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ABSTRACT

A method for simulating fluid motions that shows promise for application to the oceans is explored. Incom-
pressible inviscid fluids with free surfaces are represented as piles of slippery sacks. A system of ordinary
differential equations governs the motions of the sacks, and this system is solved numerically in order to simulate
a nonlinear deformation, internal and external gravity waves, and Rossby waves. The simulations are compared
to analytic and finite-difference solutions, and the former converge to the latter as the sizes of the sacks are
decreased.

The slippery-sack method appears to be well suited to ocean modeling for the following reasons: 1) it perfectly
conserves a fluid’s distributions of density and tracers; 2) unlike existing isopycnic models the slippery-sack
method is capable of representing a continuum of fluid densities and vertically resolving neutral regions; 3) the
inclusion of continuous topography adds no numerical complexity to the slippery-sack method; 4) the slippery-
sack method conserves energy in the limit as the time step approaches zero; and 5) the slippery-sack method
is computationally efficient.

1. Introduction

Consider a pile of sacks. We are not concerned with
what the sacks contain, but if it helps, the reader may
imagine them to contain sand or fluid. Suppose that there
are no vertical gaps between sacks and that the sacks
are slippery (Fig. 1). One would expect such a pile to
be dynamic. For example, one might expect the pile
depicted in Fig. 1 to spread with time. It turns out that
under certain conditions a pile of slippery sacks behaves
very much like a pool of fluid with the same mass dis-
tribution. Predicting the motions of a number of sacks
is in general much easier than solving the partial dif-
ferential equations that describe fluid motion in an Eu-
lerian framework, so it would seem that treating a fluid
as a collection of slippery sacks might be a viable al-
ternative to traditional methods of simulating free-sur-
face fluid motions, in particular, ocean circulations. In
this paper we explore this idea. We begin by reviewing
existing numerical methods for ocean models, noting
where there is room for improvement.

a. Major classes of ocean models

At the present time there are three main classes of
ocean models that are distinguished by the vertical co-
ordinates they use to solve the equations of motion.
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Most of the models within these classes use latitude and
longitude as horizontal coordinates.

1) z-COORDINATE MODELS

The majority of ocean models use depth or z as a
vertical coordinate. Most such models are based on the
method presented by Bryan (1969) but include modi-
fications such as a free upper surface (Dukowicz and
Smith 1994) or alternative advection schemes. While z-
coordinate models have simulated ever more realistic
circulations as advances in supercomputing have al-
lowed ever higher resolutions (Smith et al. 2000), they
have a few persistent problems. Deep water originates
in a handful of locations and then is transported great
distances nearly ‘‘adiabatically,’’ with little modification
to salinity or potential temperature. While mixing does
modify temperature and salinity slightly in nature, z-
coordinate models produce too much such mixing across
isopycnic surfaces owing to numerical effects (Griffies
et al. 2000). In some cases this spurious diapycnal mix-
ing results in distorted deep water circulations (Roberts
et al. 1996). While numerical techniques, such as iso-
neutral diffusion (Griffies et al. 1998), have been de-
veloped to minimize spurious diapycnal mixing, the
problem has not been fully solved, and incorporating
the new techniques increases model complexity. A sec-
ond weakness of z-coordinate models is that many have
step topography and poorly resolve the ocean bottom.
Using shaved-cell (Adcroft et al. 1997) or partial-cell
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FIG. 1. A pile of slippery sacks having no gaps in the vertical.

topography (Pacanowski and Gnanadesikan 1998) al-
leviates this problem but also adds to model complexity.

2) ISOPYCNIC MODELS

Within a second category of ocean models, isopycnic
models, the ocean is treated as a stack of layers, each
having a constant potential density (Bleck 1998). Such
models avoid spurious diapycnal mixing and have con-
tinuous topography, but they poorly resolve flow in
weakly stratified regions and represent only a discrete
set of potential densities. Moreover, isopycnic models
effectively treat seawater as incompressible and, there-
fore, are unable to simulate horizontal pressure gradients
associated with variations in compressibility that pre-
sumably contribute to the observed thermohaline cir-
culation in the Atlantic (Sun et al. 1999).

3) s-COORDINATE MODELS

The third major category consists of terrain-following
or s-coordinate models (Ezer and Mellor 1997; Haid-
vogel et al. 2000). This vertical coordinate was origi-
nally designed for simulating atmospheric circulations
(Phillips 1957). While oceanic s-coordinate models rep-
resent continuous topography, they suffer from a prob-
lem that has plagued atmospheric s-coordinate models
for years; near regions of steep topography two terms
with nearly equal magnitude and opposite sign nearly
cancel yielding errors in the calculation of the pressure
gradient (Haney 1991). Like z-coordinate models, s-
coordinate models are also prone to spurious diapycnal
mixing.

b. Alternative methods for ocean modeling

While most, if not all, full-fledged ocean models fit
into one of the three classes discussed above, a number
of other numerical techniques have been used for more
idealized ocean simulations or are in the development
stage for use in ocean models. Two examples are the
particle-in-cell (PIC) method and finite-element meth-
ods (e.g., Lynch et al. 1995; Le Roux et al. 2000). Be-
cause the PIC method has much in common with the
slippery-sack method, we review it in detail.

