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[1] By incorporating the Tropical Rainfall Measurement Mission (TRMM) satellite orbital
information into the Colorado State University General Circulation Model (CSUGCM), we
are able to ‘‘fly’’ a satellite in theGCMand sample the simulated atmosphere in the sameway
as the TRMM sensors sample the real atmosphere. The TRMM-sampled statistics for
precipitation and radiative fluxes at annual, intraseasonal, monthlymean, and seasonal-mean
diurnal timescales are evaluated by comparing the satellite-sampled against fully sampled
simulated atmospheres. The sampling rates of the TRMM sensors are significantly affected
by the sensors’ swath widths. The TRMMMicrowave Imager (TMI) and the Visible Infrared
Scanner (VIRS) sample each 2.25�� 2.25� grid box in the tropics and subtropics about once
per day, but at a different local time every day, while the precipitation radar (PR) and the
Clouds and the Earth’s Radiant Energy System (CERES) sensor visit each grid box about
once every 3 days and twice per day, respectively. Besides inadequate samplings resulting
from sensors’ swath widths, there is a large, systematic diurnal undersampling associated
with TRMM’s orbital geometry for grid boxes away from the equator.When only 1month of
TRMM data are used, this diurnal undersampling can lead to more daytime samples relative
to nighttime samples in one hemisphere and more nighttime samples relative to daytime
samples in the other hemisphere. The resulting sampling biases (3–6 W m�2) are very
pronounced in outgoing longwave radiation (OLR) over the subtropical landmasses. The
sampling errors in OLR monthly and seasonal means are less than 8 W m�2 (5%) for each
2.25� � 2.25� grid box. The OLR monthly and seasonal means are not sensitive to diurnal
undersamplings associated with the TRMM orbits and sensors’ swath widths. However, this
is not the case for total precipitation. Diurnal undersampling could produce errors as large as
20% in the tropics and 40% in the subtropics, for the zonally averaged monthly mean rain
rates. The TRMM orbits sample each 2.25� � 2.25� grid box in the tropics and subtropics
1–6 times for each hour of the day within a single season. The seasonal-mean diurnal
cycles of precipitation and OLR are not well sampled for any one grid box. By either
accumulating the satellite data for a long enough period, or averaging the data over a large
area with a relatively uniform diurnal signal, the diurnal cycles of precipitation and OLR
can be satisfactorily sampled. The effects of TRMM sampling errors on the inferred
tropical-mean hydrologic cycle and radiative fluxes are also evaluated. There are strong
spurious oscillations associated with TRMM’s orbital geometry, with periods of 23 days
and 3–4 months, in tropical-mean daily and monthly precipitation. While the relative
fluctuations of the sampled OLR are negligible, the relative fluctuations of the sampled
precipitation have magnitudes similar to those of the observed climate variability. Caution
must therefore be used when applying TRMM observations of tropical-mean precipitation
to interpret climate variations at intraseasonal and interannual scales. INDEX TERMS: 3319

Meteorology and Atmospheric Dynamics: General circulation; 3354 Meteorology and Atmospheric Dynamics:
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1. Introduction

[2] Satellite data have been widely utilized in studies of
global climate, to obtain global distributions of precipita-

tion, top-of-the-atmosphere radiative fluxes, temperature,
and winds, as well as clouds and aerosols [e.g., Kidder
and Vonder Harr, 1995]. Studies based on satellite data
have greatly improved our understanding of climate varia-
bility and the hydrologic cycle and have helped to improve
physical parameterizations used in climate and numerical
weather prediction models.
[3] One major advantage of satellite data is that they can,

