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ABSTRACT

The dynamical equations of atmospheric flow are written using potential vorticity as the meridional
coordinate and potential temperature as the vertical coordinate. Within this system, the atmosphere is
divided into undulating tubes bounded by isentropic and constant potential vorticity surfaces, and, under
adiabatic and frictionless conditions, the air moves through the tubes without penetrating through the walls.

A model that uses this system of coordinates incorporates as built-in both the dry convective adjustment
and barotropic adjustment processes, which prevent the folding of isentropic and potential vorticity surfaces
but crudely represent the effects of interactions with the mean flow.

The Eliassen–Palm flux vector in this frame of reference yields a new interpretation of the eddy mo-
mentum transport. Eddy momentum exchange is through the form drag created by pressure forces exerted
on the potential vorticity–potential temperature tubes.

1. Introduction

The classical system of coordinates consisting of lon-
gitude, latitude, and height has been altered, mainly in
the vertical, to facilitate the analysis and simulation of
atmospheric flow. Kasahara (1974) gives a complete
mathematical description of the quasi-static dynamical
equations using height, pressure, �, and potential tem-
perature, and mentions the advantages and disadvan-
tages of each of these coordinates. For example, the
pressure coordinate has the advantages of a linear con-
tinuity equation and horizontal pressure-gradient term,
but it has difficulties with the lower boundary condi-
tions. Using � as vertical coordinate avoids this prob-
lem, since in � coordinates the earth’s surface is a co-
ordinate surface. Although this solves the difficulties
posed by the intersection of the coordinate surfaces
with the topography, the representation of the horizon-
tal pressure-gradient term in � coordinates is problem-
atic in the vicinity of steep topography (e.g., Kasahara

1974; Konor and Arakawa 1997). The isentropic coor-
dinates has difficulties at the earth’s surface, but it of-
fers a simple representation of the horizontal pressure-
gradient term, and vertical advection is solely due to
heating. In the absence of heating, isentropic surfaces
are material surfaces. This ensures that particles move
along the coordinate surfaces. In the case of height,
pressure, and � coordinates the vertical advection is
more often nonzero and fluid particles cross the coor-
dinate surfaces whether heating occurs or not. A de-
tailed analysis of the advantages and disadvantages of
using potential temperature as vertical coordinate is
given by Hsu and Arakawa (1990).

In this paper, we propose a system of coordinates
(PVPT coordinates) that consists of longitude, poten-
tial vorticity (PV), and potential temperature (PT). The
general definition of potential vorticity, as introduced
by Ertel (1942) for the adiabatic atmosphere is

q �
1
�

�a · ��, �1�

where � is the fluid density, �a is the absolute vorticity
vector, and � is the potential temperature. When ex-
pressed in isentropic coordinates with the quasi-static
approximation, (1) simplifies to

q �
f � ��

�g�1��p����
, �2�
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where 	� is the vertical component of the relative vor-
ticity on the isentropic surface. Thus PV is generally
positive in the Northern Hemisphere, negative in the
Southern Hemisphere, and close to zero near the equa-
tor.

There are three ways in which the use of PV as me-
ridional coordinate is analogous to the use of potential
temperature as vertical coordinate: (i) PV is materially
conserved under adiabatic, frictionless processes, just as
potential temperature is materially conserved under
adiabatic processes. Consequently, the use of PV as
meridional coordinate eliminates meridional advection
under adiabatic frictionless processes, just as the use of
potential temperature as the vertical coordinate elimi-
nates vertical advection under adiabatic processes; (ii)
PV normally (but not always) increases toward the
north, just as potential temperature normally (but not
always) increases upward. A northward decrease of PV
is an indicator of barotropic–baroclinic instability
(Charney and Stern 1962), just as an upward decrease
of potential temperature is an indicator of convective
instability; (iii) PV is not constant at the north and
south poles, just as potential temperature is not con-
stant along the earth’s surface. There are complications
in the formulation of the polar boundary conditions
with the PV coordinate, just as there are complications
in the formulation of the lower boundary condition
with the potential temperature coordinate. Another
major disadvantage of the PVPT system is that it is
unable to represent large-scale circulation features that
involve PV-gradient reversals, such as baroclinic wave
life cycles, blocking events, and cutoff cyclones.

