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ABSTRACT

A Lagrangian numerical model is used to simulate upwelling in an idealized large

lake. This simulation is carried out to test the model’s potential for simulating ocean

circulations.

The model is based on the Slippery Sack (SS) numerical method, which was

recently developed by the authors. It represents the lake as a pile of sacks having no

vertical gaps. The horizontal motions of the sacks are prognosed using Newtonian

dynamics. The model uses Gravity Wav e Retardation to allow for long time steps and

has pseudo-Eulerian vertical mixing.

The lake is exposed to northerly winds for 29 hours. Upwelling develops in the

eastern edge of the basin, and after the winds shut off upwelling fronts propagate around

the lake. This case was previously simulated using a height- and a sigma-coordinate

ocean model. The SS simulation, which has half the horizontal resolution of the previous

simulations, requires a comparable amount of computer processing to complete. The

lake’s circulation is similar in all three simulations, but the SS simulation exihibits the

least diffusion.



1. Introduction

In this study we modify our Slippery Sack (SS) free-surface fluid model (Haertel

and Randall 2002, hereafter HR02) and use it to simulate upwelling in an idealized large

lake. This simulation is carried out to test the model’s potential for simulating ocean

circulations. To begin, we review the SS method, motivate the development of an SS

ocean model, and explain why we select lake upwelling as a test problem.

a. The SS method

Under the SS method a fluid is represented as a pile of sacks having no vertical

gaps (e.g. Fig. 1). Each sack is constrained to lie above other sacks having greater

density. Horizontal positions xi and velocities vi of sacks are prognosed using Newtonian

dynamics:

dxi

dt
= vi (1)

dvi

dt
+ f k × vi =

Fpi
+ Fei

Mi
(2)

where i is the sack index, t is time, f is the Coriolis parameter, k is the unit vector in the

vertical, Fpi
the horizontal force on sack i resulting from pressure, Fei

is the horizontal

force on sack i resulting from eddy viscosity, and Mi is the mass of sack i. Equations

(1-2) are easily stepped forward in time (e.g. by Adams-Bashforth time-differencing); the

challenge of solving them is diagnosing Fpi
and Fei

.

Each slippery sack is assumed to have a horizontal mass distribution mi(x′) that is

constant with respect to time in the sack’s frame of reference (x′ denotes horizontal

position relative to the sack center). Each sack is also assumed to have a spatially

uniform density ρ i. It follows that a sack’s vertical thickness Hi is
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Hi(x) =
mi(x − xi)

ρ i
, (3)

and the horizontal force on a sack resulting from hydrostatic pressure is

Fpi
= ∫ g∇Hi



ρ j<ρ i

Σ 


ρ j − ρ i


H j +

j
Σ ρ i H j




dA (4)

where A is the horizontal area measure (this is a variant of Equation (7) in HR02 that was

obtained by rearranging terms). Equation (4) may be approximated with a Riemann sum,

which conserves energy in the limit as the time step approaches zero and requires O(n)

operations to evaluate for n sacks (HR02).

When Fei
is set to zero (1-4) form a complete system. HR02 use this system to

simulate a non-linear deformation, internal and external gravity wav es, and Rossby

waves. These simulations serve to test the numerical fidelity of the SS method, and their

interpretation is not complicated by the presence of viscous effects. For each test case the

SS solutions rapidly converge to analytic and high-resolution finite-difference solutions

as the size of the sacks used to represent the fluid is decreased. For example, Fig. 2

shows the dependence of the velocity error on sack size for an SS simulation of gravity

waves within a two layer system. The normalized velocity error is approximately

proportional to the square of sack width.

Incorporating variable bottom topography into the SS method is easy; one defines

the lowest sack to be immobile and to have the shape of the bottom topography. As the

reader will soon find out, incorporating viscosity and time-dependent densities into the

SS method is also straightforward. The SS method has similarities with both Smoothed

Particle Hydrodynamics (Monagan 1992) and oceanic applications of the particle-in-cell

method (e.g. Pavia and Cushman-Roisin 1988) as is discussed in HR02.
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b. The potential merits of an SS ocean model

The SS method has a number of properties that would appear to make it well suited

for simulating ocean circulations: (1) in the absence of parameterized mixing it perfectly

conserves a fluid’s distribution of temperature and salinity; (2) the inclusion of

continuous topography adds no numerical complexity to the SS method; (3) the SS

method is capable of representing a continuum of fluid densities; and (4) the SS method

can represent vertical variations in neutral regions. Property (1) distinguishes an SS

model from both height- and sigma-coordinate ocean models, which produce spurious

mixing (Griffies et al. 2000). Property (2) also distinguishes an SS model from height-

coordinate ocean models, which either have step topography or represent sloping

topography in a complicated manner (e.g. Pacanowski and Gnanadeskikan 1998).

