

Appendix A for the definition of
 
mL+1 2 .  Note that with (5.4g) we deviate from Konor 

and Arakawa (1997) by allowing vertical advection of the potential temperature at the 

lower boundary of the free atmosphere.  When we consider only condensation process, 

heating Q can be written as  

 
  Q�+1 2 = LC�+1 2 . (5.5) 

 
 
Moisture equation: 
 
 From (3.6a) and (3.6b), the vertically discrete equations to predict the water vapor 

mixing ratio q within the free atmosphere are given by 
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mq( )1 2
t

+ mqv( )1 2 + mq �( )
1 2

= 0 5.6a( )

mq( )�+1 2
t

+ mqv( )�+1 2 + mq �( )
�+1 2

= mC( )�+1 2 for � = 1,2,...,L 5.6b( )

 

 
 
The discrete moisture equations given by (5.6a) and (5.6b) are applied to the interfaces of 

the model layers following Konor and Arakawa (2000).  With this choice, C�+1 2 in (5.5) 

is identical to that in (5.6b) without any vertical averaging that decouples vertically 

smallest-scale condensation heating Q from condensation rate C.  See Appendix A for the 

definition of 
  
mqv( )�+1 2  in (5.6a) and (5.6b). 

 The divergence of vertical moisture fluxes in the moisture prediction equation 

given by (5.6a) and (5.6b) are defined by 

 

 

  

mq �( )
1 2

1

( )1 2
q1 m�( )

3 2
5.6c( )

mq �( )
�+1 2

1

( )�+1 2
q�+1 m�( )

�+1
q� m�( )

�
for � = 1,2,...,L 1 5.6d( )

mq �( )
L+1 2

1

( )L+1 2
q̂L+1 2 m�( )

L+1 2
qL m�( )

L
5.6e( )

, 

 

where q̂L+1 2 = qB+ qL+1 2  for 
  
m�( )

L+1 2
< 0  and q̂L+1 2 = qB qL+1  for

  
m�( )

L+1 2
> 0 .   

Note that q
B

 and qL+1  are within the PBL.  In (5.6c) and (5.6d), 

 

  
 
q�

q�+1 2 + q� 1 2

2
for � = 1,2,...,L . (5.6d) 

 
To avoid possible computational conditional instability, we will require that  q�  be 

bounded to satisfy  h� 1 2 h� h�+1 2  or  h� 1 2 h� h�+1 2 , where the moist static energy 

is defined by h + + Lq .  

 For a model with a low to moderate vertical resolution, the vertical discretization 

of the convergence of moisture fluxes given by (5.6c)-(5.6e) seems to be adequate.  In a 
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model with high vertical resolution, however, this formulation may have computational 

problems such as overshooting and undershooting, especially near the PBL-top in 

simulating the processes during collapse of the PBL.  We, therefore, use a different 

discretization in a high vertical resolution model, which produces better simulations of 

such processes.  This formulation is discussed in detail in Appendix B. 

 
Momentum equation: 
 
 The vertically discrete momentum equation applied to the model layers is given 
by 
 

  
  

v�

t
+ v� v� +

� v

�

= p( )
�
f k v� , (5.7a) 

 
where v is the horizontal velocity, f is the Coriolis parameter; k is the unit vertical vector.  

The vertical advection of momentum is defined by 

 

   

� v

1

1

2m
1( )1

v2 v1( ) m�( )
3 2

5.7b( )

� v

�

1

2m� ( )�
v�+1 v�( ) m�( )

�+1 2
+ v� v� 1( ) m�( )

� 1 2
5.7c( )

for � = 2,3,...,L 1 5.7d( )

� v

L

1

mL ( )L
v̂L+1 2 vL( ) m�( )

B
+
1

2
vL vL 1( ) m�( )

L 1 2
5.7e( )

, 

 

where formally 
 
v̂L+1 2 =v

B+
f+ vL ,vL 1( )  for 

 
m�( )

B
< 0 , which may be an 

extrapolation from above, and 
 
v̂L+1 2 =v

B
f vL+2 ,vL+1( )  for 

 
m�( )

B
> 0 , which may 

be an extrapolation from PBL.  Currently, we are using 
 
v
B+

vL  and
 
v
B

vL+1 .  The 

first term on the right hand side of (5.7a) is the pressure gradient force given by 

 

  
 p( )

�
= M� + � � , (5.8) 

 
where  M� � � + � . 
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Hydrostatic equation: 
 
 The vertically discrete hydrostatic equation is given by  
 

  
  � = �+1 + �+1 �+1 2( ) v( )�+1 + �+1 2 �( ) v( )� for � = L,L 1,...,1 , (5.9) 

 
where 
  

 v( )� = � 1+ 0.608q�( ) . (5.10) 

 
 
Vertical mass flux equation: 
 
 To derive the discrete vertical mass flux equation, we first vertically discetize the 

requirement (3.11) as 

 

  
 
0 =

t
F �+1 2 , �+1 2( ) for � = 1,2,..,L 1 . (5.11) 

 
The right hand side of (5.11) may be written as 
 

F

t
�+1 2

+

F

p
pB �+1 2

pB
t

+
F

pB p

p

t
�+1 2

= 0 for � = 1,2,..L 1. 5.12( )

 

 
Using (5.3a), (5.3b) and (5.4b) with (5.4e) in (5.12), we obtain the generalized vertical 

mass flux equation as 

 

 

  

m�( )
�+1 2

=
t Horizontal

F �+1 2 , �+1 2( )

F 1
m

F
p

pB �+1 2

for � = 1,2,...,L 1  (5.13a) 

 
where 
 
 

 

 
t Horizontal

F �+1 2 , �+1 2( ) F

�+1 2

Q( )�+1 2 v( )�+1 2  
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+
F

p
pB �+1 2

mkvk( )
k=1

�

( )k  

 

   

+
F

pB p �+1 2

mkvk( )
k=1

L

( )k + m�( )
B

for � = 1,2,...,L 1 . (5.13b)   

 

In obtaining (5.13b), we used pT t( ) = 0 .  When F �+1 2 , 
 
m�( )

B
= 0  and 

�
�+1 2 = � �+1 2 , (5.13.a) and (5.13b) yield 

 

  
  

m �( )�+1 2 = mvv( )k
k=1

�

( )k + 1 �+1 2( ) mvv( )k
k=1

L

( )k , (5.14) 

 

which is identical to the vertical mass flux for a  coordinate. (Note that in our 

definitions of  and ( )k ,  � > 0  when upward and ( )k < 0 .)  When F �+1 2  and 

�
�+1 2 =

�
�+1 2 , on the other hand, (5.13a) and (5.13b) yield 

 

  �
�+1 2 =

Q

�+1 2

, (5.15) 

 
which is the vertical mass flux equation for an isentropic coordinate.  Time discretization 

of the vertical mass flux equation (5.13a) with (5.13b) will be discussed in subsection 

10c. 

 
 
 
5.c. Discrete equations for PBL 

 
Mass continuity equation: 
 
 In a vertical coordinate based on the  coordinate for the PBL, the discrete 

version of the mass continuity equation (3.1) is 

 

  
   

m
PBL

t
+

1

( )
PBL

mvv( )m ( )m
m=L+1

M

m�( )
B
= 0 , (5.16) 
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where 
 

  

 

m
PBL

= p( )PBL ( )PBL
p( )PBL = pM+1 2 pL+1 2

( )PBL = M+1 2 L+1 2

( )m = m+1 2 m 1 2 for m = L +1,...,M

. (5.17) 

 

The vertical mass flux at the PBL top, 
 
m�( )

L+1 2
, where L +1 2  and B are 

interchangeable, is determined by the bulk PBL parameterization.  Note that ( )m < 0  in 

our indexing.  At the surface, 
 
m�( )

M+1 2
= 0 , where M +1 2  and S are interchangeable.  

For convenience, we often omitted the subscript PBL in mPBL .  The vertically discrete 

pressure tendency equations can be obtained by vertically summing (5.16) with (5.17) 

within the free atmosphere as  

 

   

pm+1 2
t

=
pB
t
+ mkvk( )( )k

k=L+1

m

+ m�( )
m+1 2

m�( )
B
for m = L +1,..,M 1 5.18a( )

pS
t
=
pB
t
+ mkvk( )( )k

k=1

L

m�( )
B
. 5.18b( )

 
 
Thermodynamic equation: 
 
 The vertically discrete version of the thermodynamic equation (3.4b) applied to 

the individual layers is given by 

 
 

   

m( )L+1
t

+ mvv( )L+1 +
m �( )

L+1

=
mQ

L+1

g

( )L+1
F( )

L+3 2
+ G( )

L+1
5.19a( )

m( )m
t

+ mvv( )m +
m �( )

m

=
mQ

m

g

( )m
F( )

m+1 2
F( )

m 1 2
+ G( )

m

for m = L + 2,...,M 5.19b( )
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where the subscript PBL is omitted inmPBL .  The convergence of vertical potential 

temperature fluxes is 

 

  

m �( )
L+1

1

( )L+1
L+3 2 m�( )

L+3 2

ˆ
L+1 2 m�( )

L+1 2
5.19c( )

m �( )
m

1

( )m
m+1 2 m�( )

m+1 2 m 1 2 m�( )
m 1 2

for m = L + 2,...,M 1 5.19d( )

m �( )
M

1

( )M
M 1 2 m�( )

M 1 2
5.19e( )

 

 

In (5.19c), we define 
 
ˆ
L+1 2 = L+1 2 B+

 for 
 
m�( )

B
< 0  and 

 
ˆ
L+1 2 =

B
f L+2 , L+1( )  

for 
 
m�( )

B
> 0 , which may be an extrapolation from PBL.  Currently, we are using 

B L+1 .  In (5.19d) and (5.19e), 

 

  m+1 2

m+1 m+1 2( ) m+1 + m+1 2 m( ) m

m+1 m( )
form = L +1,...,M 1. (5.19f) 

 

In (5.19a) and (5.19b), Q is diabatic heating rate per unit mass other than condensation 

and F( )  is the flux of  due to convective eddies calculated from 

 