THE PIC METHOD

Developed at Los Alamos in 1955, the PIC method
was originally intended for simulating fluid circulations

involving large distortions, large slips, or colliding in-
terfaces (Harlow 1964). Under the method the fluid’s
domain is divided into cells that are fixed in space, and
the fluid’s mass is distributed among a number of par-
ticles whose positions and velocities are prognosed. The
amount of mass in each cell is calculated by summing
the contributions from the particles in that cell (and from
particles in nearby cells, in some implementations), and
the mass field is then used to calculate a pressure field.
A finite-difference approximation of the pressure gra-
dient is used to determine particle accelerations. The
PIC approach is a quasi-Lagrangian method; it combines
respective strengths of Lagrangian and Eulerian ap-
proaches, the accurate Lagrangian treatment of mass
transport and the simple Eulerian calculation of the pres-
sure gradient.

Oceanic applications of the PIC method have in-
volved idealized one- and two-layer systems. Pavia and
Cushman-Roisin (1988) adapted the PIC method to the
two-dimensional shallow water equations under the
frontal-geostrophic approximation in order to simulate
the evolution of oceanic warm-core eddies. They later
developed a version of the model without the frontal-
geostrophic approximation and simulated the merging
of two oceanic eddies (Pavia and Cushman-Roisin
1990). Pavia (1992), Pavia and Lopez (1994), and San-
son et al. (1998) performed similar simulations of evolv-
ing oceanic eddies and frontal filaments. Ochoa et al.
(1998) generalized a PIC shallow water model so that
it allowed variable particle densities, and Esenkov and
Cushman-Roisin (1999) and Cushman-Roisin et al.
(2000) discuss the application of the PIC approach to
a single layer within a two-layer system.

c. Motivation for studying the slippery-sack method

As the reader will soon find out, the slippery-sack
method has a number of properties that make it well
suited for simulating ocean circulations. Most impor-
tantly, under the slippery-sack method the mixing of
density and tracers only occurs when it is explicity pa-
rameterized. Therefore, the slippery-sack method avoids
the spurious diapycnal mixing that occurs in z- and s-
coordinate models. Of course, existing isopycnic models
also avoid this problem, but the slippery-sack method
has capabalities above and beyond these models as well,
including higher vertical resolution in neutral regions,
the ability to represent a continuum of densities, and
explicit control over isopycnal mixing. Other advantag-
es of the slippery-sack method are that it represents
continuous topography without numerical complexity,
it conserves energy in the limit as the time step ap-
proaches zero, and it is computationally efficient.

This paper discusses the first stage in the development
of a slippery-sack ocean model, the creation and testing
of an inviscid incompressible free-surface fluid model
based on the slippery-sack method. The paper is or-
ganized as follows. Section 2 describes the dynamics of
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FIG. 2. (a)–(d) Three slippery sacks at four successive times; arrows
indicate horizontal velocities; sack density increases with shading.

a pile of slippery sacks, section 3 details the slippery-
sack model, section 4 compares slippery-sack simula-
tions to analytic and finite-difference solutions, section
5 compares the slippery-sack method to other numerical
methods for the oceans and outlines the steps needed
to transform the slippery-sack incompressible-fluid
model into an ocean model, and section 6 is a summary.

2. Slippery-sack dynamics

Given a few assumptions, a surprisingly simple sys-
tem of equations governs the motions of slippery sacks
within a pile. In this section we derive such a system
and discuss a few of its properties.

a. Properties of slippery sacks

We assume that slippery sacks have the following
properties: 1) the horizontal mass distribution of a sack
is independent of time within the sack’s frame of ref-
erence; 2) when sacks slide over one another they con-
form so there are no vertical gaps between sacks; 3)
pressure is hydrostatic within a pile of sacks; 4) density
is a non-increasing function of height within a pile of
sacks (i.e., when two sacks of differing densities collide
the sack with the higher density slides under the sack
with a lower density); and 5) a sack is accelerated in
the horizontal by the integrated pressure force acting on
the surface of the sack. These properties are selected
with the hope that a pile of sacks will behave like a
hydrostatic fluid with a free surface. They also make
for easy calculations of sack motions and guarantee sta-
ble stratification. To keep things simple in this paper we
make three additional assumptions: 6) a sack’s density
is constant in space and time; 7) the horizontal bound-
aries of the domains of sacks are periodic; and 8) there
is no friction between sacks. We plan to relinquish these
assumptions under future applications of the slippery-
sack method.

In order to illustrate our concept with a simple ex-
ample we consider the motions of three slippery sacks
(Fig. 2). Initially sacks 1 and 2 are motionless, and sack
3 is moving toward the right (Fig. 2a). Sack 3 has a
lower density than sack 1, and as a result it rides up
and over sack 1. Notice that while sack 3’s horizontal
mass distribution is time independent within the frame
of reference moving with the sack, the shape of sack 3
changes with time (e.g., its right edge twists upward
between Figs. 2a and 2b). Once sacks 1 and 3 overlap
there is a nonzero pressure on the interface between the
sacks, and the inward normal force resulting from pres-
sure on the interface accelerates sack 3 toward the left
and sack 1 toward the right (cf. velocity vectors between
Figs. 2b and 2c). Eventually sacks 1 and 3 reach sack
2, which becomes wedged between them because it has
an intermediate density (Fig. 2d).