Properties (3-4) distinquish an SS model from isopycnal ocean models, which have a

discrete set of densities and do not resolve neutral regions (Bleck 1998).

In short, an SS ocean model promises to be unique, both in its capabilities and its

simplicity. Therefore, we have set out to develop our SS model into an ocean model, a

goal that we partially accomplish in the present study.

c. Lake upwelling, a good test problem

Rather than immediately applying our SS model to the oceans, which would

require using very low resolution or specifying open boundary conditions, we have

elected to first test the model with the problem of lake upwelling. We simulate one of the

cases considered by Beletsky et al. (1997), who simulated upwelling in idealized large

lakes and in Lake Michigan using both a z-coordinate and a σ -coordinate ocean model.

The lake, which sits in a parabloid basin, is exposed to a surface wind-stress forcing that

lasts 29 hours. Upwelling develops in response to the forcing, and after the forcing shuts

off upwelling fronts propagate around the lake. This case is a good test of SS model’s

potential for simulating ocean circulations for the following reasons: (1) it is a simple
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example of the response of a body of water to a surface wind-stress forcing, (2) the lake

has variable bottom topography, (3) the response involves internal gravity wav e dynamics

and boundary currents, and (4) comparing the SS upwelling simulation to those carried

out by Beletsky et al. illustrates differences between SS and z- and σ -coordinate models.

d. Outline

This paper is organized as follows. Section 2 discusses two modifications to the SS

model that improve computational efficiency. Section 3 describes the model’s

implementation of vertical diffusion. The upwelling simulation is presented in Section 4.

Section 5 is a discussion, and Section 6 is a summary.

2. Computing Efficiently

Modern ocean models push the limits of modern supercomputers (e.g. Smith et al.

2000), so computational efficiency is a high priority for the ocean model developer. This

section decribes two ways we have modified our SS model to make it more

computationally efficient. The first modification reduces the computer time required to

evaluate sack thickness functions and their gradients (in order to solve (4)). The second

modification lengthens the maximum allowable stable timestep. These modifications

have enabled our SS model to complete the upwelling simulation presented later in just

20 minutes on a 2.4 GHz Pentium 4 processor using no optimizations that compromise

mathematical accuracy.

a. Using a polynomial mass-distribution function

The sack mass-distribution function used by HR02 is a cosine-squared bell

function, and it was selected because it has several nice properties: (1) it is continuous,

(2) it has a continuous horizontal gradient that vanishes at the sack’s edges, and (3) it is

easy to construct piles that are perfectly level using sacks with this mass distribution.
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However, this function is computationally expensive, because computers approximate

trigonometric functions using power series that require many floating point operations to

evaluate. The following mass-distribution has the same nice properties, but requires

fewer floating point operations to evaluate:

m(x′, y′) =
Mi

r xr y




1 + 


2|x′| − 3




x′



2






1 + 


2|y′| − 3




y′



2



(5)

where r x and r y are the sack radii in the x − and y − directions respectively,

x′ = (x − xi)/r x , y′ = (y − yi)/r y, and m is non-zero only for |x′| < 1 and |y′| < 1. Evaluat-

ing this function and its horizontal gradient at a point requires evaluating two third-order

polynomials and two-second order polynomials, a task which modern processors accom-

plish very quickly (e.g. a 2.4 gHz Pentium processor can do this about 43 million times

per second). Tests have rev ealed that using this mass-distribution instead of the cosine-

squared bell function changes solutions little, as long the Riemann sum that approximates

(4) has a sufficient horizontal resolution (at least 3 points per sack radius).