This is not the first time that an alternative meridi-
onal coordinate has been proposed. For example,
Hoskins (1975) replaced the geographical latitude and
longitude with the semigeostrophic coordinates that
specify the positions of particles as they would move
with the geostrophic velocity. Shutts (1980) used the
angular momentum as meridional coordinate and in-
vestigated its usefulness for the study of the mean mer-
dional circulation of the atmosphere. Schubert and
Magnusdottir (1994) generalized the semigeostrophic
coordinates to the so-called vorticity coordinates. The
vorticity coordinates have the property that their Jaco-
bian with respect to the geographical latitude and lon-
gitude is the vertical component of the absolute vortic-
ity vector. The vorticity coordinates are an appropriate
frame of reference to investigate the zonally symmetric
balanced flows. Nakamura (1995, 1996) defined the me-
ridional coordinate as the mass/area enclosed by the
contour of a conservative variable on an isentropic sur-
face. Allen and Nakamura (2003) employed the PV
area equivalent latitude (PVEL) for tracer analysis.

Obukhov (1964) showed that surfaces of PV and po-
tential temperature divide the atmosphere into undu-
lating tubes within which the air particles share the
same PV and potential temperature. For adiabatic and
frictionless conditions, the walls of the tubes are imper-
meable, and the dynamics of the flow can be studied
from a Lagrangian perspective by following the dis-
placement of the tubes. Although gravity waves are
invisible in the PV field, because the vorticity vector of
the gravity waves is tangential to the isentropic surfaces
(Eliassen 1987), a model that uses PV as its meridional
coordinate can simulate gravity waves.

Arakawa (1957) and Eliassen and Palm (1961)
showed that the eddy momentum flux and the eddy
heat flux do not act independently in modifying the
mean state of the atmosphere. Their effects can be com-
bined into a vectorial quantity with components in the
latitude–height plane known as the Eliassen–Palm (EP)
flux. The EP flux is a powerful tool that provides in-
formation about the center of the action of the eddies
and the divergence of the EP flux can be interpreted as
the forcing of the mean merdional circulation (e.g.,
Charney and Drazin 1961; Dickinson 1969; Andrews
and McIntyre 1976, 1978; Boyd 1976; Andrews 1983).
Although the EP flux vector is defined independent of
the system of coordinates, when projected on different
systems of coordinates its components capture different
aspects of the eddy–mean flow interaction. For ex-
ample, in pressure coordinates the eddies are seen to
drive a mean meridional circulation with a thermally
indirect cell located in middle latitudes, whereas in
isentropic coordinates the mean meridional circulation
is dominated by a thermally direct cell that extends all
the way from the equator to the pole (Townsend and
Johnson 1985; Johnson 1989).

Despite the fact that a PV perspective on the general
circulation of the atmosphere brings powerful insights
and also despite the fact that isentropic analyses have
been extensively carried out, the advantages of the
PVPT coordinates were not employed in 3D modeling
of the atmosphere. We will also show that PVPT coor-
dinates are useful as a diagnostic tool for understanding
the physical processes governing the atmospheric flow
and for the interpretation of observations.

A PVPT-based model is presented in section 2. The
section begins with a brief description of the basic equa-
tions. Diabatic and frictional effects are included. We
discuss the implications of the requirement that the PV
changes monotonically with latitude. The theory devel-
oped in section 2 is illustrated in section 3 in which a
shallow-water model that uses potential vorticity as me-
ridional coordinates is studied. In section 4 a new form
of the EP flux vector is derived by considering the zon-
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ally averaged angular momentum along a PV contour
on an isentropic surface. Finally, the results of this
study are summarized in section 5.

2. The primitive equations in PVPT coordinates

a. Starting equations

Before deriving the governing equations in the PVPT
system of coordinates, we review the basic equations in
isentropic coordinates, with an emphasis on the prop-
erties that make them useful for our purpose. The
primitive equations in isentropic coordinates expressing
horizontal momentum balance, mass conservation,
thermodynamic balance between the Lagrangian
change of potential temperature and diabatic sources,
and hydrostatic balance in the vertical can be written as

DU

Dt
� 2��V �

1
a ��M

�� ��,�
� X�, �3�

DV

Dt
� 2���U �

K

a � �
1 � �2

a ��M

�� ��,�
� X� , �4�

D	

Dt
�

1
a � �

�� � 	U

1 � �2��
�,�

�
1
a � �

��
�	V��

�,�

� � �

��
�	�̇��

�,�
� 0, �5�

��M

�� ��,�
� 
, �6�

where U � u cos
 and V � � cos
 are the modified
components of the horizontal velocity vector, � � sin
,
and  is longitude. Subscripts denote that derivatives
are calculated at fixed longitude (), latitude (�), and/
or potential temperature (�). The quantity M repre-
sents the Montgomery streamfunction and is defined by

M � ���p� � gz, �7�

where �(p) is the Exner function, which depends on
pressure only. The terms X and X� are the horizontal
components of friction or other nonconservative me-
chanical forcing. The horizontal kinetic energy per unit
mass is denoted by

K �
1
2 �U2 � V2

1 � �2 �.