Properties 1–8 make no mention of vertical motions
or accelerations, but clearly sack 3 accelerates and

moves in the vertical as it rides up and over sacks 1
and 2 (Figs. 2a–d). In contrast with horizontal motions
and accelerations, no single variable characterizes the
vertical position or motion of the sack; different vertical
cross sections of the sack have different vertical mo-
tions. For example, between Figs. 2a and 2b the right
edge of sack 3 accelerates and moves upward but the
remainder of the sack has zero vertical motion. As in
the primitive equations, within a pile of slippery sacks
the vertical motions and accelerations are driven by hor-
izontal motions and accelerations and constrained by
mass continuity.

b. Equations of motion

We now derive a system of equations of motion for
a collection of slippery sacks. Toward that end, it is
helpful to assign a stacking order to the sacks. We num-
ber the sacks 1, 2, . . . , k and assume that when two
sacks overlap, the sack with a lower number lies beneath
the sack with a higher number. In order for property 4
to be satisfied, this requires that density be a nonin-
creasing function of stacking number. As we note later
in the paper, when two sacks have the same density, for
the purposes of calculating horizontal sack motions it
makes no difference which has a lower stacking number.

The net force on sack i resulting from pressure on its
surface is as follows:

F 5 pn dA, (1)i E
Si

where Si is the surface of the sack, p is pressure, n
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denotes the inward normal vector, and A is the area
measure. Using the hydrostatic assumption and a little
geometry we obtain an expression for the horizontal
component of this force:

k

F 5 r g T = T dAOh j E j h ii
j5i11 Dh

i21

2 r g T = T dA, (2)O i E i h j
j51 Dh

where r is density, g is gravity, Dh is the entire hori-
zontal domain, T denotes vertical thickness (of a par-
ticular sack), and =h is the horizontal gradient operator.
Since density is uniform within each sack, a sack’s ver-
tical thickness at a particular location is proportional to
its mass density per horizontal area. So we have

m (x 2 x (t))i h hiT (x , t) 5 , (3)i h ri

where xh is an arbitrary horizontal position, t is time,
x (t) is the position of the center of sack i, and mi ishi

the horizontal mass distribution function for sack i,
which is defined in sack-relative coordinates. Strictly
speaking the net pressure force on a given sack depends
on every other sack in the pile; that is, the sums on the
right-hand side of (2) are over all the sacks with higher
and lower stacking numbers. However, in practice the
thickness functions are nonzero only in small regions
around sack centers, and only those terms in the sums
involving pairs of sacks that overlap need to be eval-
uated.

We apply Newton’s second law in the horizontal to
obtain equations of motion:

dv Fh hi i1 f k̂ 3 v 5 , (4)hidt Mi

dxhi 5 v , (5)hidt

where y h denotes horizontal velocity, the frame of ref-
erence is rotating at f rad s21, k̂ is the unit vector in
the vertical, and Mi denotes the mass of sack i. Equations
(2)–(5) form a closed system.

c. Including bottom topography

Within the system (2)–(5), sacks with a lower stacking
number than a given sack affect the acceleration of that
sack in the same way as does bottom topography. There-
fore, an irregular lower boundary can be included in the
system by defining the lowest sack(s) to be motionless
and to have the shape of the desired topography. In other
words, including bottom topography adds no complexity
to the system.

d. The stacking-order-exchange property

One interesting property of the system (2)–(5) is that
if every sack within a layer within the pile has the same
density, exchanging the stacking number of two sacks
within that layer will have no effect on their horizontal
motions. This is apparent from inspection of (2); the
result of such an exchange of stacking numbers is the
transfer of terms between the two sums on the right-
hand side of (2). This property generalizes by induction
to layers; if two layers of sacks have the same density,
their relative vertical positioning may be changed with-
out having any effect on the horizontal motions of sacks
within the layers.

e. Conservation properties

The system (2)–(5) conserves mass by definition, and
in appendix B we show that it conserves momentum
and energy.

3. A slippery-sack incompressible fluid model

We have constructed a numerical model that predicts
the motions of slippery sacks within a pile by approx-
imating the equations of motion that were derived in
the previous section. This section details that model
discussing the discretization of the equations, the mass
distribution functions for the sacks, and how the model
is initialized.

a. Spatial discretization

The challenge of solving (2)–(5) is finding an efficient
and accurate way to evaluate (2). For certain classes of
thickness functions it is possible to evaluate the integrals
in (2) analytically, but in addition to being mathemat-
ically cumbersome, that approach has the following dis-
advantage. The number of operations required to cal-
culate the accelerations of all of the sacks is proportional
to the number of sacks times the average number of
sacks in the vertical. This means that if the vertical
resolution of the model is doubled, the number of op-
erations per time step is quadrupled. This becomes in-
capacitating for three-dimensional simulations in which
the pile is at least tens of sacks deep.

We discretize a version of (2) using a technique whose
number of operations per time step is proportional to
the number of sacks. To illustrate this technique we first
use (A1)–(A2) to rewrite (2):

k i

F 5 = T r gT 1 r g= T T dA. (6)O Oh E h i j j i h i ji 5 6[ ] [ ]j5i11 j51Dh

We now approximate the integral in (6) using a gen-
eralized Riemann sum. Let R be a partition of Dh and
for each r ∈ R let xr ∈ r. For the simulations presented
here R is a collection of identical rectangles, whose
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widths in each dimension are one-fifth to one-tenth that
of the smallest sack. The point xr is considered to be a
representative of r and for our purposes is selected to
be at the center of r. The following equation approxi-
mates (6):

k

F ø = T (x , t) r gT (x , t)O Oh h i r j j ri 5 [ ]r∈R j5i11

i

1 r g= T (x , t) T (x , t) A(r), (7)Oi h i r j r 6[ ]j51

where the gradients are evaluated analytically. Now for
a given r ∈ R, each of the two sums within brackets
differs by one term between i and i 1 1, so the process
of evaluating the sums for every sack overlapping xr

scales linearly with the number of sacks in the vertical.
Moreover, the number of partition elements scales lin-
early with the number sacks in a given horizontal layer,
so the process of evaluating (7) for every sack and for
every r ∈ R scales linearly with the total number of
sacks.