b. Gravity Wave Retardation

Under the SS method a pile of sacks has a free surface and supports the rapid

oscillations of external gravity wav es. In order for these wav es to be stable one must use

a time step on the order of the time it takes a wav e to cross a sack radius. Therefore, by

reducing the phase speed of external gravity wav es, one can increase the maximum stable

time step. In this section we show that gravity wav es can be slowed under the SS method

by Gravity Wav e Retardation (GWR), which Jensen (1996, 2001, 2002) used to lengthen

time-steps by factors of 4-16 in several ocean simulations. One advantage GWR has over

time-splitting, an alternative used in some ocean models (e.g. Bleck and Smith 1990, Ezer

and Mellor 1997), is that GWR does not require separate solutions for internal and

external modes.
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To implement GWR one simply reduces the portion of the pressure force

associated with the external mode by a constant factor. In (4) the pressure force is

decomposed into internal and external components, associated with the first and second

terms in brackets respectively. Multiplying the external component by a positive constant

γ yields:

Fpi
=

Hi

∫ g∇Hi



ρ j<ρ i

Σ 


ρ j − ρ i


H j + γ

j
Σ ρ i H j




dA. (6)

Setting γ < 1 slows the phase speed of the external mode by the multiple √ γ while leav-

ing the phase speeds of internal modes unchanged.

To illustrate the effects of GWR we repeat the gravity wav e simulation presented in

HR02, using both γ = 1 (no GWR) and γ = 1/2. For this test a two-dimensional fluid

comprising two 1-m deep layers with densities ρ1 = 1100 kg m−3 and ρ2 = 1000 kg m−3

is initialized with a lower-layer momentum perturbation that has a Gaussian radius of 1 m

and an amplitude of 1 cm s−1. Gravity is set to 1 m s−1 and there is no viscosity or

rotation. We represent the fluid using 40 sacks for each layer, each having a radus of

1/2 m, and we approximate (3) using a Riemann sum with a resolution of 1/6 m.

For γ = 1 the solution (Fig. 3a) is very similar to the one presented in HR02 (see

their Figs. 5d,f). This is what we expect, since the only differences between the two

simulations are the magnitude of the momentum perturbation, the shape of the mass-

distribution function, and the resolution of the Riemann sum used to approximate the

pressure equation. The momentum perturbation projects onto both internal and external

gravity wav es. By 5 s they hav e propagated away from the center of the domain where

the momentum perturbation was originally located (Fig. 3a). The velocity perturbations

in the two layers are in (180ο out of) phase for the external (internal) wav es, as predicted

by linear theory (e.g. Gill, 1982, p. 119). When we repeat the simulation setting γ = 1/2
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the external wav es are slowed by the multiple √ 1/2, but the internal wav es propagate at

the same speed (Fig. 3b).

One side effect of GWR is that surface height perturbations associated with

geostrophically-balanced external-mode circulations are increased by the factor γ −1. For

most lake and ocean applications surface height perturbations are small (tens of cm in

amplitude), and this amplification is not problematic as long as γ is not selected to be too

small. For the upwelling simulation we use γ = 0. 02, which allows increasing the time-

step by a factor of about 7.

3. Vertical Diffusion

One way to parameterize vertical transports of momentum and tracers by eddies in

an ocean model is to calculate height-dependent coefficients of vertical viscosity and

tracer diffusivity from vertical profiles of horizontal velocity and temperature/salinity or

density (e.g. Pacanowski and Philander 1981, Large et al. 1994). In this section we

present an implementation of vertical diffusion for the SS method that was developed to

facilitate the use of such parameterizations.

a. Pseudo-Eulerian Diffusion

Including vertical diffusion in an Eulerian fluid model is straightforward; e.g. the

time rate of change of a tracer q can be set equal to the difference between diffusive-

fluxes into and out of a grid box divided by the amount of mass in the box:

∂qi

∂t
=

1

Mi



Q

i−
1

2

− Q
i+

1

2




(7)

where i is the vertical index of a grid point, the half-indexes denote values at locations

half-way between grid points (i.e. at the top and bottom of the grid box), Mi denotes the

total mass in the grid box, Q denotes the vertical diffusive flux, which may be
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approximated as follows:

Q
i+

1

2

= −k
i+

1

2




qi+1 − qi

∆z



ρ i+1/2 dA (8)

where k is coefficient of diffusion and ∆z denotes the difference in the height of grid-

points i and i + 1.