The isentropic-mass

	 � �
1
g ��p

����,�

is the pseudodensity in the (, �, �) space. The
Lagrangian time rate of change is given by

D

Dt
� � �

�t��,�,�
�

U

a�1 � �2�
� �

����,�

�
V

a � �

����,�
�

�̇

a � �

����,�
. �8�

The PV principle associated with the isentropic sys-
tem described by (3)–(6) is

Dq

Dt
� q̇, �9�

where the PV is given by

q �
1
	 �2�� �

1

a�1 � �2�
��V

���
�,�

�
1
a ��U

���
�,�
�,

�10�

and q̇ contains effects due to diabatic and frictional
terms in the momentum equation. In the absence of
diabatic processes and friction, q̇ � 0, PV is conserved
following a particle, and surfaces of constant PV act as
material surfaces.

b. Transforming to PVPT coordinates

Before we actually perform the transformation, it is
useful to discuss the geometry of the PVPT system.
Since we want the newly created system to be orthogo-
nal, we chose its unit vectors to remain parallel to the
unit vectors of a spherical system of coordinates, as
schematically shown in Fig. 1. Therefore, in the PVPT
system, the unit vectors are not orthogonal to the iso-
surfaces of the coordinates, and the transformation of
coordinates has to reflect this. This requirement en-
sures that the mass contained in the unit volume in the
old system remains the same in the unit of volume ex-
pressed in the new system.

To quantify the tilting of the PV coordinate from
the geographical latitude �, we adopt Kushner and
Held’s (1999) definition of “potential-vorticity thick-
ness”; that is,

h � ���

�q��,�
. �11�

We require that h be positive and finite, which is
equivalent to the condition that the PV is a monotonic
function of �. Using the definition of PV thickness, the
gradient components of any arbitrary function A(, �,
�, t) transform to the PVPT system as

��A

��i
�

�,�j

� ��A

��i
�

q,�j

�
1
h ��A

�q ��i

� ��

��i
�

q,�j

, �12�
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where �i, �j can be any variables among (, �, t), and

��A

����,�
�

1
h ��A

�q ��,�
. �13�

Using (12) and (13), the PV principle (9) transforms
to an equation that predicts the geographical latitude of
a PV contour; that is,

���

�t �q,�
�

U

a�1 � �2�
���

���q,�
�

q̇

a
h � �̇���

����,q
�

V

a
.

�14�

From (14) it is evident that (U, q̇, �̇) are the components
of the velocity vector expressed in the PVPT coordi-
nates.

The meridional component of the horizontal velocity
in the isentropic system, which appears on the right-
hand side of (14), needs careful consideration. In the
PVPT system, V represents a measure of the rate of
meridional displacement of the PVPT tubes. A novelty
of this system is that the meridional advection is due to
physical processes associated with q̇ rather than dynam-
ics. The physical processes may be specified through
parameterizations.

The continuity equation in the PVPT system be-
comes

��m

�t �
�,q,�

�
1
a � �

�� � mU

1 � �2��
q,�

�
1
a � �

�q
�mq̇��

�,�

� � �

��
�m�̇��

�,q
� 0, �15�

where m � �h denotes the PVPT mass. It can be in-
terpreted as the pseudodensity in the (, q, �) space and
is defined as

m � �
h

g ���p

����,q
�

1
h ��p

�q��,�
���

����,q
�. �16�

For adiabatic and frictionless conditions, the continuity
equation has a very simple form; it says that the PVPT
mass changes only due to zonal advection along the
PVPT tubes bounded by impermeable walls. Under
these circumstances a PVPT tube can inflate in some
regions and deflate in others in order to allow rear-
rangement of the air in the tube. Note that the metric
quantity (1 � �2) appears in both forms (5) and (15),
but in (15) it is not independent of , while in (5) it is.

The hydrostatic equation describing the vertical bal-
ance in the PVPT frame of reference is

��M

�� ��,q
�

1
h ��M

�q ��,�
���

���q,�
� 
. �17�

The hydrostatic equilibrium expressed by (17) is differ-
ent from the usual hydrostatic conditions, and the dif-
ference occurs in the presence of meridional compo-
nent of the pressure gradient force. The second term on
the left-hand side of (17) can be interpreted as a cor-
rection to account for the fact that (�M/��),q is evalu-
ated at constant q, but not necessarily constant latitude.
In other words, it accounts for the possible tilting of the
q surfaces in the meridional direction. This tilting only
changes in the answer if M varies with q at fixed lon-
gitude and � and if the latitude on the q surface varies
with longitude. Equation (17) can also be expanded in
terms of the geometrical height of the isentropic sur-
face, z:

���


�� ��,q
� g��z

����,q
�

�

h ��


�q ��,�
���

����,q

�
g

h ��z

�q��,�
���

����,q
� 0. �18�

This form is useful for the analysis of the horizontal
pressure-gradient term. More details are given by Stan
(2005).