 
F( )

m+1 2
=

1

m+1 2

Fh( )
m+1 2

L Fr( )
m+1 2

for an unsaturated level

F( )
m+1 2

= Fh( )
m+1 2 m+1 2 1+ m+1 2( ) for a saturated level

, (5.20a) 

 

 where m+1 2

L

cp
q T( )

p m+1 2
, and Fh  and Fr  are convective eddy fluxes of moist 

static energy and total mixing ratio of water, respectively given by 
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hm+1 2 = + + Lq( )m+1 2
rm+1 2 qm+1 2

for unsaturated air

hm+1 2 = + + Lq( )
m+1 2

rm+1 2 = qm+1 2 + �m+1 2

for saturated air

. (5.20b) 

 

In (5.20.b), �+1 2 is defined by (5.19f), and the definitions of �+1 2  and r�+1 2  will be 

given later in this section.  The expressions for Fh( )
m+1 2

 and Fr( )
m+1 2

in (5.20a) are 

calculated from the bulk parameterization, which will be discussed later in this text.  In 

(5.19a) and (5.19b), F( ) is formulated in the form of a difference of Fh( )  and Fr( ) , which 

are the fluxes of two conserved quantities, h and r.  This type of formulation is necessary 

because  itself is not conserved during vertical mixing in a saturated atmosphere due to 

the release of condensation heating.  In (5.19a) and (5.19b), G( ) represents the 

additional effects such as those due to the diffusive eddy fluxes and the roots of cumulus 

clouds.  The formulation of G( )  will be discussed later in this text. 

 
Moisture equation: 
 
 From the moisture continuity equation (3.6b), the vertically discrete equation to 

predict the water mixing ratio r is given by 

 

    

mr( )L+1
t

+ mrv( )L+1 + mr�( )
L+1

= mRL+1

g

( )L+1
Fr( )

L+3 2
+ Gr( )

L+1
5.21a( )

mr( )m
t

+ mrv( )m + mr�( )
m

= mRm

g

( )m
Fr( )

m+1 2
Fr( )

m 1 2
+ Gr( )

m

m = L +1,...,M 5.21b( )

 

 

where the subscript PBL is omitted in mPBL .   The convergence of vertical moisture fluxes 

is 
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mr�( )
L+1

1

( )L+1
rL+3 2 m�( )

L+3 2
r̂L+1 2 m�( )

L+1 2
5.21c( )

mr�( )
m

1

( )m
rm+1 2 m�( )

m+1 2
rm 1 2 m�( )

m 1 2
for m = L + 2,..,M 1 5.21d( )

mr�( )
M

1

( )M
rM 1 2 m�( )

M 1 2
5.21e( )

 

 

In (5.21c), we define 
 
r̂L+1 2 qL+1 2 = q

B+
 for 

 
m�( )

B
< 0  and 

 
r̂L+1 2 = r

B
f rL+2 , rL+1( )  for 

  
m�( )

B
> 0 , which may be an extrapolation from PBL.  Currently, we are using r

B
rL+1 .  

In (5.21c) to (5.21e), 

 

  rm+1 2
rm+1 + rm
2

form = L +1,...,M 1. (5.21f) 

 

To avoid possible computational conditional instability, we will require that rm+1 2  be 

bounded to satisfy hm hm+1 2 hm+1or hm hm+1 2 hm+1 , where hm+1 2  and qm+1 2  are 

defined by (5.20b), rm+1 2 is defined by (5.21f) and m+1 2  will be defined later in this 

section.  Note that the instability is unlikely to occur in the interior of the PBL since the 

layers are vertically mixed.  On the other hand, it may occur at the top of the PBL and, 

therefore, r
B+

, which is formally r
B+

qL+1 2 , should be constrained.    

 In (5.21a) and (5.21b), Fr( ) and Gr( )  are analogous to the ones expressed for the 

potential temperature and 
 
Rm  is the generation of raindrops.  Note that, in the PBL, the 

total water-mixing ratio r  is predicted instead of the water vapor mixing ratio q .  The 

liquid water-mixing ratio  �  is given by r q , for r > q , and 0  for r < q .  At present, 

the precipitation from the PBL is allowed only when the condensation level tends to be 

below the ground level.  The total amount of precipitation is then determined to restore 

the condensation level to the ground level.  The precipitation amount determined in this 

way is removed from each layer’s rm  proportionally to their cloud mass  m� .  Turbulent 

flux of water-vapor mixing ratio Fq( )
m+1 2

 is defined by 
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Fq( )

m+1 2
= Fr( )

m+1 2
for an unsaturated level

Fq( )
m+1 2

= m+1 2 Fh( )
m+1 2

L 1+ m+1 2( ) for a saturated level
. (5.21g) 

  

 
Momentum equation: 
 
 From (3.7b), the vertically discrete momentum equation applied to the individual 

layers identified by m  is given by 

 

   

vL+1

t
+ vL+1 vL+1 +

� v

L+1

=

p( )
L+1

f k vL+1

g

m
PBL ( )L+1

F
v( )
L+3 2

+
G

v( )
L+1

m
PBL

5.22a( )

vm

t
+ vm vm +

� v

m

=

p( )
m

+f k vm

g

m
PBL ( )m

F
v( )

m+1 2
F

v( )
m 1 2{ } + G

v( )
m

m
PBL

m = L + 2,...,M 5.22b( )

, 

 

where the vertical momentum advection is 

 

   

� v

L+1

1

m( )L+1

1

2
vL+2 vL+1( ) m�( )

L+3 2
+ vL+1 v̂L+1 2( ) m�( )

B
5.22c( )

� v

m

1

2m( )m
vm+1 vm( ) m�( )

m+1 2
+ vm vm 1( ) m�( )

m 1 2

for m = L +1,..,M 1 5.22d( )

� v

M

1

2m( )M
vM vM 1( ) m�( )

M 1 2
5.22e( )

, 

 

where the subscript PBL is omitted inmPBL .  In (5.22c), we formally define 

 
v̂L+1 2 =v

B+
f+ vL ,vL 1( )  for 

 
m�( )

B
< 0 , which may be an extrapolation from above, 
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and 
 
v̂L+1 2 =v

B
f vL+2 ,vL+1( )  for 

 
m�( )

B
> 0 , which may be an extrapolation from 

PBL.  Currently, we are using 
 
v
B+

vL  and 
 
v
B

vL+1 .  On the right hand side (5.22a) 

and (5.22b), ( )L+1and ( )m  are the vertically discrete version of the pressure 

gradient force (3.8), and 
 
F

v( )
L+3 2

 and 
 
F

v( )
m+1 2

 are the convergence of the convective 

eddy fluxes of momentum.  In (5.22a) and (5.22b), 
 
G

v( )
L+3 2

and 
 
G

v( )
m+1 2

 represent the 

additional effects such as those due to diffusive eddy fluxes and roots of cumulus clouds.  

Formulations of these terms will be discussed later in this text.  The vertically discrete 

pressure gradient force is 

 

  p( )
m
= Mm + m m , (5.23) 

 

whereMm m m + m .  An alternative discrete form for (5.23) is given in Appendix C. 

 
Hydrostatic equation: 
 
 The vertically discrete version of the hydrostatic equation (3.9), which is used to 

determine the geopotential m  within the PBL, is 

  

  

m = m+1 + m+1 m+1 2( ) v( )
m+1

+ m+1 2 m( ) v( )
m
for m =M 1,..L +1 5.24a( )

M = S + S M( ) v( )
M

5.24b( )
 

 

where 

  

 

m+1 2 cp
pm+1 2
po

R cp

5.24c( )

m cp
pm
po

R cp

5.24d( )

m

pm+1 2 m+1 2 pm 1 2 m 1 2

R cp +1( ) pm+1 2 pm 1 2( )
5.24e( )

v( )
m m 1+ 0.608qm( ) 5.24f( )

. 

 

 



 30

Vertical mass flux equation: 

 

 As we stated earlier, we use a sigma-type coordinate for the PBL defined by 

F ( ) = B + S B( ) B( ) S B( )
1
, where pS p( ) pS pB( )

1
, B  is 

determined from the lowest value of  for the free atmosphere, and S = B , where  is 

an arbitrarily prescribed constant less than 1.  Then, from (3.18), we can obtain the 

discrete vertical mass flux equation within the PBL as 

 

  

m�( )
m+1 2

=
S m+1 2( )
S B( )

m�( )
B

mvv( )k
k=L+1

m

( )k +
m+1 2 B( )
S B( )

mvv( )k
m=L+1

M

( )k  

   for m = L +1,...,M 1.  (5.25) 

 

The PBL-top vertical mass flux is calculated by 

 

  
 
m�( )

B
= g E D MB( ) , (5.26) 

 

where E > 0  (andD = 0 ) represents entrainment, D > 0 (andE = 0 ) represents 

detrainment, and MB > 0  is the total upward flux across the PBL due to cumulus 

convection. E and D  are determined by the bulk parameterization discussed later in this 

text. 

 

 

6-Discretization of PBL processes 

 

Turbulence fluxes due to large convective eddies: 

 

 It is assumed that the turbulence fluxes of v , h  and r  due to large convective 

eddies change linearly in the vertical within PBL.  If  represents v , h  or r , the flux at 

a certain level within the PBL can be written as 
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 F( )
m+1 2

=
B m+1 2

B S

F( )
S
+

m+1 2 S

B S

F( )
B

 for m = L +1, ,M 1 ,   (6.1) 

 

where F( )
S

 and F( )
B

 are the surface and PBL-top fluxes at level B  of  determined 

by the bulk parameterization discussed later in this text.  Note that B  denotes the lower 

boundary of an infinitesimally thin fictitious transition layer identified byB .  A detailed 

discussion on the budget of  near the PBL-top is presented later in this section and in 

Appendix D. 