To implement vertical diffusion under the SS method we simply divide the model

domain into vertical columns, associate each sack with the column that its center lies in,

and apply the above finite-difference approximation to each column of sacks. We set the

column width equal to the sack radius in each dimension, ∆z equal to half of the sum of

the maximum vertical thicknesses of sacks i and i + 1 (i.e. the vertical distance that would

separate the sack centers if they were perfectly aligned), and ρ i+1/2 = (ρ i + ρ i+1)/2.

b. Diffusion/advection simulation

To illustrate the above implementation of diffusion, we apply it to a simple problem

that involves both diffusion and advection. Consider a two-dimensional fluid 10 m deep

and 20 m across on a periodic domain. Suppose that the x-velocity of the fluid is 1/2

m s−1 at the top, -1/2 m s−1 at the bottom, and varies linearly inbetween. Now suppose a

tracer is released in the center of the fluid, initially having a Gaussian distribution with a

radius of 2 m in each dimension and a maximum value of 10 units.

We compare an SS and a finite-difference solution to this problem. The SS

solution uses 200 sacks, each having a radius and a depth of 1 m. The finite difference

solution uses 200 points with ∆x = ∆z = 1 m. Both solutions use (7-8) to represent

diffusion, forward time differencing with a very small time step (0.001 s), and

k = 1 m2 s−1. The finite difference solution uses centered differencing to calculate the

horizontal gradient of the tracer.

8



For both solutions the tracer coverage is sheared horizontally as it spreads

vertically (Fig. 4). Owing to advection errors the finite difference solution contains small

regions having negative tracer values (Fig. 4b). In the SS solution the tracer is advected

slightly more rapidly (Fig. 4c). Overall, however, the two solutions are quite similar,

suggesting that using pseudo-Eulerian diffusion under the SS method produces a solution

of comparable quality to a standard finite-difference solution with the same resolution.

4. The Upwelling Simulation

In this section we present an SS simulation of upwelling in an idealized large lake.

This case was previously simulated using the Princeton Ocean Model (POM, Blumberg

and Mellor 1987) and the Dietrich/Center for Air Technology (DIECAST, Dietrich and

Ko 1994) model by Beletsky et al. (1997).

a. The setting

The lake is 100 m deep, has a diamater of 100 km, and sits in a parabolic basin.

The initial temperature distribution is a function of depth only, 20οC above 5 m, 5οC

below 15 m, with a constant temperature gradient between 5 and 15 m. The lake is

initially motionless and is exposed to northerly winds for 29 hours. The amplitude of the

wind-stress starts at zero, ramps up to 0.3 N m−2 over 18 h, maintains this value for 6 h,

and ramps to zero over the next 5 h.

b. Initialization

The SS model is initialized by the following procedure. The lake’s domain, a box

100 km across in each horizontal dimension and 100 m deep, is divided into rectangular

columns having widths dx = dy = 2. 5 km. Each column is divided into a stack of 28

boxes with the following vertical dimensions: 6 at 10 m, 2 at 5 m, 4 at 2.5 m, 4 at 1.5 m,

6 at 4/3 m, and 6 at 1 m (listed in ascending order). Each box whose center lies above the
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lake’s bottom is converted to a sack having the same volume as the box and the same

horizontal position and temperature as the center of the box. The sack is assigned the

horizontal mass distribution defined by (5) with r x = r y = 2. 5 km. When the sacks are

stacked in the parabolic basin, the lake’s surface and isotherms are quite wavy (Fig. 5a).

A 30-day preliminary simulation is run with Newtonion damping of velocity with a time

scale of 1 day in order to allow the sacks to settle and the isotherms to flatten (Fig. 5b).

The effective horizontal resolution of the SS simulation is half that of the POM and

DIECAST simulations. The SS and DIECAST simulations have similar vertical

resolutions, slightly more than twice that of the POM simulation (Beletsky et al. 1997).

c. Numerical Details

The duration of the simulation is 15 days (as in Beletsky et al. 1997), although we

only present results for the first 5 days. Equations (1-2, 3, 5, 7-8) are solved using split

time-differencing. The pressure acceleration in (2) is approximated using 3rd order

Adams-Bashforth time-differencing with a time-step of 200 s. In order to calculate Fpi

we approximate (6) using a Riemann sum with a resolution of 5/6 km, and we set

γ = 0. 02. The viscous-momentum and temperature tendencies are prognosed by

approximating (7-8) using forward time-differencing with time-steps of 25 to 100 s

(shorter time-steps are used during stronger winds for numerical stability). Coefficients

of vertical eddy viscosity and tracer diffusion are calcuted using the Richardson-number

formulation presented in Beletsky et. al. (1997) with α = 25 × 10−3m3kg−1s and

K0 = 10−5m2s−1. These are the same values used in the DIECAST simulation (W. P.