FIG. 1. Illustration of the unit vectors of a local spherical system
of coordinates (e, e
, er) using thin line and the unit vectors of the
PVPT system of coordinates (e, eq, e�) using thick line.
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In the PVPT system, the zonal momentum equation
becomes

DU

Dt
� 2��V �

1
a ���M

�� �q,�
�

1
h ��M

�q ��,�
���

���q,�
�

� X�, �19�

where the Lagrangian derivative is given by

D

Dt
� � �

�t��,q,�
�

U

a�1 � �2�
� �

���q,�
�

q̇

a � �

�q��,�

� �̇� �

����,q
. �20�

By comparing (20) with (8) we notice the PVPT coor-
dinates offer a simpler representation of the material
derivative in adiabatic and frictionless conditions.

To close the PVPT system, we also need to transform
(4), which becomes

DV

Dt
� 2���U �

K

a � �
1 � �2

ah ��M

�q ��,�
� Xq.

�21�

The zonal equation of motion (19), describes the accel-
eration of a particle of fluid that moves in the zonal
direction through the PVPT tubes, whereas (21) gives
the meridional acceleration of the PVPT tube.

Unlike an isentropic model, a model that uses PV as
meridional coordinate has four prediction equations,
that is, (14), (15), (19), and (21). One of them, (14),
describes the motion of the coordinate itself. Applying
the vorticity coordinates to the shallow-water model,
Schubert and Magnusdottir (1994) similarly obtained a
model with four prognostic equations instead of three
as in the starting model. In a numerical model based on
(14)–(21), the variables that need to be initialized at t �
0 are U, V; the geographical latitude of the PV contour,
�; and the pressure necessary to calculate the Exner
function or the PVPT mass, m. These variables must be
specified on each isentropic surface on a (, q) grid.
Friction, diabatic heating, and then q̇ must be param-
eterized. Technical difficulties arise in diagnosing the
Montgomery streamfunction and the pressure, by inte-
grating (17) and (16), respectively, since their calcula-
tions involve double integrals over the horizontal and
vertical domain.

Additional challenges are related to the boundary
conditions. Along the earth’s surface, the boundary
conditions on PV are influenced by the variations in
potential temperature (e.g., Bretherton 1966; Schneider
et al. 2003; Schneider 2005), so it is difficult for PV to
serve as a coordinate there. Therefore, at the surface a

modified version of PV is necessary in order to smooth
the singularities. The definition of surface PV proposed
by Schneider et al. (2003) is adopted, which under no-
slip boundary conditions reduces to

qs �
2��

	
���� � �s�, �22�

where subscript s refers to the surface.
Figure 2 shows a distribution of the � contours as a

function of q and �. This distribution was obtained from
the climatological mean of the zonally averaged (at
fixed latitude) PV expressed on isentropic surfaces. The
data used are monthly mean values of the National
Centers for Environmental Prediction–National Center
for Atmospheric Research (NCEP–NCAR) Reanalysis
(Kalnay et al. 1996). In this figure we identify two prob-
lems: one is the fluctuating PV position of the geo-
graphical poles and the other is the shape of the domain
spanned by PV when it is used as a coordinate. The
former problem leads to the idea to develop a hybrid
meridional coordinate that behaves as latitude near the
poles and has the characteristics of PV coordinates near
the equator. This issue will be the subject of a subse-
quent paper.

c. Barotropic adjustment

One of the features of a model that uses PV as me-
ridional coordinate is the built-in barotropic adjustment
that prevents the folding of PV surfaces. The adjust-
ment mechanism is similar to the built-in dry convective
adjustment that occurs in an isentropic model (e.g., Hsu
and Arakawa 1990; Konor and Arakawa 1997).