Another advantage of using (7) to calculate sack ac-
celerations is that the sum of the exact kinetic energy
and the approximate potential energy, Sr∈R{# r(xr, z,Dz

t)gz dz}A(r), is conserved in the limit as the time step
approaches zero. In fact, the reason we rewrite (2) as
(6) before discretizing is to achieve this conservation.
When using (7) to calculate sack accelerations momen-
tum is not in general conserved under continuous time,
other than in the limit as A(r) goes to zero. When (2)
is discretized in the same manner rather than (6), mo-
mentum is conserved under continuous time but energy
is not. We have been unable to find a discretization of
(2)–(5) that conserves both energy and momentum (al-
though such a discretization may well exist), and we
elect to enforce the conservation of energy because that
places a stronger constraint on the stability of the system
than enforcing the conservation of momentum.

In order to implement (7) efficiently, one must keep
track of the sacks that have the potential to overlap a
given partition representative xr. To do this we divide
the horizontal model domain into rectangular subdo-
mains that are half as wide as the largest sack in each
horizontal dimension. Let s denote the subdomain con-
taining xr. Then, only those sacks centered in the eight
subdomains surrounding s have the potential to have
centers within a sack half-width of xr in both the x and
y directions, which means that only those sacks need to
be included in the evaluation of the quantity in braces
in (7).

b. Time discretization

The time derivatives in (4)–(5) are evaluated using
second-order Adams–Bashforth time differencing.
While such time differencing is weakly unstable for
wave oscillations, for the simulations presented here the

time steps and durations are sufficiently small (0.1–
0.001 and 2–5 s, respectively) that the errors associated
with time differencing are much smaller than those as-
sociated with treating the fluid as a collection of sacks.
In the future we plan to use third-order Adams–Bash-
forth time differencing, which is conditionally stable for
wave oscillations, to facilitate long-duration simula-
tions.

c. The mass distribution functions

The model uses mass distribution functions with the
following form:

2 2
4M px pyim (x, y) 5 cos cos (8)i 1 2 1 2[ ] [ ]w w w wx y x yi i i i

for | x | # w /2 and | y | # w /2 (mi is zero elsewhere),x yi i

where x and y denote the horizontal displacement from
the center of the sack, and w and w are the widths ofx yi i

the sack in the x and y directions, respectively. We chose
this form for the mass distribution functions because it
has several nice properties; it is continuous, it has a
continuous horizontal gradient that vanishes at the edges
of the sack, and it is easy to construct piles that are
perfectly level using sacks with such a mass distribution.
For two-dimensional simulations the y dependence of
the mass distribution function is neglected, that is, it
has the following form:

2
2M pxim (x) 5 cos , (9)i 1 2[ ]w wx xi i

where Mi denotes the mass per unit span of sack i.

d. Initialization

There are many ways to select initial sack positions
and mass distribution parameters so that a pile of sacks
has approximately the same mass distribution as a pool
of fluid. We use an initialization procedure that is well
suited to fluids comprising layers of constant density.
To illustrate the approach we discuss its use in the first
simulation presented here, for which the fluid is a two-
dimensional ridge having the shape of an inverted pa-
rabola (Fig. 3a). The basic idea is to divide the domain
into divisions having equal width (Fig. 3b), to put the
mass in each division into a single sack (Fig. 3c), and
to stack the sacks so that there are no gaps in the vertical
(e.g., Fig. 3d). The mathematical details of the procedure
follow.

Let Dx 5 0.2 denote the width of a domain division
and suppose that x 5 0 is the center of the ridge. The
ridge is initially motionless, and its height is given by
h(x) 5 1 2 x2 for 21 # x # 1, h(x) 5 0 for | x | . 1.
Each sack’s mass per unit span is defined to be the mass
per unit span in the domain division it represents:
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FIG. 3. An illustration of the procedure used to initialize sack po-
sitions and distribution parameters: (a) a continuous ridge of fluid;
(b) the domain is divided into divisions of equal width; (c) the mass
in each division is assigned to a single sack whose horizontal position
is the center of the division it represents (sack outlines before the
sacks are stacked); (d) sacks are stacked with no gaps in the vertical;
(e) the stacking order of the stacks is rearranged; each sack is labeled
with its new stacking number followed by the former stacking number
in parentheses.

iDx21

M 5 hr dx, (10)i E
(i21)Dx21

where r is the density of the ridge and of each sack.
Each sack’s horizontal position is defined to be the cen-
ter of the domain division that it represents:

1
x 5 i 2 Dx 2 1. (11)i 1 22

The sack width is a free parameter, and we arbitrarily
select it so that a sack’s maximum vertical thickness is
one-half of its width:
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Miw 5 2 . (12)xi ! r

The parameters Mi and w together with (9) define thexi

mass distribution mi, which is substituted into (3) to
find the vertical thickness function Ti. When the sacks
are stacked so that there are no gaps in the vertical, the
height hi of the upper surface of a sack is the sum of
its vertical thickness and the vertical thicknesses of the
sacks beneath it:

i

h (x, t) 5 T (x, t). (13)Oi j
j51

To obtain the pictures of sack outlines (e.g., Fig. 3d)
we simply plot hi for each sack. Since each sack has
the same density, it makes no difference what stacking
order we assign to the sacks; the mass distribution of
the pile and the horizontal motions of the sacks are
independent of stacking order (section 2d). For a more
aesthetically pleasing pile, we select a new stacking
order that minimizes the vertical extent of each sack
(Fig. 3e).

