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In a recently published article [1], Thuburn and Woollings present a detailed analysis of

the effect of the vertical discretization on the numerical representation of wave motion in the

atmosphere. Among the schemes they analyzed, the ones that had the most accurate linear

normal mode frequencies were not suited for preservation of discrete analogs of conservation

properties. For example, the most straightforward way to achieve mass conservation is to

predict density using the flux-form of the mass continuity equation, yet some of their optimal

schemes did not involve such a direct prediction of mass. Here we augment their analysis

by starting from a continuous form of the vertical momentum equation that involves the

vertical derivative of the Exner function instead of pressure.1 This improves the accuracy of

the normal mode frequencies for the discretizations that may best preserve discrete analogs

of conservation properties.

Thuburn and Woollings (hereafter TW) begin their article by discussing the continuous

dry, non-hydrostatic, compressible Eulerian equations, in which, besides the three compo-

nents of velocity, a minimum of two thermodynamic variables must be predicted. They

present the possible pairs of prognostic thermodynamic variables and their corresponding

prognostic equations within the framework of three different vertical coordinate systems:

geometric height, isentropic and a terrain-following mass-based coordinate. Then they de-

rive the analytical normal modes for wave motion in an atmosphere with an isothermal,

hydrostatic basic state.

1We note here that immediately prior to submission of this article, we learned through personal corre-

spondence with Dr. John Thuburn, the first author of [1], that he had independently performed an anlysis

similar to ours. His work has recently been accepted for publication ([2]).



In the continuous system, the wave behavior is (of course) independent of the vertical co-

ordinate and the set of prognostic variables. However, in the vertically discrete system, the

normal modes depend on the vertical coordinate, the choice of prognostic thermodynamic

variables, and the way these are staggered on the vertical grid. In their article TW analyze

the discrete normal modes for all three vertical coordinate systems and an extensive set of

prognostic thermodynamic variable pairs and staggerings. They categorize each configura-

tion based on the accuracy of the represented wave frequency as well as on the existence of

computational and/or unstable modes. Their results can serve as a guideline for choosing

the prognostic variable set and the vertical grid on which to place them.

In the rating system used by TW, which is based on agreement with the analytical wave

frequency, the top-rated configuration for each of the three vertical coordinate systems is

not optimally suited for preserving discrete analogs of conservation properties. For example,

none of these optimal configurations for the height and isentropic coordinates include mass

as a predicted variable, and the ones for the isentropic and mass-based coordinates do not

have height as a predicted variable. Therefore, satisfying the discrete analogs of mass and

geopotential energy conservation in a fully non-linear model with these configurations may

not be straightforward (see [3] and [4] for example). TW point out this issue in their paper

and they do not discourage using configurations that have good conservation properties but

have less accurate wave frequency representation.

Is there a way to make the configurations with good conservation properties have opti-

mal normal mode frequency representation as well? We performed a numerical eigenmode

analysis of these configurations using a form of the vertical pressure-gradient term that

uses the Exner function instead of pressure. As mentioned above, this results in a more

accurate representation of the normal mode frequencies. In the following we contrast the

vertical momentum equations we used with those used by TW for each of the three vertical

coordinate systems and present our results. The configurations we focus on are only those

that include mass, geopotential and potential temperature as the prognostic thermodynamic

variables, as these have the best conservation properties in terms of mass, geopotential and

thermodynamic energy.



Height coordinate:

The height-coordinate configuration with good conservation properties has mass predicted

at the levels containing the horizontal velocity. It is denoted by TW with the notation (wθ,

uvρ) which lists the prognostic variable set. The variables preceding the comma are at layer

edges, while those following the comma are at layer centers as shown in Figure 1. Here

w is the vertical velocity, θ the potential temperature, u and v are the horizontal velocity

components, and ρ is density.

FIG. 1: Staggering of the prognostic variables on the vertical z-coordinate grid.

The form of the continuous non-linear vertical momentum equation that TW consider is

Dw

Dt
= −

1

ρ
pz − g. (1)

The corresponding linearized form is

wt = −

1

ρ(r)
(pz + gρ) . (2)

We use the same notation as TW, where subscripts z and t indicate partial derivatives, the

superscript (r) represents the isothermal, hydrostatic, resting basic state and the variables

represent perturbation quantities. Also p is pressure, g is gravity and D
Dt

is the material

time derivative. The vertically discrete form of equation (2) is

wtl+1/2 = −

1

ρ(r)
l+1/2

[
(δp)l+1/2

(δz)l+1/2

+ g
1

2
(ρl+1 + ρl)], (3)

where the subscript l is the integer layer-center index. Variables with half-integer indices

are located at layer edges. The vertical difference of the variable A is defined as

(δA)l+1/2 ≡ Al+1 − Al. (4)



Note that the buoyancy term involves density averaged to layer centers.