over extended periods, cover areas where in situ observa-
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tions are not available, especially over the open oceans.
However, this is accomplished at the expense of a reduced
sampling rate compared to typical surface observations over
land. Unlike in situ observations, which can be made
regularly (typically a few times per day at regular time
intervals), most nongeostationary satellites circling the
globe visit a specific location only once or twice a day or
even less, depending on their orbital characteristics and
sensor swath widths. Besides algorithm-related retrieval
errors, monthly mean and seasonal-mean meteorological
fields obtained with satellite data may have large uncertain-
ties due to inadequate sampling, especially on short time-
scales [e.g., Salby, 1988; Bell et al., 1990; Zeng and Levy,
1995; Salby and Callaghan, 1997; Engelen et al., 2000;
Fowler et al., 2000], and so may not faithfully capture what
occurs in nature. This sampling uncertainty has always been
an important issue in satellite mission planning [e.g., North,
1988; Shin and North, 1988; Bell et al., 1990; Bell and
Kundu, 1996; Fowler et al., 2000; Bell and Kundu, 2000]
and must be examined before we can efficiently use satellite
data to investigate natural variability and to evaluate climate
simulations.
[4] The sampling error is a complicated function of the

orbital geometry and statistical properties of the measured
fields [e.g., Bell et al., 1990; Li et al., 1996]. As a feasibility
study for the Tropical Rainfall Measurement Mission
(TRMM) [Simpson et al., 1988, 1996], North [1988]
reviewed sampling studies that had been conducted using
both real data from the GARPAtlantic Tropical Experiment
(GATE) and artificially generated data from stochastic
models. Assuming that the instruments made perfect meas-
urements, North [1988] estimated sampling errors of 10% in
monthly rain rate for TRMM-sized boxes (600 � 600 km)
and for the low-altitude, low-inclination orbit. Shin and
North [1988] further examined the TRMM sampling char-
acteristics by accounting for varying return intervals and
partial sampling of the averaging area on a given visit. Their
study suggested that the sampling error would be �8–12%
for monthly mean rain rates over a grid box of 5� � 5�.
Similar conclusions were drawn by Bell et al. [1990] using a
stochastic model. Bell and Reid [1993], Soman et al. [1995],
and Li et al. [1996] also examined the diurnal cycle
statistics of rainfall by simulating a satellite flying over
the GATE and Darwin areas, respectively.
[5] The earlier satellite sampling studies [e.g., Leith,

1973; MaConnell and North, 1987; Bell, 1987; North,
1988; Bell et al., 1990; Bell and Reid, 1993; Soman et al.,
1995; Bell and Kundu, 1996; Li et al., 1996; Huffman,
1997] have provided many valuable insights into monthly
mean and diurnal rainfall statistics. However, there are
limitations to these studies. As pointed out by North
[1988], Bell et al. [1990], and Li et al. [1996]. most satellite
precipitation statistics were derived for the GATE and
Darwin areas where surface observations were available,
and it is uncertain if the same statistics are applicable to
other regions of the globe. In addition, most surface
observational records used in satellite sampling studies are
short (e.g., there are only 18 days in GATE Phase I), and a
simulated satellite may not obtain statistically meaningful
samples within that period. Furthermore, different sensors
aboard a satellite may have different swath widths, and the
measured climate variables may have significantly different

sampling statistics. Besides precipitation amount statistics,
similar studies of other important climate variables such as
precipitation frequency and intensity, radiative fluxes, etc.,
have not been examined, owing in part to the lack of
suitable observations.
[6] The TRMM satellite was launched in November 1997

to determine the temporal and spatial distributions of
precipitation and radiative fluxes in the tropics and sub-
tropics. TRMM’s orbit is circular, with an inclination of 35�
to the equator. The satellite visits low latitudes about once
per day but at a different local time every day. Therefore,
unlike data collected from polar-orbiting satellites, TRMM
data can be used to investigate tropical climate variability at
both monthly mean and shorter timescales when accumu-
lated for a long enough period.
[7] Ideally, we would like to have long-term real