The above illustration pertains to a two-dimensional
fluid with a constant density. When the fluid has three
dimensions, the domain is divided in both the x and y
directions, that is, into grid boxes, and the fluid within
each box is assigned to a single sack. When the fluid
comprises multiple layers of constant density the above
procedure is applied to each layer in succession.

4. Simulations

In this section we use the slippery-sack model de-
scribed in the previous section to simulate three kinds
of fluid motion: a nonlinear deformation, gravity waves,
and Rossby waves. These three types of circulations
were selected as test cases because each is inviscid and
each occurs in the oceans.

a. The spreading ridge

Consider a ridge of fluid with the shape of an inverted
parabola, a maximum depth of 1 m, a width of 2 m,
and a density of 1000 kg m23 on a nonrotating planet
where the acceleration due to gravity is 1 m s22. If the
ridge is initially at rest, there is no friction or viscosity,
and nonhydrostatic pressure is neglected, then the mo-
tions of the ridge are described by an analytic solution
(Frei 1993; Schär and Smolarkawicz 1996). We now
check how accurately the slippery-sack model repro-
duces that solution. We represent the fluid using only
40 sacks (Fig. 4a). Sack mass distributions and positions
are initialized according to the method described in sec-
tion 3d.

Within the analytic solution the ridge maintains the
shape of an inverted parabola as it spreads over time
(Figs. 4a–c). The pile of sacks closely approximates that

shape; the top of pile, albeit wavy, is nearly collocated
with the smooth top of the continuous ridge at 2 s (Fig.
4c). The analytic velocity field is a linear function of
x, and for the most part the sack velocities lie on that
line (Figs. 4d–f) with the only perceptible differences
occurring at the outer edges of the ridge at 2 s (Fig. 4f).

The total energy of the pile is very nearly conserved
with time (Fig. 4g); deviations from the initial value are
about one-hundredth of one percent. To confirm that the
model conserves energy in the limit as the time step
approaches zero, we repeated the simulation multiple
times successively halving the time step, and the de-
viation of the total energy from its initial value does
indeed approach that expected from round-off errors.

We also repeated the simulation using both fewer and
more sacks calculating the normalized velocity error,
defined as the 11 norm of the difference between the
slippery-sack and analytic velocity fields divided by the
11 norm of the analytic velocity field, for each simu-
lation at 2 s (Fig. 4h). From these tests we draw two
conclusions. First, for this test case the slippery-sack
method is well-behaved at low resolution. Even when
only 20 sacks are used the velocity field at 2 s is ap-
proximated within about 20%. Second, as the number
of (size of the) sacks is increased (decreased) the be-
havior of the pile approaches that of the continuous
ridge. We leave a discussion of the rate of convergence
of the method to the following section; within the sim-
ulation presented there the sacks have identical mass
distributions, and errors are related to sack size.

b. Internal and external gravity waves

Now consider a two-dimensional pool of fluid com-
prising two layers, the lower layer having a density of
1100 kg m23 and the upper layer having a density of
1000 kg m23. The depth of each layer is 1 m, and the
pool is 20 m wide with periodic boundaries. Suppose
that we introduce into the lower layer a horizontal ve-
locity perturbation having a magnitude of 1 mm s21 and
a Gaussian distribution in the horizontal with a width
of 2 m. Such a perturbation projects onto both internal
and external gravity waves, and we now test how well
the slippery-sack method simulates these waves. The
difference in density between the layers is much greater
than that which occurs in the oceans; we select this
stratification so that the phase speeds of the internal and
external waves are not drastically different and the be-
havior of both may be studied within the same simu-
lation. Since the initial velocity perturbation is very
weak, its evolution is almost exclusively linear, and we
compare a slippery-sack simulation to output from a
linear Eulerian finite-difference model that uses centered
fourth-order spatial differencing and leapfrog time dif-
ferencing and is run at sufficiently high resolution that
its output is treated as the continuous linear solution.

We represent each layer using 40 sacks that each have
a width of 1 m (Fig. 5a). Because of our choice for a



2982 VOLUME 130M O N T H L Y W E A T H E R R E V I E W

FIG. 4. The spreading ridge simulation: the continuous ridge (shad-
ed) and the pile of slippery sacks (outlines) at (a) 0, (b) 1, and (c)
2; the analytic velocity field (solid line) and sack velocities (‘1’s) at
(d) 0, (e) 1, and (f ) 2 s; (g) simulated potential energy (PE), kinetic
energy (KE), and their sum; (h) the effects of using fewer and more
sacks on velocity errors.

mass distribution function (8), the top of each layer is
perfectly level. Each sack in the lower layer is initialized
to have a velocity equal to the value of the Gaussian
distribution at the location of its center, and sacks in
the upper layer are initially motionless. The initial ver-
tically averaged horizontal velocity in the lower layer
of the pile is close to that in the continuous pool (Fig.
5b); the only significant errors in initialization occur

near the center of the perturbation and reach about 5%
of the perturbation’s magnitude.