 

 

Turbulence fluxes due to small diffusive eddies: 

 

 In the PBL parameterization described here, we include the effects of internal 

diffusion due to small eddies.  We can write those fluxes as 

 

  

 

�F( )
L+1 2

0

�F( )
m+1 2

m+1 2 Km+1 2

z( )m+1 2
m+1 m( ) for m = L +1, ,M 1

�F( )
M+1 2

0

, (6.2) 

 

where  represents v , h  or r .  In (6.2), m+1 2 is the density, Km+1 2  is the diffusion 

coefficient and z( )m+1 2 zm zm+1 .  The diffusive fluxes of the potential temperature 

can be written as 

 

 

 

�F( )
m+1 2

=
1

m+1 2

�Fh( )
m+1 2

L �Fq( )
m+1 2

for an unsaturated level

�F( )
m+1 2

= �Fh( )
m+1 2 m+1 2 1+ m+1 2( ) for a saturated level

. (6.3) 

 

Note that, for an unsaturated level, �Fq( )
m+1 2

= �Fr( )
m+1 2

. 
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Fluxes due to cumulus convection and radiation: 

 

 The budget of an arbitrary quantity  is also modified by the cumulus mass flux 

and, when relevant, radiation flux of  in or out of the PBL.  They primarily affect the 

budgets in the top layer of the PBL through 

  

  
 
t partial

m( )L+1 =
g

( )L+1
B+ B( )MB R( )

B+
, (6.4) 

 

where 
B

f L+1, L+2( ) , and 
B+ L+1 2  for  and r , and 

B+
f+ L 1, L( )  for 

 
v .   In (6.4), R( )

B+
is the upward radiation flux of  at B+  

with 
 
R

v( )
B+
= Rr( )

B+
= 0 .  A detailed derivation of (6.4) is given in Appendix D. 

 The effect of cumulus roots can be incorporated into this formulation by 

redistributing 
B+ B( )MB  in (6.4), into the all PBL layers including a fraction of the 

flux m
c( )

B+ B( )MB  to the budget equations, where m
c( )  is the fractional contribution 

to the cumulus flux from layer m satisfying m
c( ) =

m=L+1

M

1 . 

 We sum the effects discussed in this section in one term as 

 

G( )
m

g

( )m
�F( )

m+1 2
�F( )

m 1 2
+ m

c( )
B+ B( )MB for m = L + 2, ,M

G( )
L+1

g

( )L+1
�F( )

L+3 2
+ L+1

c( )
B+ B( )MB R( )

B+

. (6.5)  
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7. Bulk PBL parameterization 

 

 Here we describe a recently introduced bulk parameterization of the PBL by 

Randall, Branson, Zhang, Moeng and Krasner (unpublished manuscript), which is 

essentially an extension of the approach followed by Suarez et al. (1983).  In this 

parameterization, i) the bulk turbulence kinetic energy (TKE) for the PBL is predicted, ii) 

the square-root of the predicted TKE is used for the bulk velocity in determining the 

surface fluxes, and iii) an explicit formulation based on the predicted TKE is used to 

determine the PBL-top entrainment rate.  Additionally, this parameterization has a 

simplified PBL-top entrainment instability formulation, which is incorporated into the 

expression that determines the entrainment rate.  

 As in Suarez et al. (1983), we consider three regimes for the PBL as schematically 

shown in Fig. 4.  The first regime is the clear deepening PBL such as clear daytime PBL 

over land.  In this regime, the TKE increases typically due to the buoyancy generated by 

the warming of Earth’s surface due to solar heating, and consequently the PBL tends to 

deepen by entraining air from the free atmosphere.   The second regime is the night-time 

situation over land.  After sunset, due to the sudden loss of the buoyancy generation, the 

TKE decreases and then the PBL collapses, leaving a large part of PBL air to the free 

atmosphere. Unlike the deepening PBL case, there is no well-defined PBL top during this  
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Fig. 4. Schematic representation of the different PBL regimes considered in the PBL 

parameterization.  The subscripts G and SS denote ground and sea surface, respectively, 

and they can be used interchangeably. 
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transition, which is this difficult to simulate in a discrete model.  Yet, this process is an 

essential part of the PBL-free atmosphere interaction.  For that reason, we pay a special 

care on realistically simulating this process in our model.  The technique we used will be 

discussed later in this text.  After this transition, the PBL typically starts deepening again 

with a relatively slow rate due to the shear contribution to the TKE generation during the 

night time. In the parameterization we also consider the cloud-topped PBL regime, which 

is often observed over the colder oceans of the cost of California and Peru and over the 

high-latitude snow-covered land.  In this regime, the TKE is maintained by the buoyancy 

generated by radiative cooling near the top of the cloud layer. 

 

Determination of bulk quantities for multi layer PBL 

 

 Suarez et al. (1983) predicts the PBL velocity, the potential temperature and the 

total water mixing ratio for the sub-cloud layer of the PBL.  Unlike their 

parameterization, here we predict the velocity 
 
vm , potential temperature m , total water 

mixing ratio rm  for each of the multiple layers within the PBL identified 

bym = L +1,...,M .  Therefore, we must define the bulk properties to be used in the bulk 

parameterization in terms of these predicted quantities.  We define a bulk value of  

denoted by PBL  as  

 

  PBL

1

dp
pB

pS
p( )dp

pB

pS
, (7.1) 

where 

 

  =
1 for r < q T,p( )

0 for r q T,p( )
. (7.2) 

 

If the entire PBL is saturated, we define PBL = pS( ) .  In the discrete system, we use 

(7.1) and (7.2) applied to vertically interpolated (linearly in ) ,  and r  from the 

layers identified bym = L +1,...,M . 
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Turbulence kinetic energy equation 

 

 The bulk turbulence kinetic energy (TKE) for the mixed-layer ePBL  is predicted 

by 

 

  
   

ePBL
t

=
ePBL
p( )PBL

gE +
g

p( )PBL
B + S D( ) +

ePBL
m

mvv( ) , (7.3) 

 

where p( )PBL = pS pB , E is the entrainment rate satisfying 
 
gE = m�( )

B
 for MB = 0 , 

 B  is the buoyancy generation,  S is the shear generation,  D is the dissipation of TKE and 

 m  is the mass of the PBL defined by 
 
m p( )PBL L+1 2 M+1 2( ) .  The derivation of 

(7.3) is discussed in Appendix E.  The buoyancy generation is given by 

 

  
  

B
F

sv

p
dp

pB

pS
, (7.4) 

 

where R cp .  In (7.4), 
 
F

sv
 is the turbulent flux of virtual dry static energy 

 
s

v
=

v
+ , where 

 v
 is the virtual potential temperature, which is defined by 

 v
T

v
p po( ) .  

 
T

v
 is the virtual temperature is given by 

 
T

v
T 1+ 0.608q �( ) , where 

q and �  are the mixing ratios of water vapor and liquid water, respectively.  The shear 

generation is formally given by 

 

  
  

S F
v

v

zzS

zB
dz , (7.5) 

 

where 
 
F

v
 is the turbulent momentum flux.  In our model, however, we only consider 

low-level shear to calculate  S , which will be discussed later in this text.  The dissipation 

of TKE in (7.3) is expressed by 
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D C PBL ePBL( )

3 2
, (7.6) 

 

In (7.6), C is a constant, which remains to be determined and PBL  is the averaged 

density in the PBL given by PBL p( )PBL g zB zS( ) . 

 Equation (7.3) is valid only for the “turbulent (deepening) state”, for which 

formally ePBL > 0  (in our model, ePBL > emin ).  If there is a tendency toward ePBL < emin , it 

is assumed that the mixed-layer is in “collapsing state”, for which we let ePBL = emin  

and p( )PBL = p( )min , where emin  and p( )min  are properly chosen lower limits of ePBL  

and p( )PBL , respectively.  The PBL maintains the “collapsed state” until ePBL > emin  

again. 

 

Surface fluxes: 

 

 Surface fluxes are given by  

 

  

  

F
v( )
S S CM F ePBL , �vPBL( ) �vPBL

F( )
S S CT F ePBL , �vPBL( ) S PBL( )

Fr( )
S S Cr W W( ) F ePBL , �vPBL( ) q TS,pS( ) qPBL( )

, (7.7) 

 

We are inspired by the work by Stull (1988), Zhang et al. (1996) and Deardorff (1972) 

for selecting these forms.  In (7.7), CM , CT  and Cr  are the surface transfer coefficients 

for their respected fields.  In the calculation of 
 
F

v( )
S

, we use the lowest PBL layer 

velocity, 
 ̂
vPBL vM . W W( ) is the availability of water for evaporation from the surface 

and W  is a measure of wetness (see Suarez et al.,1983). In the original formulation 

suggested by RBZMK, the heat transfer coefficient CT  is determined as a function of 

 
V( )

PBL S PBL( )
2

, where  the bulk turbulence variance of the potential temperature 

 
V( )

PBL
 is predicted through an equation analogous to (7.3).  The momentum transfer 
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coefficient CM  is determined as a function of ePBL vPBL
2

 and a bulk Richardson number 

in such a way that CM  reduces to a function of ePBL vPBL
2

for a neutral PBL.  Then 

RBZMK suggests incorporation of surface roughness formulation into CM .  In our very 

early applications, we followed the procedure suggested by RBZMK in which the bulk 

variances are predicted and then the transfer coefficients are calculated.  Our tests 

showed, however, too large variability in the calculated transfer coefficients.  When we 

applied upper and lower bounds, the values for the transfer coefficients flip-flopped 

between two bounds every other time step.  Therefore, we postponed the implementation 

of this procedure using constant values in the order of 10 3  for the transfer coefficients.  

(In the GCM applications, Deardorff’s (1972) formulations must be used instead of the 

constant transfer coefficients.)   

 In (7.7), we define the velocity scale as a function of the square-root of bulk TKE 

and grid-scale surface wind through the use of F ePBL , vM( ) , where vM  is the grid-scale 

wind at the lowest layer of the PBL.  Inclusion of vM  is needed to obtain realistic surface 

fluxes in the middle latitudes where surface wind is generally strong.  In the formulation 

used for the simulations presented in this paper, we 

selected F ePBL , vM( ) ePBL + 0.25 vM .   (In the GCM application of this 

parameterization, however, F ePBL , vM( ) Max ePBL , vM{ }  is used.) 