observations on the global scale to evaluate the satellite
sampling statistics at monthly mean and composite diurnal
timescales. This is not possible in the real world. Model-
dependent reanalyses are good candidates for providing
‘‘truth’’ observations, but most current reanalyses provide
only 6-hourly data. In this study, we use a general
circulation model (GCM) to generate simulated data by
assuming that the GCM can realistically simulate the
atmosphere at annual, seasonal, monthly, and diurnal
timescales. Figure 1 is a schematic showing how we
can investigate satellite sampling issue with the help of
a GCM. X stands for an unknown climate variable (e.g.,
precipitation amount) that we would like to observe
perfectly but cannot. The only data we can obtain are
sampled or ‘‘observed’’ X, Xobs. The deviation e is Xobs-X,
and the sampling error s, as defined by Bell et al. [1990],
is {(Xobs-X )2}0.5. Before we can evaluate climate simu-
lations using such sampled observations, we need to
understand s and e. However, since X is what we really
want to obtain, we are not able to compare directly the
sampled variable and the real variable. A GCM can
continuously simulate the same climate variable, and
therefore the simulated climate variable can be considered

Figure 1. A schematic showing how to investigate
satellite sampling issue with the help of a general circulation
model (GCM).
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‘‘known’’. If we fly a virtual satellite in the GCM, using
the same orbit as the real satellite, we can compare the
GCM-simulated field with the sampled GCM-simulated
field at various timescales. The sampling errors of the
satellite observations can then be inferred from such
comparisons.
[8] In this study, we have combined the Colorado State

University (CSU) GCM and the TRMM orbital data to
explore the sampling statistics of the sensors onboard the
TRMM satellite. Section 2 briefly discusses the TRMM
orbital information used in this study and how it has been
used in the GCM. Section 3 introduces the CSU GCM and
explains how the experiment has been designed. Section 4
examines the satellite sampling frequency at annual, sea-
sonal, monthly, and diurnal timescales, and compares the
‘‘satellite-observed’’ and ‘‘real’’ GCM precipitation and
Outgoing Longwave Radiation (OLR). Section 5 gives a
summary and conclusions.

2. TRMM Orbital Data

[9] TRMM is a low-latitude satellite, orbiting at an
altitude of �350 km, with an orbital period of 91.3 min
(15.8 orbits per day). Among the five remote-sensing
instruments flown on TRMM, the TRMM Microwave
Imager (TMI) [Kummerow et al., 1996] and the precipita-
tion radar (PR) [Meneghini and Kozu, 1990] provide
measurements of rainfall. The Visible Infrared Scanner
(VIRS) and the Clouds and the Earth’s Radiant Energy
System (CERES) [Wielicki and Barkstrom, 1991] sensors
provide brightness temperatures and broadband radiative
fluxes, respectively. Table 1 lists some characteristics of
these sensors. The TMI has a swath width of 758.5 km,
about 3 times wider than that of the PR (220 km). Although
the CERES radiometers can theoretically view an area as
wide as 2000 km at the surface, the effective swath width
for radiative fluxes is �1200 km (Y. X. Hu, personal
communication, 2000) due to the noise level at the edges
of the orbit.
[10] In this study, in order to examine sampling statistics

for precipitation and OLR associated with the TRMM
sensors on annual, seasonal, monthly, and diurnal time-
scales, we have analyzed TRMM orbital data from the
starting date, 7 December 1997, to 31 December 1999.
The geolocations of pixel data at the center and two edges
of the sensor orbits are saved. By simply assuming that a
GCM grid box is viewed (not viewed) by the satellite if
scans cover more than (less than or equal to) one half of
the grid box, we are able to map the area ‘‘viewed’’ by the
TRMM satellite onto the GCM grid boxes. Errors resulting
from partial sampling of a grid box should become smaller
as the size of the grid box becomes smaller and are not

considered in the current study. As shown in Figure 2, a
satellite-sampling field corresponding to the GCM grid
boxes is then constructed at 1-hour intervals for each
sensor. The viewed and ‘‘unviewed’’ grid boxes are
identified.