Eliassen (1983) extended the Charney–Stern theo-
rem (Charney and Stern 1962) and showed that a nec-
essary condition for barotropic instability is that the
meridional gradient of PV does not have the same sign
everywhere on an isentropic surface. In a model that
uses latitude as the meridional coordinate and predicts
the PV, the onset of barotropic instability can be con-
sidered to occur when the meridional component of the
PV gradient changes its sign. This is illustrated in Fig. 3,
which shows the result of a very simple calculation,
based on (9), in which PV on an isentropic surface
changes only in response to a prescribed q̇; the hori-
zontal and vertical advection are assumed zero. The
model is one-dimensional and assumes a periodic do-
main. Potential vorticity is predicted at each grid point
and the PV gradient, (�q/��), is diagnosed at each time
step. The latitudinal profile of q̇ is shown in Fig. 4 and
its form is designed to induce (�q/��) � 0 when it is
applied to a balanced PV field. The evolution in time of
the PV gradient shows a barotropically stable state that
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tends to become unstable in response to the applied
forcing q̇.

Figure 5 shows the results of a model that is based on
a simplified version of the continuity equation

��h

�t ��,q,�
� �

1
a � �

�q
�hq̇��

�,�
. �23�

In (23), besides neglecting the zonal and vertical advec-
tion, � is assumed constant. The evolution in time of the
PV thickness shows that, as the model approaches a
barotropic-unstable state, h becomes very large, even-
tually diverging to infinity as barotropic instability sets
in. Therefore, in order to go from barotropic stability to
barotropic instability, the model has to make the PV

FIG. 3. Evolution in time of the meridional potential vorticity
gradient (dq/d�) in a model that uses latitude as meridional co-
ordinate. The onset of barotropic instability is considered the time
step when the gradient becomes negative. FIG. 4. The idealized meridional distribution of prescribed q̇.

FIG. 2. Typical distribution of � on the potential vorticity, potential temperature cross section derived
from climatological zonal mean values of potential vorticity NCEP–NCAR reanalysis. The dark blue line
correspond to � � �1, light blue to � � ��3/2, green to � � �1/2, yellow to � � 1/2, orange to � �
�3/2, and red to � � 1.
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thickness to go to plus infinity and then come back from
minus infinity. In the barotropic adjustment mechanism
the air parcels are arranged in such a way that the PV
thickness does not become negative. This is what we
mean when we say that the barotropic adjustment is a
built-in process.

The atmospheric counterpart of the barotropic ad-
justment is the mixing of potential vorticity by baro-
clinic eddies that are triggered by the baroclinic insta-
bility. Both observational and numerical studies (e.g.,
Sun and Lindzen 1994; Stone and Nemet 1996) show
that the eddies mix potential vorticity. The baroclinic–
barotropic adjustment has been described by Stone
(1978) as a process in which baroclinic eddies destroy
themselves in the interaction with the mean flow by
adjusting the mean temperature field and altering the
eddy available potential energy necessary for further
growth.

3. A shallow-water model using PV as meridional
coordinate

A shallow-water model with a free surface can be
formulated in which the role of latitude is taken by the
PV, defined as

q �
1
H �2�� �

1

a�1 � �2�
��V

���
�

�
1
a ��U

���
�
�,

�24�

where H is the free surface of the fluid in the absence of
topography and all the other notations are the same as
in section 2.

Using the rules of transformations descried by (11)–
(13) the governing equations describing the shallow-wa-
ter fluid in the absence of friction is

DU

Dt
� 2��V �

g

a ���H

�� �q
�

1
h ��H

�q ��
���

���q
� � 0,

�25�

DV

Dt
� 2���U �

K

a � �
1 � �2

ah ��H

�q ��

� 0,

�26�

��hH

�t �
�,q

�
1
a � �

�� � hHU

1 � �2��
q

� 0,

�27�

D�

Dt
�

V

a
� 0,

�28�

where the Lagrangian derivative has a very simple form
because in the absence of friction PV is materially con-
served

D

Dt
� � �

�t��,q
�

U

a�1 � �2�
� �

���q
. �29�

For a nondivergent barotropic model, the continuity
equation (27) reduces to the same form as Kushner and
Held (1999) derived on a plane.

a. The equatorial �*-plane approximation

The �*-plane approximation differs from what is usu-
ally called the �-plane approximation through the way
in which the Coriolis parameter is expanded in Taylor
series. In the PV coordinate f � f0 � �* q, where �* �
(df /dq)y0

, and q � 0 at the equator.
To derive the �*-plane approximation, a geometrical

simplification is adopted in which the spherical coordi-
nates (, q, t) are replaced with the Cartesian coordi-
nates (x, q, t). In this frame of reference a � � y. Since
this problem is often studied in a nondimensional form
(Matsuno 1966), c � (gH)1/2 is adopted as the constant
gravity wave speed based on the mean depth H. The
horizontal length scales are defined as L � (ch/�*)1/2

and Lq � (c /h�*)1/2, and the unit of time is T � (h/c�*)1/2.
The nondimensional version of (25)–(28) linearized