O’Connor, personal communication). The density of each sack is recalculated after each

time-step using the UNESCO (United Nations Educational, Scientific, and Cultural

Organization) equation of state for pure water. Quadratic bottom friction is included with

a coefficient of 0.002. The model is run without horizontal diffusion, but for plotting

purposes the cross-sections of temperature (excluding those in the initialization
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simulation) are smoothed by applying a running-mean filter having the width of a sack

radius in each dimension.

d. Results

The wind-stress forcing produces an Ekman layer that transports surface water

towards the west. By 29 h the surface-layer has deepened in the western edge of the

basin, and upwelling has developed in the eastern edge (Fig. 6a). The temperature

distribution in the SS simulation is similar to the temperature distributions produced by

the DIECAST model and POM (Figs. 6b-c, from Beletsky et al. 1997). In the SS

solution, however, the water is little cooler in the eastern edge of the basin; the 6οC

isotherm intersects the surface a ways off shore (Fig. 6a) whereas in the POM simulation

this isotherm intersects the bottom (Fig. 6b) and in the DIECAST simulation it is closer

to the shore (Fig. 6c). This difference between the SS and POM and DIECAST

simulations is also apparent on horizontal cross-sections of temperature at the depth of 10

m; the 6οC isotherm encloses a larger area in the SS simulation (Fig. 7a) than it does in

the other simulations (Fig. 7b-c, from Belestky et al. 1997). The SS solution probably

differs in this way from the POM and DIECAST solutions because it has no horizontal

diffusion and no numerical vertical diffusion, whereas the POM and DIECAST

simulations each have both parameterized and numerical horizontal diffusion in addition

to numerical vertical diffusion.

The similarity between the SS and POM and DIECAST solutions persists over

time. Fig. 8 shows the temperature distribution at 10 m at 120 h for each model. In each

of the three simulations the upwelling fronts have propagated clockwise around the lake,

and the gross structure of the temperature distribution is similar. Once again the SS

solution preserves more of the water masses with temperature extremes; both the 6οC and

18οC isotherms enclose larger areas in the SS solution (Fig. 8a) than they do in the POM

and DIECAST solutions (Fig. 8b-c, from Beletsky et al. 1997).
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Overall the differences between the SS and the POM and DIECAST simulations

are small and comparable to the differences between the POM and DIECAST

simulations. We conclude that the SS model is capable of simulating the response of a

stratified body of water in a basin to a wind-stress forcing, and we remain optimistic

about the SS model’s usefullness for simulating ocean circulations, especially for

applications in which numerical diffusion is detrimental.

5. Discussion

In this section we compare the SS model to other oceans models in light of the

results presented in this paper. We also mention how we plan to modify the SS model in

the near future.

a. Comparisons

The SS model has advantages over other ocean models related to how it handles

physical processes and boundaries, but it is slower than height- and sigma-coordinate

ocean models.

1) Advection

The chief advantage of the SS model is that it has no advection errors. This means

there is no numerical mixing of temperature, salinity, or momentum. While this

characteristic of the model certainly distinguishes it from height- and sigma-coordinate

ocean models, it also distinguishes it from isopycnal models, which have horizontal

advection errors.
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2) Vertical Mixing

The SS model currently uses pseudo-Eulerian vertical mixing. This means that any

vertical mixing scheme used in a height-coordinate model may be adapted to the SS

model. One advantage this gives the SS model over isopycnal models is the ability to

resolve the mixed layer.

3) Bottom topography

The SS model represents continuous bottom topography in a simple way. This

distinuishes it from height-coordinate models that either use step topography or

somewhat complicated approximations of continuous topography (e.g. Pacanowski and

Gnanadeskikan 1998).

4) Lateral Boundaries

Most ocean models have fixed lateral boundaries. This is unrealistic in the sense

that if the water is sufficiently perturbed by a large-scale forcing (e.g. as in tides) it can

slosh and significantly change its horizontal boundaries. Models that do allow wetting

and drying over tidal flats require rather complicated and costly numerical schemes (e.g.

Ko walik and Murty 1993). In contrast, the SS model can naturally represent such wetting

and drying, simply by moving sacks up and down the sloping sea bed.