The alternate form of the non-linear vertical momentum equation that we used is

Dw

Dt
= −θΠz − g, (5)

where Π is the Exner function defined by Π ≡ cp(
p
p0

)κ. The resulting linearized equation is

wt = −θ(r)Πz +
g

θ(r)
θ. (6)

The vertically discrete form of (6) is

(wt)l+1/2 = −θ(r)
l+1/2

(δΠ)l+1/2

(δz)l+1/2

+
g

θ(r)
l+1/2

θl+1/2. (7)

Now there is no averaging of prognostic variables involved because the buoyancy term is

written in terms of θ, which is located at the same level as w. There are no other changes to

the system of equations except for the addition of a diagnostic relation between the Exner

function and pressure. Since this relation does not involve averaging, because Π and p are

at the same level, we have effectively reduced the number of averages in the system by one.

The resulting discrete normal mode frequencies are closer to the analytical wave frequencies

and match those of the “optimal” category of TW. We believe the improved accuracy is due

to the fact that fewer variables are averaged. This supports TW’s argument to that effect.

The eigenmode problem analyzed is the solution of the normal modes of an atmosphere

with an isothermal, hydrostatic basic state at rest. The vertical domain has depth D (= 10

km) and is bounded on top and bottom by rigid, constant-height surfaces. The equations are

continuous in time and in the horizontal dimension and the horizontal domain is periodic.

Waves with a horizontal wavelength of 1000 km are considered. Figure 22 reproduced from

TW’s paper, is a representative dispersion relation for the schemes they classify as Category

1 configurations. These have distinctly more accurate normal mode frequencies than other

configurations. The discrete normal mode frequencies we obtained by using equation (7)

match this figure. The frequency of the westward propagating acoustic (highest frequency),

gravity, and Rossby (lowest frequency) waves are shown as a function of vertical wave mode

n which is related to the vertical wave number m by the relation m=nπ/D. The numerical

frequencies are indicated by the crosses, and the analytical frequencies by the diamonds.

Each vertical wave mode has n - 1 internal nodes. There are 20 levels, therefore the highest

mode that can be represented is n = 19, which has a wavelength slightly longer than 2(δz).



The 4(δz) mode is given by n = 10. The two n = 0 modes are the external acoustic (Lamb

wave) and Rossby modes. There is generally good agreement between the numerical and

analytical frequencies. The error is larger for modes with higher wave numbers.

In contrast to the “Category 1” results we obtained using the “Exner function form” of the

vertical momentum equation, TW obtained the dispersion relation shown in Figure 3 with

their (wθ, uvρ) configuration through the use of equation (3). This figure is representative of

schemes that TW placed in Category 2a, in which no zero-frequency computational modes

exist but there is a substantial underestimate of the Rossby mode frequencies at the higher

vertical wave numbers. So we were able to upgrade the category with good conservation

properties by using the alternate form of the vertical momentum equation. This reclas-

sification is shown in Table I, which summarizes the results of using the “Exner function

form” of the vertical momentum equation with the configurations best suited for satisfying

conservation properties, i.e., the mass and/or height-predicting configurations. The schemes

we analyzed have the subscript “Π”.

FIG. 2: Representative dispersion relation (frequency in s−1) for Category 1 “optimal” configurations

reproduced from [1]. Crosses indicate numerical eigenmode frequencies and diamonds indicate

analytical frequencies.



FIG. 3: Representative dispersion relation (frequency in s−1) for Category 2a “slow Rossby mode”

configurations reproduced from [1].

TABLE I: Reclassification of selected mass- and/or height-predicting configurations resulting from

modification of the vertical momentum equation. These configurations have the superscript ‘Π’ to

denote use of the “Exner function form” of the vertical momentum equation. The other configura-

tions are as in [1].

Height coordinate Isentropic coordinate T errain-following mass-based coordinate

Category 1 (optimal category) (wθ, uvρ)Π (wθz, uv)Π

Category 2a (slow Rossby modes) (wθ, uvρ) (wz, uvσ)Π (wθz, uv)

Category 2b (fast Rossby modes) (wz, uvσ)p

Isentropic coordinate:

For the case of isentropic coordinates, we analyzed the (wz , uvσ)p configuration whose

vertical grid staggering is shown in Figure 4.

The form of the continuous non-linear vertical momentum equation in θ-coordinates that

Thuburn and Woollings consider for the mass and height predicting configurations is

Dw

Dt
= −

1

σ
pθ − g, (8)

where σ is the pseudo-density defined by σ ≡ ρ∂z
∂θ

and z is the geopotential height on



FIG. 4: Staggering of the prognostic variables on the vertical θ-coordinate grid.

θ-coordinate surfaces. The resulting linearized form is

wt = −

1

σ(r)
(pθ + gσ) , (9)

where the variables represent perturbation quantities. The vertically discrete form of (9) is

(wt)l+1/2 = −

1

σ(r)
l+1/2

[
(δp)l+1/2

(δθ)l+1/2

+ g
1

2
(σl+1 + σl)]. (10)

This equation involves averaging the pseudo-density to layer edges in the buoyancy term.