 

Determination of the bulk turbulence fluxes, buoyancy generation and PBL top 

entrainment rate: 

 
a) Clear deepening PBL (typically G > PBL ): 
 

 Typical vertical profiles of r, q, , s, h and h* are shown in Fig. 5 for clear 

deepening PBL.  Here r = q and the dry static energy is defined by s + . 
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 Fig. 5.  Typical vertical profiles of r, q, , s, h, h*, F

r
, F

h
 and 

 
F
sv

 for clear deepening PBL. 

 
Within the PBL, the conserved quantities, namely r, , s and h, are vertically well mixed 

while h* decreases nearly linearly with height.  The turbulence fluxes of the total water 

Fr  and moist static energy Fh  given by F + LFr , where F = Fs , are positive and 

linearly decreases with height from their surface values, Fr( )
S
and 

Fh( )
S
= S F( )

S
+ L Fr( )

S
, respectively.   The surface fluxes F( )

S
 and Fr( )

S
 are given by 

(7.7) and the PBL-top fluxes are given by 

 

  
Fr( )

B
= E r( )B

Fh( )
B
= E h( )B

, (7.8)  

 
where ( )

B
( )B+ ( )B .  In (7.8), the PBL-top fluxes, Fr( )

B
and Fh( )

B
 are found 

from (D.4) of Appendix D by requiring Rr( )
B
= Rh( )

B
= 0  for clear PBL case and 

neglecting MB .  The turbulence flux of the virtual dry static energy 
 
Fsv , which is given 

by Fh + 0.608 PBL L( )Fr  or F + 0.608 PBLFr , linearly decreases with height from 

a positive value at the surface, 
 
Fsv( )

S
> 0 , to a negative value at the PBL-top, 

 
Fsv( )

B
< 0 .  

There is a well-established empirical relationship between 
 
Fsv( )

S
 and 

 
Fsv( )

B
 given by 

 
  

 
Fsv( )

B
= k Fsv( )

S
, (7.9) 

 

where k 0.2 .  The buoyancy generation (7.4) for this case can be written as 

 

  
  
B F

sv( )
S
+ F

sv( )
B

pS pB( ) pS + pB( ) , (7.10) 
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where R cp  and  

 

 

 

F
sv( )

B
= Fh( )

B
+ 0.608 B PBL L( ) Fr( )

B
= B F( )

B
+ 0.608 B PBL Fr( )

B

F
sv( )

S
= Fh( )

S
+ 0.608 S PBL L( ) Fr( )

S
= S F( )

S
+ 0.608 S PBL Fr( )

S

, (7.11) 

 
where we used B F( )

B
= F( )

B
L Fr( )

B
 and r q .  Following Randall, Branson, 

Zhang, Moeng and Krasner (unpublished manuscript), the PBL-top entrainment is 

determined from 

  

  

E
2kC

1 k
PBL �ePBL

g s
v( )
B
z( )PBL

ePBL B PBL

, (7.12) 

 
where �ePBL ePBL emin .  We assume that 

 
s

v( )
B
= B ( )B + 0.608 r( )B  is positive and 

use the typical value of C 1  (see Moeng and Sullivan,  1994). 

 
b) Collapsing PBL (typically G < PBL ): 

 

  
 Fig. 6.  Typical vertical profiles of r, q, , s, h , h*, F

r
, F

h
 and 

 
F
sv

 for collapsing PBL. 

 
 For the collapsing case, the TKE is nearly zero and, therefore, the PBL is not well 

defined so that we choose h( )B = r( )B = 0 .  The turbulence fluxes are typically 

negative (see Fig. 6).  In our model, we assume that the PBL air detrains through its 

prognostically determined top with a finite rate while the TKE is set to its minimum 

value, ePBL = emin .  The detrainment rate D is calculated from an arbitrary relationship 

given by 

   D
p( )max

g collapse

, (7.13) 
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Where we use values for p( )max  and collapse  given by 250 mb and 3 hours, respectively. 

 
c) G < PBL (Nighttime PBL): 
 
 After the collapse of the PBL, the TKE starts increasing again due to the shear 

contribution.  We treat this regime similar to the clear deepening PBL except the TKE 

here is generated by the shear rather than the buoyancy. 

 
d) Cloud-topped PBL (typically SS < PBL ): 
 
 A cloud layer forms in the upper PBL if the 

condensation level denoted by C is lower than the PBL-

top.  The height of the condensation level can be 

determined by 

 

 pC pB + pS pB( )
rPBL qB0
qS qB0

,  (7.14) 

 
whereqS = q TS,pS( ) , qB0 = q TB0,pB( ) , TS S PBL cp  and TB0 B PBL cp  (see Fig. 

7). 

  

  
  Fig. 8.  Typical vertical profiles of r, q, , s, h , h*, F

r
, F

h
 and 

 
F
sv

 for cloud-topped PBL. 

 
 In this case,  and s are conserved and, therefore, vertically uniform only in the 

sub-cloud layer.  Within the cloud layer,  and s generally increase with height (see Fig. 

Fig. 7. Typical vertical profiles of the 
temperature T and the potential 
temperature  in a cloud-topped 
PBL. 
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8) while r and h remain uniform throughout the PBL. 
 
Fsv  is usually negative in the 

subcloud layer if the surface is colder than the PBL.  It is generally positive in the cloud 

layer, however, due to turbulence generated by radiative cooling near the top of the 

cloud.  We can define the fluxes as follows: 

 

Within the cloud layer (p<pC): 

 

  
 
F

sv
Fs + 0.608Fq F�( ) , (7.15) 

 
Within the cloud layer, the air is saturated, in which the liquid water-mixing ratio is given 

by � r q .   We define the fluxes in the right hand side of (7.15) as 

 

  

Fs = Fh LF
q
=

1

1+
Fh

Fq = Fq =
L 1+( )

Fh

F� = Fr F
q
= Fr L 1+( )

Fh

. (7.16) 

 

and 
L

cp
q T( )

p
.  From (7.15), (7.16) and defining 1+1.608 L( ) 1+( ) , 

we can write 
 
Fsv  at the top of the PBL as 

 
  

 
F

sv( )
B
=

B
Fh( )

B B PBL Fr( )
B

 (7.17) 

 

where 
B

1+1.608
B B PBL L( ) 1+

B( )  and 

 

  Fr( )
B
= E r( )B = E q

B+
r
B( )  (7.18a) 

and 

  Fh( )
B
= E h( )B + R( )B = E h

B+
h
B( ) + R( )B . (7.18b) 

 
In (7.17a) and (7.18b), r

B
is defined in subsection 5c, and h

B+ B + + B + LqB+  and 

h
B
= h

B B + B + LqB .   We used (D.4) with MB = 0  of Appendix D in writing 

(7.18a) and (7.18b).  The expression we use for the entrainment rate E in (7.18a) will be 
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given later.  We write 
 
Fsv  at the bottom of the cloud level 

 

  
 

F
sv( )

C+
1

1+ C

1+
1.608 C PBL C

L
Fh( )

C C PBL Fr( )
C

, (7.19) 

where 

  

Fh( )
C
=
Fh( )

S
pC pB( ) + Fh( )

B
pS pC( )

pS pB

Fr( )
C
=
Fr( )

S
pC pB( ) + Fr( )

B
pS pC( )

pS pB

. (7.20) 

 
Note that 

 
Fsv  is discontinuous across condensation level while Fh  and Fr  are continuous 

(see Fig. 6). 

 

Within the subcloud layer (p>pC): 

 
  

 
F

sv
Fs + 0.608 Fq , (7.21) 

where 
 

  
Fs = Fh LFr
Fq = Fr

 (7.22) 

 
Using (7.21) and (7.22),  

 
Fsv  at the condensation level and surface are 

 
  

 
F

sv( )
C

Fh( )
C
+ 0.608 C PBL L( ) Fr( )

C
, (7.23) 

and 
 
  

 
F

sv( )
S
= Fh( )

S
+ 0.608 S PBL L( ) Fr( )

S
= S F( )

S
+ 0.608 S PBL Fr( )

S
, (7.24) 

 
respectively.  In (7.23), Fh( )

C
and Fr( )

C
 are given by (7.20). 

 

 Buoyancy generation for this case can be written as  

 

  
  
B F

sv( )
S
+ F

sv( )
C

pS pC( ) pS + pC( )  

  
 
+ F

sv( )
C+
+ F

sv( )
B

pC pB( ) pC + pB( ) . (7.25) 

 
Following Randall, Branson, Zhang, Moeng and Krasner (unpublished manuscript), we 
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calculate the entrainment rate for a cloud topped PBL by 

 

  

E

b1 PBL �ePBL + b̂2 g
z( )PBL
�ePBL

R( )B
B PBL

1+ b2 g
z( )PBL
ePBL

s
v

s
vcrit

B PBL

=
b1 PBL B PBL �ePBL

3 2 + b̂2 B g z( )PBL R( )B

B PBL �ePBL + b2g z( )PBL s
v

s
vcrit

, 

   (7.26) 
 

where b1  is a constant and, b̂2  is defined by b2 1 e �ePBL( )  with two constants b2  and 

.   In the model, b2 is multiplied by 1 e �ePBL( ) , where  is arbitrarily chosen as 

0.1 emin  to guarantee that E 0  as �ePBL 0 .  The constants b1  and b2  must be chosen 

to satisfy b1 b2 = 2kC 1 k( )  and currently b1 0.4  and b2 0.8  are chosen.  The 

effect of cloud-top entrainment instability is included in (7.26) through the term with 

 
s

v
s

vcrit
, where 

 

s
v( )
crit

L 1.608 B B+

1+
B+( )

q B B+
cp,pB( ) q

B+
. Finally we 

assume R( )B RLW( )
B+

, where RLW  is the longwave radiation flux.  The entrainment 

formulation given by (7.26) is one of the formulas discussed in Stevens’ (2002) 

comparison paper.    