5) Computational Efficiency

One disadvantage of the SS model is that it is slower than height- and sigma-

coordinate ocean models, i.e. it must be run at a lower horizontal resolution to require

comparable computer processing. For example, the POM simulation would take on the

order of 10 minutes to run on a 2 Ghz Pentium processor (D. J. Schwab, personal

communication), i.e. a comparable amount of computer processing to the SS simulation,

13



ev en though it has twice the horizontal resolution. However, for applications in which

numerical diffusion is detrimental the SS model may produce higher quality simulations

at a lower resolution (e.g. the SS upwelling simulation exhibits less diffusion than the

POM and DIECAST upwelling simulations).

b. Planned improvements for the SS model

In the near future we plan to add the following features to the SS model to facilitate

the simulation of basin-scale ocean circulations.

1) Reduced Gravity

We hav e begun experimenting with a reduced gravity (e.g. Adamec and O’Brien,

1978) version of the SS model in which the external mode is eliminated completely. This

version of the model promises to rapidly carry out simulations in cases where deep water

circulations and bottom topography are not important.

2) Parallel processing

The SS equations of motion are local, i.e. solving them for a given sack only

requires information about conditions within a sack radius in each dimension. Therefore

the SS method well-suited to parallel programming, and we have already begun working

on a parallel version of the SS model. Each processor will keep track of sacks within a

horizontal sub-domain assigned to it. Processors will pass information to each other

about sacks within a sack-radius of sub-domain boundaries.

3) Spherical geometry

The SS method appears to be easily adapted to spherical geometry. Longitude and

latitude may be used as horizontal coordinates for sack positions, and the mass
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distribution function may be defined in terms of latitude and longitude deviations from

the sack center where the sack radius in each dimension is a fixed number of degrees.

Doing so results in a distribution function that has the same form as (5) with the addition

of the multiple 1/cos(φ ) where φ is is the sack’s latitude.

6. Summary

In this study we modify our SS model and use it to simulate upwelling in an

idealized large lake. Two modifications make the model more computationally efficient:

changing the sack mass-distribution funcition to polynomial form, and using Gravity

Wa ve Retardation to allow for long time-steps. A third modification, including pseudo-

Eulerian diffusion, facilitates the use of Richardson-number parameterizations for vertical

mixing. The upwelling simulation is similar to two simulations previously carried out

with height- and sigma-coordinate ocean models, but it exhibits less diffusion.

The successful completion of the upwelling simulation demonstrates the SS

model’s potential for simulating ocean circulations. The SS model has several appealing

features including no advection errors, a resolved mixed layer, continuous bottom

topography, and physical lateral boundaries, although it is somewhat slower than height-

and sigma-coordinate models. We continue to modify the SS model and hope to use it to

carry out basin-scale ocean simulations in the near future.
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Figure 1. A pile of slippery sacks in a basin.
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Figure 2. Velocity error as a function of sack size for an internal gravity wav e simulation

(from HR02). The dotted line has a slope of -2.
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Figure 3. An internal gravity wav e simulation that illustrates the effects of GWR.

Velocity of the lower (solid) and upper (dashed) layers at 5 s for (a) γ = 1 and (b)

γ = 1/2.
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Figure 4. The diffusion/advection simulation. The tracer concentration for the finite-

difference solution is contoured with an interval of 1 tracer unit. Centers of sacks in the

SS solution are marked with boxes having sizes proportional to the tracer values. The

times shown are (a) 0 s, (b) 5 s, and (c) 15 s.
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Figure 5. Vertical cross-sections of temperature through the center of the lake for the

initialization simulation. (a) 0 days
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Figure 5 (continued). (b) 30 days.
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Figure 6. Vertical cross-sections of temperature through the center of the lake at 29 h. (a)

the SS simulation.



Figure 6 (continued). (b) the POM simulation (from Beletsky et. al 1997).



Figure 6 (continued). (c) the DIECAST simulation (from Belestky et al 1997).
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Figure 7. Horizontal cross-sections of temperature at 10 m at 29 h. (a) the SS simulation.



Figure 7 (continued). (b) the POM simulation (from Beletsky et al. 1997).



Figure 7 (continued). (c) the DIECAST simulation (from Beletsky et al. 1997).
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Figure 8. Horizontal cross-sections of temperature at 10 m at 120 h. (a) the SS

simulation.



Figure 8 (continued). (b) the POM simulation (from Beletsky et al. 1997).



Figure 8 (continued). (c) the DIECAST simulation (from Beletsky et al. 1997).