The diagnostic equation for density ρ is given by

σl

σ(r)
l
=

ρl

ρ(r)
l

+
1

zθ
(r)

l

(δz)l

(δθ)l

. (11)

The result that TW obtain for this configuration is shown in Figure 5. This dispersion

relation is representative of Category 2b schemes in which the frequency of the Rossby modes

for high vertical wave numbers is substantially overestimated.

The alternate form of the continuous non-linear vertical momentum equation that we

consider is
Dw

Dt
= −

ρ

σ
θΠθ − g. (12)

In our eigenmode analysis we linearize the discrete form of equation (12). This gives a

different result from discretizing the equation in its linear form, and we believe it provides a

more accurate representation of the linearized characteristics of an actual non-linear model.

The resulting linearized discrete equation is

(wt)l+1/2 = −θl+1/2

(δΠ)l+1/2

(δz(r))l+1/2

− g
1

2
[

(δz)l+1

(δz(r))l+1

+
(δz)l

(δz(r))l

]. (13)



FIG. 5: Representative dispersion relation (frequency in s−1) for Category 2b “fast Rossby mode”

configurations reproduced from [1].

Note that there is still one averaged quantity, i.e., the average of the difference (δz)l/(δz(r))l,

which is equivalent to the “coarse” difference of z across 2(δz(r))l.

The dispersion relation we obtained using this “Exner function form” of the vertical

momentum equation is the same as that for the Category 2a schemes shown in Figure 3.

So the effect of using this equation in the eigenmode analysis is to alter the accuracy of

the wave frequency from a high bias to a low bias (see Table I). For this case the effect is

neutral, i.e., there is not a definite improvement in accuracy.

Terrain-following mass-based coordinate:

The vertical staggering of the (wθz, uv) configuration in the terrain-following mass-based

coordinate system is shown in Figure 6.

The non-linear form of the vertical momentum equation that TW linearize is

Dw

Dt
= −

1

σ

∂p

∂η
− g, (14)

where η is the mass-based coordinate defined at the geometric height z as the ratio of the

mass of air per unit area above that level to the total mass of air per unit area in the entire



FIG. 6: Staggering of the prognostic variables on the vertical η-coordinate grid.

column. This is expressed as

η ≡

∫ zT

z
ρdz∫ zT

zS

ρdz
, (15)

where zT and zS are the model top and surface height respectively. The pseudo-density,

defined as σ ≡ ρ∂z
∂η

, is the total mass per unit area of the atmospheric column above a given

point on the surface, i.e.,

σ =

∫ zT

zS

ρdz. (16)

When linearized, equation (14) becomes

wt = −

1

σ(r)
(pη + gσ) . (17)

The vertically discrete form is then

(wt)l+1/2 = −

1

σ(r)
[
(δp)l+1/2

(δη)l+1/2

+ gσ]. (18)

Note that the pseudo-density σ is independent of height and therefore does not carry a level

index. This form of the vertical momentum equation involves no averaged variables.

The “Exner function form” of the non-linear vertical momentum equation is

Dw

Dt
= −

ρ

σ
θ
∂Π

∂η
− g. (19)

We linearize the discrete form of (19), which gives

(wt)l+1/2 = −θ(r)
l+1/2

(δΠ)l+1/2

(δz(r))l+1/2

+ g
θl+1/2

θ(r)
l+1/2

− g
1

2
[

(δz)l+1

(δz(r))l+1

+
(δz)l

(δz(r))l

]. (20)

Comparing equations (18) and (20), we see that we have introduced an averaged quantity.

According to the argument about the relationship between accuracy and the number of



averaged variables in the system we should expect the normal mode frequencies to be less

accurate. Instead the accuracy improves and this configuration moves to the “optimal”

category as shown in Table I. The reason for this is not clear.

Conclusion

We have demonstrated that it is possible to optimally represent normal mode frequencies

with vertical discretizations that are best suited for preserving conservation properties. This

is achieved by using the Exner function instead of pressure in the vertical pressure-gradient

term of the vertical momentum equation. We analyzed the effect of this modification in the

three vertical coordinates that TW considered. In height coordinates, the improved accuracy

of the normal modes appears to be due to the reduction in the number of averaged variables

in the system of equations. For the mass-based coordinates, however, the accuracy improves

despite the introduction of an additional averaged quantity. For the isentropic coordinate,

the “optimal” category is not achieved, although it can be argued that there is improvement

in moving from Category 2b to 2a. Figures 3 and 5 show that the error in the Rossby

mode frequency mainly occurs in the higher vertical modes – in the case of the “slow Rossby

mode” category (Category 2a) the error becomes large for n greater than about 10 (4(δz) and

shorter waves), and for the “fast Rossby mode” category (Category 2b) waves with n greater

than about 5 (8(δz) and shorter) are affected. Waves whose wavelengths are shorter than

4(δz) are generally not well represented in models so the error in the frequencies for such

waves is probably not important. Since the “slow Rossby mode” category more accurately

represents frequencies of waves in the 4(δz) and larger wavelengths than the “fast Rossby

mode” category, it is the better category. In fact it is almost as accurate as the “optimal”

category for this range of wavelengths.
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