 

Determination of the shear generation in the discrete system: 

 

 We define the shear generation (7.5) in the discrete system as 

  

  
  
S F

v( )
S

vM + 1
2 E v

B

2{ } , (7.27) 

 
where M denotes the lowest layer of PBL.  In (7.27), we introduce a weighting factor

 S
, 

which we will discuss below. 

 In our parameterization, we use the factor , which depends on the Monin-

Obukov length L, to scale the shear generation that can be included in the bulk 

parameterization.  To determine L, we define a bulk Richardson number valid for the 

surface layer as 
  
Ri( )

S
g

v( )
S
z( )S

�
v( )
S

v
S

2
, where v

S
 is vertical wind shear 

near the surface, and its discrete form as 
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Ri( )
M

g �
v( )

S
v( )
M

zM zS( )

v( )
M

v
M

2 , (7.28) 

 

where 
 

 
  
�

v( )
S

cp �T
v( )
S

S

cp TG 1+ 0.608 RH( )S q TG,pS( )

S

, (7.29) 

 
where TG  is the ground temperature and RH( )S  is the relative humidity near the surface 

approximately given by RH( )S RH( )M+1 2
qM+1 2 q TS,pS( ) , where qM+1 2 rM  for 

rM < q TS,pS( )  and qM+1 2 q TS,pS( )  for rM q TS,pS( ) .  Then we introduce the 

variable �
M , which is defined by 

 
zM zS( ) L , where zM zS  is the height of lowest 

half-layer over the surface.   We can empirically write that  

 

  

For a stable boundary layer
�
M 0.74 + 4.7�

M( )
1+ 4.7�

M( )
2 = Ri( )

M
> 0

For a neutral boundary layer �
M = 0

For an unstable boundary layer �
M = Ri( )

M
< 0

.  (7.30) 

 

From (7.30), we calculate �
M  and then L = zM zS( ) �

M .  Finally, we calculate factor 

 S
 from  

 

 

S

L

L + zB zS( )

3

 (7.31) 

 
We currently use = 10 .  With (7.31), the shear contribution is virtually eliminated to the 

TKE generation in the parameterization when L  is very small compared tozB zS .  For 

this case, we assume that the shear generation is highly concentrated near the surface and 

it is locally balanced with the enhanced dissipation near the surface.   
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Determination of the PBL precipitation when pC> pS: 

 
 When pC > pS , where pC  is defined by (7.14), the precipitation takes place from 

the PBL to restore pC = pS .  From (8.14), we can write  

 

  pC =
pS pB
rPBL qB0

1+ C( ) rPBL
C

L
hPBL , (7.32) 

 
where pC = pC pS . In (7.26), rPBL = rPBL qC  and hPBL L rPBL + PBL PBL  since 

rPBL = qC  and pC pS  (see fig. 7).  We currently assume that no condensation heating is 

released during this process, i.e. PBL = hPBL = 0 .  From these and (7.32), we can obtain 

rPBL  and calculate the amount of rain water from 

 
  P = rPBL PBL z( )PBL t( ) . (7.33) 

 
where t( )  is the time interval used in the integration.  The loss of liquid water at each 

layer to the precipitation 
 
Rm  is determined by 

 

  

 

Rm =
�m rPBL

�m
m=L+1

M . (7.34) 

 

Unstable PBL top (dry case): 

 
If PBL > B+

, the PBL mixes with the layer above in the form of entrainment E.  In this 

formulation, it is assumed that the potential temperature is a linear function of  in the 

layer above PBL (see Fig. 9). 
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Fig. 9.  Typical vertical profile of  during the dry-convective adjustment. 

 

 The required entrainment rate E to eliminate the instability is 

 

  E =
pB �pB
g t

. (7.35) 

 

where �pB  is determined from 
 
�
B B B L 1 2( ) �

PBL B+( ) L 1 2 B+( )  and 

t  is the time interval used in the integration.  The final mixed layer potential 

temperature is give by 

 

  
 

�
PBL

pS pB( ) M
1
2 pB �pB( )

B+

pS �pB +
1
2 pB �pB( )

. (7.36) 

 
It is assumed that potential energy, which is released during the adjustment, will be 

converted to turbulence kinetic energy following 

 

  
 
ePBL

PE( )PBL + PE( )B+
~

PE( )PBL
pS �pB

, (7.37) 

 

where PE( )PBL  and 
~

PE( )PBL  are the potential energy of the PBL before and after 

adjustment, and PE( )B+  is the potential energy of the air to be entrained into the PBL 



 47

during the adjustment. PE( )PBL and PE( )B+  are given by 

 

  PE( )PBL
cp PBL

gpo

1

+1
pB

+1 pS
+1( ) pSpB pSpS( )  (7.38) 

and 

 

 PE( )B+
cp B+

+ �
PBL( )

2gpo

1

+1
�pB

+1 pB
+1( ) pB�pB pBpB( ) + zB pB �pB( ) , (7.39) 

 
respectively.  Equation (7.39) uses an approximation for the lower portion of the layer L 

to be entrained, for which =
B+
+ �

PBL( ) 2 .  Finally, 

 

PE( )B+
cp B+

+ �
PBL( )

2gpo

1

+1
�pB

+1 pB
+1( ) pB�pB pBpB( ) + zB pB �pB( ) . (7.40) 

 

These expressions for PE  are obtained from PE g zdz
z=z1

z2
= zdp

p=p1

p2
 and 

z = z1 + 1 1( ) g .  In the model, we apply “soft” adjustments obtained by 

multiplying E  and ePBL  by t dca , where dca  is the adjustment time scale typically 1 

hour. 

 
 

Conditionally unstable PBL top: 

 
 If hPBL > hB+  for r

B
> q

B
, for which hPBL = hB = hC , a moist convective 

adjustment acts in the form of PBL-top entrainment E. 

 The required entrainment rate E to eliminate the instability is 

 

  
 
E =

pB �pB
g t

. (7.41) 

 

where �pB  is determined from �
B B B L 1 2( ) �hPBL h

B+( ) hL 1 2 h
B+( ) .  The 

final mixed layer moist static energy is given by 
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  �hPBL
pS pB( )hPBL + 1

2 pB �pB( ) h
B+
+ �h

B+( )
pS �pB

. (7.42) 

 

See Fig. 10.  It is assumed that the released Convective Available Potential Energy 

(CAPE) during the adjustment process is converted to the TKE following 

 
 

  ePBL =
CAPE( )PBL B+

pS �pB
, (7.43) 

 

where 
 

  CAPE( )PBL B+
g

hPBL h
B+

cp 1+( ) T
PBL B+

�zB . (7.44) 

 

 

 
  Fig. 10. Typical vertical profiles of h and h* during the moist-convective adjustment. 
 

 
In the model, we apply “soft” adjustments obtained by multiplying E  and ePBL  by 

t mca , where  mca  is the adjustment time scale typically 1 hour. 
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8. Parameterization of diffusive small-eddy effects: K-closure formulation 

 
 
 

 In our parameterization, the diffusive turbulence fluxes due to small-eddies are 

determined by a K-closure formulation given by (6.2).  We have tested several 

formulations to determine the diffusion coefficient K.  The earliest version of our model 

had a prescribed constant K0  for the interior of the PBL and zero K’s for the surface and 

the PBL top.   Then we considered Louis’ (1979) formulation for K within the subcloud 

layer.  This is a widely used formulation to determine K locally as a function of height, 

grid-scale horizontal wind shear and the Richardson number.  In our application, we 

modified Louis (1979) to fit the hybrid parameterization approach being discussed here.  

Here we still use a large constant K0 20 m2s 1  within the cloud layer.  In our hybrid 

approach the grid-scale wind shear and buoyancy directly contribute to the generation of 

the bulk TKE, the square-root of which may be interpreted as the convective velocity 

scale associated with large eddies.   Therefore, the diffusive eddies are generated as a 

result of the shear of convective velocities rather than that of grid-scale wind shear 

directly. To reflect this rationale, we modified Louis (1979) to use the bulk TKE divided 

by a length scale instead of the magnitude of grid-scale wind shear in determining the 

Richardson number and K.  The formulation for K in our parameterization can be 

described as   

 

  

 

Km+1 2

�2
ePBL
z( )PBL

Fc Ri( ) within the subcloud layer

K0 within the cloud layer

0 at the surface and PBL – top

, (8.1) 

 
 

where the mixing length  �  and the function FC  are expressed following Louis (1979).  

Note that z( )PBL  is used for the length scale.  The Richardson number is defined by 

 

  Ri
g e( )

m+1 e( )
m

z( )PBL
2

e( )
m+1 2

z( )m+1 2 ePBL
, (8.2) 
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which differs from the one defined by Louis (1979) in two respects.  First, ePBL z( )PBL
2

is 

used in place of v z( )
2
, the reason for which is discussed above, and, second, the 

potential temperature is replaced by the equivalent potential temperature.  The reason for 

the latter is that the equivalent potential temperature is conserved under condensation 

process and its vertical gradient is a better measure of stability when a portion of the 

model layer is cloudy.  We simplified the equivalent potential temperature for 

computational efficiency as e eLq cpTC , where we use the approximation 

TC
1
2 TS + TB( ) .  If the layer m  is saturated, the saturation water vapor mixing ratio q  is 

used instead of q.  

 

 

9. Exchange between the PBL and free-atmosphere 
 

 In our model, the depth of PBL is a prognostic variable, the rate of which partially 

depends upon the PBL-top vertical mass flux determined by the entrainment 

parameterization.  As the TKE increases due to the buoyancy and/or shear generations, 

the PBL tends to deepen by entraining mass from the free-atmosphere into the PBL (see 

Fig.11a).  During the deepening, the air in the free atmosphere is not disturbed while the 

entrained air in the PBL is subject to vertical mixing.  It is relatively straightforward to 

formulate this deepening process in a discrete model.  The situation is very different for 

the collapsing PBL as shown in Fig. 11b.  During the collapse, the TKE rapidly decreases 

and a new PBL forms from the existing surface layer.  The PBL-top discontinuity tends 

to disappear leaving most of the well-mixed PBL air above the new shallow PBL.  It 

requires a special consideration to formulate this process in a discrete model since the 

PBL top, which is a coordinate surface is rapidly displaced, which may causing 

computational problems such as under-shooting or over-shooting of the predicted 

quantities such as the water vapor mixing ratio.   
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 Fig. 11. Schematic illustrations of the time evolution of the PBL depth during a) deepening 
stage and b) collapsing stage (upper panel).  The lower panel shows the typical profiles of r and h at 
these stages. 