FIG. 5. Evolution in time of the PV thickness (h) in a model that
uses potential vorticity as meridional coordinate. As the model
approaches barotropic instability the PV thickness becomes very
large.
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about a basic state of rest in a domain close to the
equator is

�u

�t
� q � ��H

�x �q
� 0, �30�

�

�t
� qu � ��H

�q �x
� 0, �31�

�H

�t
�

�

�q
� ��u

�x�q
� 0, �32�

where (u, �) are the dimensionless perturbations of the
wind, H is now the nondimensional perturbation of the
free surface of the shallow-water fluid, and h is the
perturbation of the PV thickness and is also nondimen-
sional. Assuming wavelike solutions of the form A(x, q,
t) � A(k, q) e i(kx��t), where k is the zonal wavenumber
and � is the frequency, the system of Eqs. (30)–(32)
reduces to

d2V �k, q�

dq2 � ��2 � k2 �
k

�
� q2�V �k, q� � 0. �33�

This is similar to the equation describing the quasigeo-
strophic motion on the � plane obtained by Matsuno
(1966). If � � 0, (30)–(32) give the solution correspond-
ing to Kelvin waves. This demonstrates that a nondi-
vergent barotropic model using potential vorticity as
meridional coordinate is able to simulate inertio-
gravity, Rossby, and Kelvin waves, which dominate in
the equatorial area. It also illustrates that use of the PV
coordinate does not prevent the model from represent-
ing unbalanced motions, such as, gravity waves and
Kelvin waves.

b. Zonally averaged model

The zonal average along a potential vorticity contour
for an arbitrary function A(, q, t) is defined as

�A�q, t�� �
1

2� �
0

2�

A��, q, t� d�, �34�

and the deviation from the zonal mean is

A* � A � �A�. �35�

To get new insight into the physical mechanisms affect-
ing the zonal mean flow in the shallow-water model, it
is useful to express the governing equations in flux form
before taking the zonal average. It can easily be shown
that the zonally averaged equations describing the
zonal mean flow in a shallow-water model that uses
potential vorticity as meridional coordinate are

�

�t
�hHL� �

g

a

�

�q ��H2�*
2 ���*

��
�

q
�, �36�

�

�t
�hH� � 0, �37�

where L represents the angular momentum per unit
mass and is given by

L � a{U � ��1 � �2�a}. �38�

The continuity equation has a very simple form and
shows that the mass-weighted zonally averaged free
surface height remains at its initial value along each
potential vorticity contour. The angular momentum
equation (36) reveals a novelty that comes with the use
of the potential vorticity coordinate. The zonally aver-
aged mass-weighted angular momentum changes only
in response to the net form drag acting on the slanted
potential vorticity contour.

Figure 6 shows the distributions of the Montgomery
streamfunction, deviation about the zonal mean, and
PV contours on the isentropic surface 315 K for 1 Janu-
ary 2005. The data used are daily values of the NCEP–
NCAR reanalysis (Kalnay et al. 1996). In the absence
of diabatic heating an isentropic layer is analogous to a
shallow-water model. One can notice that high pressure
regions lie east and low pressure regions lie west of the
high PV air. According to this the eastern side of a
surface of constant PV has higher pressure than the
western side. Hence, a net westward form drag is ex-
erted on the PV surface, as schematically illustrated in
Fig. 7. This result has been applied to shed some light
on the physical mechanisms that maintain the mean
meridional circulation in a stratified fluid as described
in section 2b. In the next section, we derive a similar
result for the full PVPT system.

4. Interactions between eddies and the mean flow,
as seen in PVPT coordinates

To investigate the nature of interactions between the
eddies and the mean flow, we consider the zonal aver-
age of the angular momentum principle expressed in
flux form, which is given by

��mL�

�t
�

1
a

�

�q
�q̇mL� �

�

��
��̇mL�

� �mX�� �
1
a

�

�q �F*���*
�� �

q,�
� G���

����,q
�

�
1
a

�

�� �G���

�q��,�
�, �39�
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where F is a function of pressure only and satisfies the
identities

p

g

�


��
�

�F

��
,

p

g

�


�q
�

�F

�q
,

p

g

�


��
�

�F

��
. �40�

The function G is defined by

G��, q, �� � ����F

���q,�
�

1
h ��F

�q��,�
���

���q,�
�

� p���z

���q,�
�

1
h ��z

�q��,�
���

���q,�
�, �41�

and can be also written as

G��, q, �� �
p

g ��M

�� ��,�
. �42�

A full derivation of the right-hand side of (39) is given
in the appendix.