Within both the slippery-sack and linear simulations
the initial velocity perturbation in the lower layer di-
vides into four humps (Figs. 5b–d). The outer two
humps are the circulations of external gravity waves,
and the inner two are associated with internal gravity
waves (Fig. 5d). Although the upper layer is initially
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FIG. 5. The gravity wave simulation. (a) The initial state of the pile of sacks. Sacks within the lower layer (shaded) are 10% more dense
than those within the upper layer. Vertically averaged velocity within the lower layer of the pile of slippery sacks (solid line) and the
continuous fluid (dotted line) at (b) 0, (c) 2, and (d) 5 s; vertically averaged velocity within the upper layer of the pile of slippery sacks
(solid line) and the continuous fluid (dotted line) at (e) 2 and (f ) 5 s; (g) the normalized difference between the slippery-sack and linear
lower-layer velocity fields at 5 s for several sack sizes. The dotted line has a slope of 22.

undisturbed (not shown), at later times the waves are
apparent in this layer as well (Figs. 5e–f). The slippery-
sack waves propagate too quickly and show evidence
of dispersion (Figs. 5d,f), but considering that the width
of each sack is only one-half that of the initial momen-
tum perturbation, the waves are surprisingly well rep-
resented.

To measure the rate of convergence of the slippery-
sack simulation to the linear solution we repeatedly re-
duce the sack size by a factor of 2 in each dimension
and compare the logarithm of the normalized velocity
difference to the logarithm of sack width (Fig. 5g). The
points lie close to a line with a slope of 22, which
means that the normalized velocity difference is ap-
proximately proportional to the square of the sack width.
Both errors associated with the slippery-sack method
and nonlinear effects contribute to this velocity differ-
ence, but for the purpose of creating this plot we reduced
the amplitude of the initial perturbation to 1026 mm s21

so that based on scaling arguments we would expect the
latter to be orders of magnitude smaller than the former.
Therefore, the normalized velocity difference may be
thought of as the approximate normalized velocity error
for the simulations depicted in Fig. 5g, and we conclude
that this error is approximately proportional to the
square of the sack width.

c. Rossby waves

For a final test case we consider a three-dimensional
pool of fluid with a constant density of 1000 kg m23

that is 1 m deep and 10 m across in each horizontal
direction. Suppose that the Coriolis force f 5 by, where
b 5 1 s21 m21, and that initially there is a cyclonic
vortex located at the center of the pool with a scale of
about 2-m and a maximum velocity of about 1 mm s21

(Fig. 6a). Such a vortex projects largely onto Rossby
and mixed Rossby–gravity waves, and we now see how
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FIG. 6. The Rossby wave simulation: The finite-difference velocity field at (a) 0, (b) 1.5, and (c) 3 s; the slippery-sack velocity field at
(d) 0, (e) 1.5, and (f ) 3 s.

well the slippery-sack method simulates its evolution.
Once again we use a finite-difference model to obtain
the linear solution for comparison. For both the slippery-
sack and finite-difference simulations the horizontal
boundaries are periodic, but the duration of the simu-
lations is sufficiently short that the flow at the bound-
aries remains undisturbed. We use 1600 sacks, each hav-

ing a width of 1 m in each horizontal dimension, to
represent the pool. The sack centers are initially posi-
tioned in a 40 3 40 matrix of points having a separation
distance of 0.25 m, again making for a perfectly level
surface.

Within both the pool and the pile the vortex migrates
in the negative x direction and weakens, and an anti-
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cyclonic circulations develops to its right (Figs. 6a–f).
At 3 s the circulations within the slippery-sack simu-
lation are slightly too weak (Fig. 6f) with the average
magnitude of the difference between the linear and slip-
pery-sack velocity fields being 0.015 mm s21. As in the
previous simulations, when the sack sizes are reduced
the slippery-sack solution rapidly converges to the linear
solution (not shown).

5. Discussion

We have shown that the slippery-sack method is ca-
pable of simulating several kinds of circulations that
occur in incompressible fluids, and that it has several
properties that would seem to make it well suited for
simulating ocean circulations. In this section we com-
pare the slippery-sack method to related numerical
methods and to mainstream ocean methods and discuss
plans for transforming the slippery-sack model de-
scribed in section 3 into an ocean model.

a. A summary of the slippery-sack method

Under the slippery-sack method a fluid is represented
as a pile slippery sacks with no vertical gaps between
sacks. Neutral or stable stratification is built into the
method; each sack is constrained to lie above other sacks
having greater density. Each sack is accelerated in the
horizontal according to the integrated normal force re-
sulting from pressure on its surface. The integration is
approximated using a generalized Riemann sum in such
a way that the total energy of the system is conserved
in the limit as the time step approaches zero, and the
number of operations per time step is proportional to
the number of sacks. The method has been successfully
used to simulate several kinds of inviscid incompress-
ible fluid circulations, including a nonlinear deforma-
tion, gravity waves, and Rossby waves.

b. Slippery-sack versus oceanic applications of the
PIC method

Although conceived from quite different philoso-
phies, our implementation of the slippery-sack method
and previous oceanic applications of the PIC method
are quite similar (for a review of the latter see section
1b). Under both methods mass is carried by parcels
(sacks/particles) whose horizontal positions and veloc-
ities are prognosed. Moreover, prior to calculating parcel
accelerations both methods calculate pressure or thick-
nesses and their gradients on a set of points fixed in
space. However, the two approaches have differences
relating to 1) the treatment of vertically varying flows
and 2) the horizontal acceleration of parcels.