 
 A realistic simulation of the exchange processes between the PBL and free-

atmosphere is one of our main goals in this model.  To achieve this goal, we use the 

specially designed formulation given in Appendix B for the discrete moisture budget 

equations. 

 

 

10. Additional discretization aspects 

 
a. Calculation of the condensation amount for a time-discrete case 
 
  To determine the condensation amount and condensation heating in the moisture 

and thermodynamic equations, respectively, we write the time discrete version of (4.3) 

and (4.6) with (4.4) at a fixed point in space (x,y, ) as 
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t
= 1 A

LC

p

t
= m

LC

q

t
= 1+

q AL
C

, (10.1) 

 
where we have used (3.5) and A is given by (4.5).  In (10.1),  operator denotes an 

increment for a finite time interval and ( )  represents a vertical derivative.  Assuming 

that the initial state is supersaturated so that q > q ,p( )  and requiring that condensation 

and associated heating processes terminate at a saturated state given by 

qfinal = q + ,p + p( ) , where qfinal  is the water vapor mixing ratio modified by 

condensation, we find that q qfinal q q ,p( ) + q( )
p

+ q p( ) p q  is 

satisfied with (10.1) when  

 

  C t =
q q

1+
q

p

L
+ A B

, (10.2) 

 
where 
 

  

 

B
q

p

mL q

p

L
+

q L
. (10.3) 

 
In the model, we apply “soft” adjustments due to condensation by obtaining the 

condensation rate C  used in (5.5) and (5.6b) fromC C t lsc , where lsc  is the (large-

scale) condensation time scale.  We currently use 30 minutes for lsc . 

 We also assume that the PBL condensation process do not modify the potential 

temperature of the cloud free air, which is the bulk potential temperature of the PBL air. 

 
 
b. Time discretization of the eddy flux terms for the PBL sub-layers 
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 The convective eddy flux terms are integrated in time with an explicit scheme 

while an implicit scheme is used for the diffusive eddy terms to avoid computational 

instability.  The procedure we use is described as follows: 

 

  
  

vm
n+1( ) = vm

( ) g t( )
m

n+1( )

F
v

m

*( )
g t( )
m

n+1( )

�F
v

m

n+1( )

, (10.4a) 

 

  
 

m( )m
n+1( )

= m( )m
( ) g t( )

F

m

( )

g t( )
�F

m

n+1( )

, (10.4b) 

 

  
  
mr( )m

n+1( )
= mr( )m

( ) g t( )
Fr

m

( )

g t( )
�Fr

m

n+1( )

, (10.4c) 

 
where (n) refers to time level and (*) refers to a state after the advection effects are 

implemented.  The part of the solution involving the diffusive fluxes �F  requires a matrix 

inversion. 

 
 
c. Time discretization of the vertical mass flux equation  
 
 The time discretization of the vertical mass flux equation (5.13a) is as follows: 

 

  

  

m�( )
�+1 2

=
F �+1 2

( ) , �+1 2
( )( ) F �+1 2 , �+1 2( )

t( )
F 1

m

F
p

�+1 2

n+1( )
for � = 1,2,...,L 1, (10.5a) 

 
where 
 

 

  
F �+1 2

( ) , �+1 2
( )( ) F �+1 2 , �+1 2( ) F

�+1 2

n( )

Q( ) v( )
�+1 2

n( )
t( )  

 

   

+
F

p
pB �+1 2

mkvk( )
k=1

�

( )k

n( )

t( )  



 54

 

   

+
F

pB p �+1 2

n( )

mkvk( )
k=1

L

( )k

n( )

+ m�( )
B

t( ) for � = 1,2,...,L 1 .  

  (10.5b) 
 
The solution of (10.5a) requires iterations since the left hand side also involves in terms, 

which are calculated at time level n +1( ) .  The iteration starts with the nominator of 

(10.5a) evaluated at ( )  level and continues with reevaluating it after 

 

+1( ) = ( ) t( )
1

m
�+1 2

( )

m�( )
�+1 2

 and 
  
p +1( ) = p( ) + t( ) m�( )

�+1 2
 are executed.  

The iteration stops when 
  
m�( )

�+1 2
 is sufficiently small and the resulting vertical mass 

flux can be calculated from 
  
m�( )

�+1 2
= p +1( ) p( )( ) t . 

 
 
d. Other discretization aspects 
 
 The horizontal, vertical and time discretizations used in this model closely follow 

Konor and Arakawa (1997), particularly those for the free-atmosphere.  Here we limit our 

discussion on the horizontal and time discretizations used for the moisture prediction 

equation applied to the free-atmosphere and the PBL, and the thermodynamics equation 

applied to the PBL.  The procedure used in the moisture equation is identical to that in the 

mass continuity equation, which follows Hsu and Arakawa (1990), except that it is 

applied to
 
mq .  In this way, we maintain the consistency between the predictions of mass 

and moisture in the horizontally and temporally discrete system.  The procedure is based 

on a predictor-corrector sequence in the time integration split to the zonal and meridional 

directions to guarantee positive definiteness and stability.   

 In the thermodynamic equation applied to the PBL layers, we use Takacs’ (1985) 

scheme except that the prognostic variable is m .  Note that Hsu and Arakawa’s (1990) 

scheme is the positive-definite version of the Takacs’ (1985) scheme. 

 In the PBL, the horizontal and time discretizations of the thermodynamic and 

moisture equations are identical to each other, both of which are based on that of the 

mass continuity equation except the scheme is applied to  m  and
 
mq , respectively.   
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11. A numerical simulation of extratropical cyclone evolution 

 
We have incorporated this new PBL parameterization with multiple layers in our 

hybrid  coordinate model.  As mention earlier, a major advantage due to the use of 

multiple layers is expected to be in the simulation of PBL processes during surface 

frontogenesis.  The multi-layer formulation allows vertical wind shears to develop and be 

maintained within the PBL due to a vertically varying pressure gradient force while the 

moist static energy is nearly well mixed in the vertical.  In this way, we may expect more 

realistic simulations of extratropical cyclones and better predictions of low-level cloud 

distribution in the middle latitudes with this parameterization. 

To illustrate this, we show selected results from simulations of extratropical 

cyclone development performed with a model that includes a multi-layer variable depth 

PBL parameterization and incorporates moisture and grid-scale condensation following 

Konor and Arakawa (2000).  At this stage, the model mimics radiation processes with a 

simple Newtonian type heating/cooling formulation and prescribes diurnally changing  

(but zonally uniform) shortwave flux at the surface (see Figure 12).  The model domain 

used in the simulations is a 9000 km by 7000 km channel on a -plane centered at 45 deg 

N.  The horizontal grid distance is 100 km and, there are 29 layers in the vertical, four of 

which are in the PBL.  The model’s lower boundary corresponds to the land surface, for 

which the ground temperature is predicted using a simple ground thermodynamics model. 

The zonally uniform component of the initial conditions consists of a symmetric single 

jet centered at the middle of the channel with 50 ms
-1

 near 300 mb. The initial relative 

humidity is 80% within the PBL and 75% above the PBL decreasing vertically.  The 

simulation starts from zonally uniform fields with random perturbations. 

Figure 13 displays surface pressure, “surface” potential temperature (left panel) 

and precipitation over the previous 6-hour period (right panel) for days 6, 8 and 10.  Here 

the “surface” potential temperature is equal to the vertically mass-weighted average of 

the potential temperature for the  cloud-free  part  of  the PBL.   The left  panel of  Fig. 13  
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Fig. 12. Latitudinal (left) and temporal (right) components of the prescribed shortwave radiation at the 

surface. 

 

shows a realistic development of extratropical cyclones and associated surface 

frontogenesis.  The 6-hourly precipitation shown in the right panel, which results from 

grid-scale condensation, demonstrates a realistic amplitude and spatial pattern expected 

in association with developing extratropical cyclones. 

  To gain insight in the three-dimensional structure of the simulated flow, we 

present North-South cross-sections of the potential vorticity and cloudy areas (Relative 

Humidity 100%) for Day 10 at hour 1200 in Fig. 14.  At this stage of the simulation, the 

potential vorticity field indicates an intrusion of the stratospheric air into the troposphere 

with folding tropopause at the warm edge of the upper-level frontal zone. Clouds form 

and precipitation takes place as a result of the lifting and moisture convergence along 

cold and bent-back warm fronts. Within the PBL, clouds also form independent from the 

tropospheric clouds.  Formation of this type of clouds will be discussed below. 

To narrow down on the performance of the PBL parameterization, we present a 

composite diurnal change of the PBL depth and the turbulent fluxes of the moist static 

energy Fh( )  and the total water-mixing ratio Fr( )  within the PBL in Fig. 15.  The moist 

static energy is defined by h cpT+ + Lq , where cp  is the specific heat at constant 

pressure, T  is temperature,  is geopotential, L  is latent heat of condensation, and q  is 

water vapor mixing ratio.  The total water mixing ratio is given by r q  for r q , 

where  q   is the saturation mixing ratio,  and r q + � ,  where �  is the  liquid  water  
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Fig. 13. Left panels show surface pressure (mb, solid lines) and “surface” potential temperature (K, dashed 

lines) with contour intervals 3 mb and 1K.  Right panels show the precipitation (mm) during the preceding 

6 hours.  Smallest contour value and contour interval are 3 mm and 4 mm, respectively. 
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Fig. 14. Cross-sections of potential vorticity (PVU, thick lines) for Day 10 at hour 1200.  Heavily shaded 

areas are clouds (Relative Humidity 100%) and the PBL is lightly shaded. 
 

mixing ratio, and  r q + � , where �  is the liquid water mixing ratio, for r > q .  The 

PBL depth (thick solid line) in both panels of Fig. 15 shows a strong diurnal cycle: It 

gradually deepens in the morning hours due to the PBL-top entrainment, reaches its 

deepest state in the late afternoon and collapses suddenly after sunset.  The upward 

surface fluxes of h and r, Fh( )
S
and Fr( )

S
, respectively, increase in the morning hours as 

the ground becomes warmer reaching their maxima near hour 1300, and then decrease 

gradually until hour 2000.  After that, Fh( )
S
becomes negative while Fr( )

S
 vanishes. 