Equation (39) shows that, in the absence of diabatic
heating and friction, zonally averaged mass-weighted
angular momentum changes only in response to the
form drag acting against the walls of the PVPT tubes.
The physical interpretation as form drag of G(��/��),q

and G(��/�q) becomes evident when, using (42), we
rewrite the two terms as

FIG. 7. Schematic representation of the form drag acting on the air that flows through a
channel bounded by surfaces of constant PV, q1, and q2. Contour lines of (H 2)* denotes
deviation of the height of the fluid from the zonal mean height, whereas ��*/� gives the slope
of the PV contour, and they are negatively correlated everywhere. As a consequence, in a
zonally averaged sense as the air moves toward the east it is pushed back by the pressure force
exerted by the undulating PV contours.

FIG. 6. Northern Hemisphere distributions of the Montgomery streamfunction (shaded regions), deviation about
the zonal mean, and contours of potential vorticity [contour interval � 2 PVU, where 1 PV unit (PVU) � 1.08 �
10�6 m2 s�1 K kg�1] on the isentropic surface � � 315 K for 1 Jan 2005 in NCEP–NCAR reanalysis data.
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G���

����,q
� �p

g ���

����,q
��M

�� ��,�
�� �p*���M*

�� �
�,�
�

G���

�q��,�
� �p

g ���

�q��,�
��M

�� ��,�
�� �p*q��M*

�� �
�,�
�,

�43�

where p� and pq represent the components of the modi-
fied pressure force that acts on the PV contours. If we
assume that G � G(), the zonally averaged angular
momentum changes only in response to the meridional
variation of the form drag, and, when F is a zonally
symmetric function, the angular momentum is con-
served in the absence of diabatic heating and friction.

In steady-state conditions and in the absence of dia-
batic heating and friction, the left-hand side of (39) is
zero so that the equation reduces to

� · E � 0

where E � (0, Eq, E�) is the Eliassen–Palm flux vector,
with the meridional and vertical components given by

Eq � �F*���*
�� �

q,�
�� �G���

����,q
�,

E� � �G���

�q��,�
�. �44�

Following Andrews (1983) we interpret � · E as the
zonal component of the forces exerted by the eddies on
a thin tube bounded by undulating lateral sides, which
are located at q and q � dq, and undulating bottom and
top isentropes � and � � d�. The form drag nature of
the vertical component of the Eliassen–Palm flux was
also pointed out by Andrews (1983) using isentropic
coordinates, and by Iwasaki (2001) using the isentropic
zonal mean pressure as a vertical coordinate.

The zonally averaged continuity equation is

��m�

�t
�

1
a

�

�q
�mq̇� �

�

��
�m�̇� � 0. �45�

This shows that mass contained in a zonally averaged
PVPT tube can be changed only by diabatic and fric-
tional processes. In the absence of these two processes
the zonally averaged mass is constant along each con-
tour on an isentropic surface. When diabatic processes
and friction are present, (45) can be rewritten as

��m�

�t
�

1
a

�

�q
q̂̇�m� �

�

��
�̂̇�m� � 0, �46�

where q̇̂ and �̂̇ are mass-weighted zonally averaged
quantities given by

q̂̇ �
�mq̇�

�m�
, �̂̇ �

�m�̇�

�m�
. �47�

In steady-state conditions, (q̇̂, �̂̇) represent a residual
circulation that tends to maintain the balanced state
that would be otherwise disturbed by the action of ed-
dies. The vertical branches of the residual circulation
are forced by differential heating, whereas the meridi-
onal branches are the response to heating and friction.
Since there are no fluctuations of q or � along surfaces
of constant PV and potential temperature, there are no
eddy fluxes of these quantities in PVPT coordinates.
The eddies affect the circulation only through form
drag, as discussed above.

5. Conclusions and discussion

The present study provides a new perspective of the
general circulation of the atmosphere using potential
vorticity as meridional coordinate and potential tem-
perature as vertical coordinate. In this framework, the
meridional and vertical advections are zero under fric-
tionless adiabatic processes. Thus, the air flows zonally
along a contour of constant potential vorticity on an
isentropic surface. In the PVPT system of coordinates,
the atmosphere is divided into undulating tubes that are
bounded on the top and bottom by isentropic surfaces
and on the sides by surfaces of constant potential vor-
ticity. In the Tropics, PVPT tubes are deep and wide
because the static stability is small in this region and PV
varies slowly. In middle latitudes the PVPT tubes are
shallow and narrow because meridional PV gradients
are large and potential temperature varies fast with
height.