Under the slippery-sack approach sacks are conceived
as having a vertical extent and a stacking order. This
allows for the diagnosing of sack heights and the sim-
ulation of vertically varying flows without separate

treatment of fluid layers. In contrast, in previous oceanic
applications of the PIC method, the vertical positions
of particles are not monitored except, in some cases, for
their association with a particular layer. The PIC method
may of course be applied with cell divisions in the ver-
tical as well as the horizontal, but the authors are un-
aware of any such applications to the ocean.

A second distinction between the slippery-sack meth-
od and previous oceanic applications of the PIC method
is that, under the latter, particles are accelerated by cal-
culating the pressure gradient on a grid and interpolating
it to particle positions, whereas under the former, the
normal component of the pressure force is averaged over
the surface of the sack for the purpose of accelerating
sacks.

c. Slippery-sack versus SPH

Smooth Particle Hydrodynamics (SPH), a Lagrangian
method that has been applied to a variety of fluid dy-
namical problems including free surface flows (Mon-
aghan 1992), is also related to the slippery-sack method.
Each method prognoses the positions and velocities of
a number of fluid parcels (points/sacks) and calculates
spatial gradients through analytic differentiation of basis
functions (interpolating kernal/mass distribution func-
tions). The methods again differ according to their treat-
ment of the vertical dimension. Within SPH the vertical
positions of points are prognosed, requiring the intro-
duction of artificial compressibility for fluids having free
surfaces (Monaghan 1994). In contrast, under the slip-
pery-sack method the vertical positions of sacks are
implicitly diagnosed from their stacking order. Another
difference between the two methods is that SPH is grid-
less, whereas under the slippery-sack method sack thick-
nesses and their gradients are evaluated on a set of points
fixed in space.

d. Slippery-sack versus isopycnic methods

The slippery-sack method takes the philosophy be-
hind the use of an isopycnic vertical coordinate but ap-
plies it in the horizontal as well as the vertical. In ad-
dition to avoiding advection errors in the horizontal, as
is mentioned above, this facilitates the simulation of
vertically dependent flows without partitioning the fluid
into layers. Each sack can have a unique density (that
will eventually be allowed to change continuously in
time), so unlike existing isopycnic models, the slippery-
sack method may represent a continuum of fluid den-
sities. Another difference between the slippery-sack
method and the isopycnic approach is that, under the
former, vertical resolution depends on the choice of
mass distribution functions and is time independent,
whereas under the latter, vertical resolution depends on
the vertical gradient of potential temperature and varies
in both space in time. Thus, the slippery-sack method
provides better vertical resolution in neutral regions, but
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the isopynic approach provides better vertical resolution
in stable regions.

e. Slippery-sack versus z- and s-coordinate methods

The slippery-sack method appears to have advantages
over both z- and s-coordinate methods related to both
mixing and topography. Under the slippery-sack meth-
od, mass properties are exactly conserved and mixing
occurs only if it is explicitly parameterized. The slip-
pery-sack method also represents continuous topogra-
phy with an analytic calculation of thickness gradients
(i.e., no analog to s-coordinate pressure-gradient errors)
and without numerical complexity.

f. A disadvantage/advantage of using time-
independent mass distributions

Under our implementation of the slippery-sack meth-
od, sacks have time-independent mass distributions.
Therefore, if a layer is only several sacks deep and it
diverges substantially in the horizontal, it eventually
becomes a series of fluid lumps rather than a shallow
continuous layer of fluid. The pile of sacks is just start-
ing to do that at the end of the spreading ridge simulation
(Fig. 4c), and eventually there are substantial errors in
the height field as a result. However, in nature when a
fluid layer diverges substantially it often pinches off
(e.g., dewatering on a tidal flat), and having time-in-
dependent mass distributions allows the model to sim-
ulate this process in a natural way.

g. Toward a slippery-sack ocean model

The model described in section 3 represents a three-
dimensional inviscid incompressible fluid with a free
surface. We are in the process of transforming the model
into an ocean model by adding the features listed below.

1) MIXING

Much of the circulation of the world’s oceans is driven
by wind stress forcing at the surface that is communi-
cated to lower levels through the vertical mixing of
momentum. Such mixing will be represented by allow-
ing sacks that are in contact with one another to ex-
change momentum. This will also have the effect of
diffusing momentum in the horizontal. The mixing of
density and tracers will be treated in a similar way.

2) DIABATIC EFFECTS/COMPRESSIBILITY

The slippery-sack model will be modified to allow
compressible sacks. A single value of potential tem-
perature and salinity will be assigned to each sack and
allowed to vary in time, and an average sack density
will be diagnosed using an equation of state. This di-
agnosis requires the knowledge of a mean sack pressure,

which is determined by the weight of sacks above. Fol-
lowing the diagnosis of density the remainder of the
time step will be the same as that for the incompressible
model. Sacks will still have fixed horizontal mass dis-
tributions, so all of the compression will take place in
the vertical. The hydrostatic approximation will be
maintained, so there will be no vertically propagating
sound waves.