Fh( )
S
 remains negative until sunrise, near hour 0700.  

We also present a composite diurnal change of the PBL cloud incident in Fig. 16.  

The incident is determined as the fractional are coverage of PBL clouds in the absence of 

the clouds above PBL.  During a diurnal cycle, the cloud incident is maximum shortly 

before sunrise within the shallow PBL.  The incident frequency diminishes with time as 

the ground warms up before noon and it peeks again in the late afternoon when the PBL 

is very deep.  The occurrence of PBL clouds within the deep PBL can be due to lack of 

radiation-cloud interactions and cumulus cloud parameterization in the current model. 
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Fig. 15. Composite diurnal changes of the PBL depth (mb, thick lines), moist static energy flux Fh (10
3
 Wm

-2
, 

left panel, thin lines) and scaled water flux L Fr (10
3
 Wm

-2
, right panel, thin lines). 
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12. Summary 

 

 In this technical report, we have presented a detailed description of the large-scale 

condensation process and PBL parameterization incorporated into the generalized vertical 

coordinate model being developed at UCLA. 

 The incorporation of large-scale condensation is conceptually different for an 

isentropic vertical coordinate model than for a pressure-based coordinate model. Konor 

and Arakawa (2000) present a detailed discussion on these issues and selection of a 

proper vertical grid to incorporate large-scale condensation processes into an isentropic 

model.  Since the generalized vertical coordinate is an isentropic one in a large part of the 

vertical domain, we have closely followed Konor and Arakawa (2000) in incorporating a 

large-scale condensation process into the model.  To avoid a vertical averaging between 

condensation rate and condensation heating, the prediction of moisture is placed at the 

interface of the model layers where the potential temperature is predicted.  Konor and 

Arakawa’s (2000) shows that an averaging can cause the dynamics to fail to take into 

account the change of effective static stability due to condensation. 

 The formulation of PBL processes remains one of the major unsolved problems in 

atmospheric general circulation modeling due complicated physical processes involved.  

A detailed simulation of the behavior and structure of the PBL would require an 

extremely high vertical resolution with a complex parameterization of turbulence 

interacting with cloud microphysics and radiation.  This is usually impractical in most 

applications of a GCM.  In this paper, we have presented a parameterization to simplify 

formulation of the PBL processes using a bulk approach.  In this parameterization, we 

designate multiple variable-depth layers next to the lower boundary as the PBL.  The 

depth of the entire PBL is predicted trough a mass budget equation including 

contributions of the parameterized mass entrainment (detrainment) into (out of) the PBL 

through the PBL top.  To incorporate the variable-depth PBL into a GCM, a system of 

two coordinates is chosen as the vertical coordinate, one for the PBL and the other for the 

free atmosphere sharing the PBL top as a coordinate surface.  The temperature, moisture 

and wind fields within the PBL are predicted using the surface fluxes and the fluxes 

associated with the entrainment (or detrainment) through the PBL top and diffusive 

fluxes between the layers.  For this purpose, a hybrid parameterization is used, one of 
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which is the bulk parameterization and the other a K-closure formulation.  The bulk 

parameterization is used in formulating turbulence fluxes due to convectively active large 

eddies, PBL-top entrainment (or detrainment), surface fluxes and PBL clouds, which is 

based on the predicted bulk TKE.  The K-closure formulation based on a bulk Richardson 

number is used for the effects of diffusive small eddies cascaded from the convective 

large eddies.  With this hybrid parameterization, simulated profiles in the PBL are 

allowed to deviate from well-mixed profiles, although the deviations are small for 

thermodynamic conservative variables when TKE is large. 

 We have incorporated the multi-layer PBL parameterization into our generalized 

vertical coordinate model using a hybrid  coordinate.  Motivated by the 

encouraging results obtained by this model, the multi-layer parameterization has also 

been incorporated into the UCLA GCM.  We will present the performance of the multi-

layer PBL in climate simulations with the GCM in a forthcoming paper. 

 While our current multi-layer PBL parameterization significantly advances the 

parameterizations based on single-layer mixed-layer approach (e.g. Suarez et al., 1983), 

we are planning future improvements in  

  
1) the entrainment formulation, 

2) the K-closure formulation specifically designed to treat the diffusion within the 

subcloud layer (e.g. van Meijgaard and Ulden, 1998) 

3) the prediction of the TKE for each PBL layer (e.g. Bechtold et al., 1992), 

4) the parameterization of convection within the PBL by including an Arakawa-

Schubert type cumulus scheme also operating in the PBL, and 

5) the parameterization of horizontal structure within the PBL by including a 

version of the mass-flux model (e.g. Lappen and Randall, 2001a-c). 
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Appendix A 
 

Vertically discrete mass and moisture continuity equations applied to  
the interfaces of a model based on the -coordinate 

 
 Here we present vertically discrete moisture continuity equation applied to the 

interfaces of the model layers that is consistent with the air mass continuity equation 

applied to the model layers (see Arakawa and Konor, 1996).  The discrete equations 

presented here give the corresponding mass continuity equation applied to the interfaces 

when a uniform distribution of q , such as q = 1  is assumed. 

 
The moisture continuity equations away from the boundaries: 
 

   

mq( )�+1 2
t

= qmvv( )�+1 2
1

( )�+1 2
qm�( )

�+1
qm�( )

�
for � = 1,2, ,L 1 ,(A.1) 

 
where 

  

   

mq( )�+1 2 q�+1 2 ( )�+1m�+1 + ( )� m� ( )�+1 + ( )�

qmv( )�+1 2 q�+1 2 ( )�+1m�+1v�+1 + ( )� m�v� ( )�+1 + ( )�

( )�+1 2
1

2
( )�+1 + ( )�

. (A.2) 

 

For 
  
qm�( )

�
, we may use the following expression: 

 

  
  
qm�( )

�
q�+1 2 m�( )

�+1 2
+ q� 1 2 m�( )

� 1 2
2  for � = 1,2,...,L .  (A.4) 

 

In the model, however, an alternative definition for 
 
qm�( )

�
 is used to obtain more 

accurate vertical moisture convergence in our model.  See appendix B for more detail. 
 
The moisture continuity equations at the boundaries: 
 
 At the upper boundary, 
 

  

  

mq( )1 2
t

= qmvv( )1 2
1

( )1 2
qm�( )

3 2
,  (A.5) 
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where 
 
mq( )1 2 q1 2m1 , 

  
qmvv( )1 2 q1 2m1v1  and ( )1 2 ( )1 2 .  At the lower 

boundary, 
 

  

   

mq( )L+1 2
t

= qmvv( )L+1 2 +
1

( )L+1 2
qm�( )

L 1 2
,  (A.6) 

 
where 

 
mq( )L+1 2 qL+1 2mL , 

  
qmvv( )L+1 2 qL+1 2mLvL  and ( )L+1 2 ( )L 2 . 

 
 When q  is vertically uniform, (A.1) to (A.4) are consistent with the vertically 

discrete air mass continuity equation given by (5.16). 
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  Appendix B 
 

Vertical and temporal discretizations of the moisture budget equations 
 
 Here we present the finite-difference schemes used in the vertical moisture 

advection. Since our focus is on the vertical advection, we write the equations needed 

after the computational step of horizontal advection and three-dimensional advection of 

 m  are completed.  We can vertically and temporally discretize the vertical advection of 

moisture as 

 

 
 
mq( )1 2

n+1( )
= mq( )1 2

( ) t( )F1
( ) ( )1 2  , (B.1a) 

 
  
mq( )�+1 2

n+1( )
= mq( )�+1 2

( ) t( ) F�+1 F�( )
( )

( )�+1 2 for � = 1,2,...,L 1, (B.1b) 

 
 
mq( )L+1 2

n+1( )
= mq( )L+1 2

( ) t( ) FL+1 2 FL( )
( )

( )L+1 2 , (B.1c) 

 mq( )L+1
n+1( )

= mq( )L+1
( ) t( ) FL+3 2 FL+1 2( )

( )
( )L+1 , (B.1d) 

 mq( )m
n+1( )

= mq( )m
( ) t( ) Fm+1 2 Fm 1 2( )

( )
( )m for m = L + 2,...,M , (B.1e) 

 
where (n) refers to time level and (*) refers to a state after the horizontal advection effects 

are implemented at time level n. 