The PVPT frame of reference allows a Lagrangian
description of the flow similar to the generalized
Lagrangian mean (GLM) formalism proposed by
McIntyre (1980). In the GLM theory, the averaging is
applied along the trajectory followed by the particle.
The PV coordinate tries to follow the trajectory of the
particle because PV is materially conserved in the ab-
sence of diabatic and factional processes.

The meridional component of the wind, V, not to be
confused with the projection of the wind vector on the
PVPT coordinates, represents the velocity of a fluid
parcel that conserves its potential vorticity moving on
an isentropic surface. The primitive equations in the
PVPT coordinates consist of four independent prognos-
tic equations, rather than three as in the isentropic sys-
tem. The additional prognostic equation provides infor-
mation on the geographical latitude of a constant po-
tential vorticity contour. This equation should not be
interpreted as containing information about the coor-
dinate trajectory. It is important to stress that we have
not assumed a quasigeostrophic balance. However,
monotonic variations of PV with latitude and potential
temperature with height are assumed.
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A model that uses the PVPT system of coordinates
incorporates built-in dry convective and barotropic ad-
justment processes, which prevent the model from ex-
plicitly simulating dry-convective and barotropic–
baroclinic instability. Therefore the atmospheric flow
simulated by such a model can capture the character-
istics of the flow before and after barotropic–baroclinic
instability occurs but cannot be used to study the life
cycle of baroclinic waves. We are exploring a general-
ized coordinate that allows barotropic–baroclinic insta-
bility to take place although the meridional coordinates
remains a monotonic function of latitude.

The linearized equations of the shallow-water model
on the equatorial beta plane contain the dominant
equatorial disturbances; that is, Rossby, Kelvin, and in-
ertio-gravity waves. The zonally averaged shallow-
water model consists of two simple equations, which
show that the mass weighted angular momentum
changes only in response to the net form drag acting on
a potential vorticity contour, and in a steady state the
form drag is the same on all contours.

The PVPT frame of reference shows that the inter-
action between the eddy momentum flux and the zonal
mean flow results in a deceleration of the latter due to
the form drag exerted by the former on the walls of the
PVPT tubes. Thus, in the PVPT tubes the eddies have
a similar effect on the flow as a mountain has when the
mean meridional circulation is studied in pressure or
height coordinates. In PVPT coordinates, the zonal
mean flow is driven by the form drag on the air that
flows through the PVPT tubes, and the eddies modu-
late the shapes of the tubes. PVPT coordinates do not
simplify the zonally averaged dynamical equations, but

they provide a basis for assessing the physical impor-
tance of various terms in these equations.
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APPENDIX

Derivation of the Horizontal Pressure Gradient
Term in the PVPT System of Coordinates

The flux form of horizontal pressure gradient term in
PVPT coordinates is

HPGF � 	h��M

�� �q,�
� 	��M

�q ��,�
���

���q,�
. �A1�

Using the definitions of pseudodensity and Montgom-
ery streamfunction the first term can be written as

	h��M

�� �q,�
� ��h��p

����,q
� ��p

�q��,�
���

����,q
�

� ��

g ��


�� �q,�
� ��z

���q,�
�. �A2�

Invoking the hydrostatic balance (18) and after few al-
gebraic manipulations (A2) becomes

	h��M
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� �
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�� �q,�
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�A3�
Applying the same recipe onto the second term of (A1) we obtain
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Combining (A3) and (A4) the horizontal pressure gradient term becomes

HPGF � �
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p
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Defining F(p) such that (40) is satisfied, after few steps (A5) becomes

HPGF � �
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�� ��h���F
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�
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���
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Introducing the notation (41), the horizontal pressure
gradient force is

HPGF �
�

�� �F ���

�q��,�
�

�
�

�q ��F ���

���q,�
� G���

����,q
�

�
�

�� �G���

�q��,�
�. �A7�

To verify the correctness of the derived HPGF suppose
the isolines of PV are perfectly lined up along latitudi-
nal circles. As a consequence, (A7) reduces to

HPGF � ��
�

�� ���F

���q,�
���

�q��,�
�

�
�

�� �p��z

���q,�
���

�q��,�
�, �A8�

which for a one-to-one correspondence between � and
q becomes

HPGF � ����

�q��,�
��

�

�� ��F

���q,�
�

�

�� �p��z

���q,�
��.

�A9�

The form of HPGF as given by (A9) corresponds with
the HPGF in isentropic coordinates. In the absence of
vertical variations,

�

�� �G���

�q��,�
�� 0, ���

����,q
� 0,

and the horizontal pressure gradient force reduces to
the form corresponding to the shallow-water case.
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