3) LONG TIME STEPS

Under the slippery-sack method the pile has a free
surface and supports the rapid oscillations of the exter-
nal mode. In the interest of reducing run times most
ocean models that support this mode either use time
splitting or else implicit time differencing (Dukowicz
and Smith 1994). We plan to slow the external mode
using the gravity wave retardation method, which Jen-
sen (1996, 2001) used to lengthen time steps by factors
of 4–10.

6. Summary

In this paper it is shown that under certain conditions
piles of slippery sacks behave like pools of fluid. A
slippery-sack numerical model is used to simulate a
nonlinear deformation, internal and external gravity
waves, and Rossby waves in incompressible fluids with
free surfaces. The simulations converge to analytic and
high-resolution finite-difference solutions as the sizes of
the sacks are decreased.

The slippery-sack method appears to be well suited
to ocean modeling. It is computationally efficient, has
favorable conservation properties, and it circumvents
several problems that occur in existing ocean models.
In particular, the slippery-sack method avoids spurious
diapycnal mixing, and in contrast to existing isopycnic
models it can represent a continuum of densities and
can resolve neutral regions in the vertical. The authors
are in the process of transforming their slippery-sack
model into an ocean model.
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APPENDIX A

Identities Involving Thickness Functions

The following properties of the thickness functions
are used throughout the paper:
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]Ti 5 2v · = T , (A1)h h ii]t

T (= T ) dA 5 2 T (= T ) dA, (A2)E i h j E j h i

D Dh h

T (= T ) dA 5 0, (A3)E i h i

Dh

where all variables are defined in section 2. To obtain
(A1) we apply the chain rule to (3), and to obtain (A2),
(A3), we make use of the periodic boundary condition
(property 7, section 2a).

APPENDIX B

Conservation Properties

a. Conservation of momentum

Let P9 denote the total horizontal momentum of a pile
of k slippery sacks. Here the prime (9) notation denotes
that the vector is represented in nonrotating coordinates.
Then we have

k k dvdP9 d hi5 M v9 5 M 1 f k̂ 3 v . (B1)O Oi h i hi i1 2 1 2dt dt dti51 i51

Substituting into (B1) using (2), (4) yields

k kdP9
5 r g T = T dAO O j E j h i[ ]dt i51 j5i11 Dh

k i21

2 r g T = T dA . (B2)O O i E i h j[ ]i51 j51 Dh

We rewrite the double sums in a manner that does not
indicate the order of summation (because the sums have
a finite number of terms; their order of summation is
unimportant):

dP9
5 r g T = T dAO j E j h idt j.i Dh

2 r g T = T dA, (B3)O i E i h j
j,i Dh

where within the sums on the right-hand side i and j
range over the values between and including 1 and k
that satisfy the given condition. Now swapping the index
names does not alter a sum, and if this is done to either
sum on the right-hand side of (B3), it is apparent that
the two sums are identical, which means that the right-
hand side is zero and that the total horizontal momentum
is conserved.

b. Conservation of energy

Let KE denote the total kinetic energy (neglecting
vertical motion) of the pile. Then we have

k kd d 1 d 1
2 2(KE) 5 M |v9 | 5 M |v |O Oi h i hi i1 2 1 2dt dt 2 dt 2i51 i51

k dvhi5 v · M . (B4)O h ii dti51

Substituting into (B4) using (2), (4) yields

k kd
(KE) 5 v · r g T = T dAO Oh j E j h ii [dt i51 j5i11 Dh

i21

2 r g T = T dA . (B5)O i E i h j ]j51 Dh

As before, we rewrite the double sums in a manner that
does not indicate an order of summation:

d
(KE) 5 r gv · T = T dAO j h E j h ii1 2dt j.i Dh

2 r gv · T = T dA . (B6)O i h E i h ji1 2j,i Dh

Now consider the time–rate of change of potential
energy:

d d
(PE) 5 rgz dVE1 2dt dt D

k 2 2(z 2 z )d t bi i5 r g dA, (B7)OE i5 6dt 2i51Dh

where D is the entire domain, z (xh, t) denotes the heightti

of the top of sack i, and z (xh, t) denotes the height ofbi

the bottom of sack i. Substituting for the height variables
and simplifying yields

k i21d d 1
2(PE) 5 r g T T 1 T dA. (B8)O OE i i j i5 1 2 6[ ]dt dt 2i51 j51Dh

After applying Leibniz’s rule and rewriting the double
sums we have

]Td ]Tj i(PE) 5 r g T dA 1 r g T dAO Oi E i i E jdt ]t ]tj,i j,iD Ah

k ]Ti1 r g T dA. (B9)O i E i ]ti51 Dh

Using (A1) to substitute for the terms having time de-
rivatives on the right-hand side of (B9), swapping the
index names within the first sum, applying (A2) to the
second sum, and applying (A3) to the third sum making
it vanish yields
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d
(PE) 5 2 r gv · T = T dAO j h E j h ii1 2dt j.i Dh

1 r gv · T = T dA . (B10)O i h E i h ji1 2j,i Dh

Now the right-hand side of (B10) equals the negative
of the right-hand side of (B6), so the sum of the time–
rates of change of the kinetic and potential energies is
zero, and the total energy is conserved.
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