 Now we define of the fluxes in (B.1a) to (B.1e).  For the free-atmosphere 

( � = 1,2,...,L 2 ), we use a positive definite scheme based on Hsu and Arakawa’s (1990) 

third-order scheme.  When �
� < 0 , where 

 

�
� m�( )

�+1 2

( )
+ m�( )

� 1 2

( )
2m�

n+1( ) , the flux 

in the scheme is defined by 

 

  

F�
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�
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2
 

  
+ �

�

1+ 2 �

6
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mq( )� 1 2
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1 �

6
mq( )� 1 2

( )
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( ) , (B.2a) 

 
where 
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( ) 2
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( ) 2 mq( )� 1 2
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( ) 2
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( )
. (B.2b) 
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To avoid under-shooting, we constrain the flux by 
 

  
  
F�
( ) Max m� 1 2

n+1( )q� 1 2
min

mq( )� 1 2

( ) ( )� 1 2
t( ),0{ } , (B.2c) 

 

where q� 1 2
min =Max q� 1 2

( ) ,q� 3 2
( ) ,q� 5 2

( ){ } .  When � � > 0 , the flux is defined by 
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where 

 

  

�
+
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To avoid under-shooting, we constrain the flux by 
 

  
  
F�
( ) Max m�+1 2

n+1( )q�+1 2
min

mq( )�+1 2
( ) ( )�+1 2 t( ),0{ } , (B.3c) 

 

where q�+1 2
min =Max q�+3 2

( ) ,q�+1 2
( ) ,q� 1 2

( ){ } .  Near the PBL-top, the fluxes are defined by 

 

  

  

FL
( ) qL 1 2

( )
m�( )

L

( )

FL+1 2
( ) qL+1 2

( )
m�( )

L+1 2

( )
 (B.4a) 

 

for 
  
m�( )

L+1 2
< 0 , and, to avoid the under-shooting, we constrain these fluxes by 

 

   
 
FL
( ) Max mL 1 2

n+1( ) qL 1 2
min

mq( )L 1 2

( ) ( )L 1 2
t( ),0{ }  (B.4b)  

 

with qL 1 2
min Max qL 1 2

( ) ,qL 3 2
( ) ,qL 5 2

( ){ }  and 
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with qL+1 2
min Max qL+1 2

( ) ,qL 1 2
( ){ } .  For 

 
m�( )

L+1 2
> 0 , on the other hand, the fluxes are 

defined by 

 

  

 

FL
( ) rL+1 2

( )
m�( )

L

( )

FL+1 2
( ) rL+1

( )
m�( )

L+1 2

( )
. (B.4d) 

 
 Within the PBL, the fluxes are defined by 
 

  

  

Fm+1 2
( ) rm+1

( ) + rm 1
( )

2
m�( )

m+1 2
for � = L + 2,...,M 1

FM+1 2
( ) = 0

. (B.5) 

 

To simulate the PBL-top processes during collapse, for which m�( )
L+1 2

> 0  (D>0 and 

E=0), we constrain the values of q�+1 2
n+1( )  in the lower free atmosphere by 

qmax Max rm
( ) for m = L +1,M{ } , which is the maximum of r within the PBL at time 

level (*).  If  q�+1 2
n+1( ) > qmax  for � = i,...,L  occurs, where i is obtained from 

pS pi+1( ) p( )max pS pi( ) , and thus i +1 2  identifies the highest interface, where q 

is predicted, below the properly chosen upper limit of the PBL-top given by pS p( )max , 

the excess moisture  q�+1 2
n+1( ) qmax  is carried upward between levels i +1 2  and L +1 2  

through the procedure described below, which is referred to as “final step” in Fig. B1. 

 In the “final step”, we first calculate 

 

  
 
q( )�+1 2 q�+1 2

n+1( ) qmax for � = j,...,L , (B.6a) 

 
at the first step, we set  j=i.  Then we obtain the total available moisture to carry, P and 

the total moisture hole to fill, N, from these definitions as follows: 
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P
1

2
q( )�+1 2 + q( )�+1 2 m�+1 2

n+1( )

�= i

L

N
1

2
q( )�+1 2 q( )�+1 2 m�+1 2

n+1( )

�= i

L
. (B.6b) 

 
If P >- N, we decrease j until - N > P is reached.  Finally, we fill the moisture holes 

identified by q�+1 2
n+1( ) < qmax , without exceedingqmax , between j +1/2 and L +1/2 by giving 

priority to the lowest level and conserving mass-weighted water-vapor mixing ratio.  

 

 

  
Fig. B1. Simulated vertical transport of q through the PBL-top during collapse (D>0 and E=0).  
Initially, q is prescribed by a step function with larger values in the PBL. 
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Appendix C 
 

Pressure gradient force for the layers within the PBL 
 
 Here we present an alternative pressure gradient force term for the layers within the 

PBL.  The derivation procedure closely follows Suarez et al. (1983) since a modified 

sigma coordinate is used for the PBL. 

 
 The pressure on the coordinate surfaces can be defined by 
 
  

 
p = pS m S( )with B S . (C.1) 

 
In (C.1), the PBL mass  m  is defined by (6.2).  Note that the subscript PBL is omitted in 

mPBL .  The pressure gradient force on the sigma surfaces is 

 

  ( )p = +
p

p . (C.2) 

 
If we assume that the individual PBL layers are internally vertically well mixed, we can 

write the pressure gradient force (C.2) for the layer  m  as 

 

 p( )
m
=

1

m+1 2 m 1 2

( )d
m 1 2

m+1 2

+
1

m+1 2 m 1 2 p
p d

m 1 2

m+1 2

. (C.3) 

 
Then using (C.1) and defining 

 

  m

1

m+1 2 m 1 2

( )d
m 1 2

m+1 2

 (C.4) 

 
in (C.3), we can rewrite (C.3) as 
 

  
 

p( )
m
= m +

1

m+1 2 m 1 2 p
pS m S( ) d

m 1 2

m+1 2

. (C.5) 

 
Using the hydrostatic equation given by 
 

  
 
p
=

1

m
, (C.6) 
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in (C.5), we further rewrite (C.5) as 

 

 

 

p( )
m
= m

1

m m+1 2 m 1 2( )
pS( ) d

m 1 2

m+1 2

 

 

 

+
1

m m+1 2 m 1 2( )
m( ) d

m 1 2

m+1 2 1

m m+1 2 m 1 2( ) S m( ) d
m 1 2

m+1 2

. (C.7) 

 
If we use 
 

  m+1 2 m 1 2 = d
m 1 2

m+1 2

, (C.8) 

 

  d =
m 1 2

m+1 2

m+1 2 m+1 2 m 1 2 m 1 2 m m+1 2 m 1 2( )  (C.9) 

 
and 

  
 
pS = pB + B S( ) m , (C.10) 

 

which is obtained from (C.1), we obtain the pressure gradient force for layer m of the 

PBL is 

 

 

p( )
m
= m +

1

m m+1 2 m 1 2( ) m 1 2 m+1 2( ) pB( )  

 

m( )

m m+1 2 m 1 2( ) m+1 2 m m+1 2( ) + m 1 2 m 1 2 m( ) B m 1 2 m+1 2( ) . 

   (C.11) 
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  Appendix D 
 
  Budget equation for  in the PBL 
 
 We can write the budget equation for  within the PBL as 
 

  
  
t

m( )m + mvv( )m =
1

( )m
m+1 2 m�( )

m+1 2 m 1 2 m�( )
m 1 2

 

  
g

( )m
F( )

m+1 2
F( )

m 1 2
 for m=L+2, . . ., M,   (D.1) 

 
where 
  m+1 2 = f m , m+1( )  for m=L+2, . . ., M-1  (D.2) 

 
and F  is the total turbulent flux of .  Note that the subscript PBL is omitted inmPBL . 

 

  
Figure D1 

 
 At the uppermost layer of the PBL, the budget equation is written following an 

approach similar to Suarez et al. (1983).  In this approach, we assume that a thin 

transition layer with negligible storage separates the PBL from the free atmosphere (see 

Fig. D1).  At the top of the transition layer (B+), the flow is non-turbulent [i.e. 

F( )
B+
= 0 ]; and at the bottom of it (B-), the flow is turbulent [i.e. F( )

B
0 ].  For this 

layer, the budget equation is given by 

 

 

  
B
E

B

c( )MB F( )
B

R( )
B
=

B+
E

B+
c( )MB F( )

B+
R( )

B+
, (D.3) 
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where c denotes the air within cumulus-induced updraft, R is the upward radiation flux 

of  when relevant.  Assuming c( ) =
B+
c( ) =

B
, requiring F( )

B+
= 0  and using (5.26) 

given by 
 
m�( )

B
= g E MB( ) , we can write 

 

  
 B

m�( )
B
g F( )

B
=

B+
m�( )

B
+ g

B+ B( )MB g R( )
B

, (D.4) 

 
 
where R( )

B
R( )

B+
R( )

B
.  If the PBL top is a cloud top, 

R( )
B

RLW( )
B
= 0 for , where RLW  is the upward longwave radiation flux.  For 

shortwave, we assume RSW( )
B
= 0  and, therefore, R( )

B
= RLW( )

B+
for .  With 

no clouds, on the other hand, we may use R( )
B
= 0  for .  The budget equation 

written for the layer bounded by L + 3 2  and B  is given by 

 

  
   t

m( )L+1 + mvv( )L+1 =
1

( )L+1
L+3 2 m�( )

L+3 2 B
m�( )

B
 

  
g

( )L+1
F( )

L+3 2
F( )

B
R( )

B
. (D.5) 

 
Using (D.4) in (D.5), we can obtain a budget equation for the layer bounded by L + 3 2  

and B+  as 

 

  
   t

m( )L+1 + mvv( )L+1 =
1

( )L+1
L+3 2 m�( )

L+3 2 B+
m�( )

B
 

  
g

( )L+1
F( )

L+3 2
+

B+ B( )MB R( )
B+

. (D.6) 

 
 

According to the budget equations given by (D.1) and (D.6), the effect of roots of 

cumulus clouds is confined to the uppermost layer of the PBL.  This effect may be 

distributed to the lower layers through adding the term g m
c( )

B+ B( )MB ( )m  to 

the right hand side of (D.1), where m
c( )  is a constant weighting coefficient 
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satisfying m
c( ) =

m=L+1

M

1 , and replacing 
B+ B( )MB  in (D.6) by L+1

c( )
B+ B( )MB  

(see Fig. D2). 

 

 
Figure D2 
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  Appendix E 
 
  Derivation of the bulk TKE equation (7.3) 
 
 The budget equation for mass-weighted bulk TKE applied to the entire PBL can be 

approximately written as  

 

  
  

mePBL
t

=
mg

p( )PBL
B + S D( ) , (E.1) 

 
where  m  is the PBL mass mPBL ; and  B ,  S  and  D  are the buoyancy and shear 

generations and dissipation of the bulk TKE, respectively.  The mass continuity equation 

for the PBL is  

 

  
  

m

t
= mvv( )PBL +

mgE

p( )PBL
. (E.2) 

 
After multiplying (E.2) by ePBL  and using it in (E.1), we obtain  

  

  
   

ePBL
t

=
ePBL
p( )PBL

gE +
g

p( )PBL
B + S D( ) +

ePBL
m

mvv( )PBL . (E.3) 
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