3. CSU GCM and Experiment Design

[11] The most recent version of the CSU GCM, which
uses a new type of dynamic core [Ringler et al., 2000], is
used in this study. A unique feature of the new dynamic
core is that the model is discretized in the horizontal on a
geodesic grid which is nearly uniform over the entire
globe [Heikes and Randall, 1995a, 1995b]. Such nearly
uniform grids are especially useful for satellite sampling
studies, compared to the conventional longitude-latitude
grid. The vertical structure of the atmosphere is repre-
sented using 17 layers, extending from the surface up to 1
hPa. The lowest layer is the planetary boundary layer,
while the top of the model extends to the stratopause. The
time steps for ‘‘dynamics’’ and ‘‘physics’’ are 360 s, and 1
hour, respectively.
[12] The CSU GCM uses a modified Arakawa-Schubert

[Arakawa and Schubert, 1974] parameterization of convec-
tion developed by Randall and Pan [1993], Pan and
Randall [1998], and Ding and Randall [1998]. The param-
eterization is closed prognostically and is also generalized to
permit convection to originate at any and all model levels
(except the top level) simultaneously. A bulk cloud micro-
physics parameterization [Fowler et al., 1996; Fowler and
Randall, 1996a, 1996b], which was originally developed for
mesoscale models [Lin et al., 1983; Rutledge and Hobbs,
1983, 1984], has been implemented into the GCM, to
simulate stratiform cloud processes. The model also
includes version 2 of the Simple Biosphere (SiB2) model
of Sellers et al. [1996a, 1996b] to simulate land surface
processes. The radiative transfer parameterization follows
Harshvardhan et al. [1987]. The CSU GCM has been tested
and evaluated against observations, and it is able to realisti-
cally simulate many important aspects of the climate [e.g.
Randall et al., 1991; Fowler and Randall, 1996a, 1996b;
Pan and Randall, 1998; Ding and Randall, 1998; Ringler et
al., 2000; Lin et al., 2000].
[13] Results are presented with a horizontal resolution

based on 10,242 polygons (�225 km � 225 km), so that
samplings of TMI, PR, VIRS, and CERES can all be
investigated. The simulation was started on 1 January and
ran for two simulated years. Observed climatological
monthly mean sea surface temperature and sea ice distribu-
tions provide forcings for the model. Simulated and diag-
nosed fields at monthly mean, seasonal-mean, and season-
mean diurnal timescales have been constructed using ‘‘sat-

Table 1. Characteristics of Sensors Aboarding the TRMM Satellite

Swath Width,
km

Sensor Type Observed
Channels

Main Products

TMI 760 passive microwave 5 rainfall, hydrometer profiles
PR 220 positive microwave 1 rainfall, storm structure

VIRS 720 visible and infrared 5, narrow bands brightness temperature
CERES 2000 visible and infrared broadband radiative fluxes
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ellite-sampled’’ and ‘‘fully sampled’’ GCM data. Data for
regions of the western Pacific warm pool, the tropical
eastern Pacific, the tropical Indian Ocean, the Amazon,
etc., have been saved at 1-hour intervals.

4. Results

4.1. Sampling Frequency

[14] Figure 3 shows the zonal mean of the total number of
overpasses for the different sensors on TRMM for January.
Note that these statistics are model resolution dependent. In
the tropics the monthly mean sampling rates for TMI and
VIRS are around 30 for each grid box (on the average about
once per day), consistent with the prelaunch sampling
studies of North [1988], Shin and North [1988], and Bell
et al. [1990]. The sampling rates for PR and CERES are
�10 and 50, respectively, demonstrating the significant
impact of the sensor swath widths on the sampling frequen-
cies. The sampling rates increase poleward and peak
between 34� and 38�, near the edges of the satellite cover-
age. Overall, the monthly mean and seasonal-mean sam-
pling rates of TMI, PR, VIRS, and CERES are only �4, 1.3,
4, and 6.7% of the GCM sampling rate (744 times in
January) in the tropics.
[15] Time series of TRMM samplings within January

(Figure 4) further suggest that the TRMM satellite visits a
given grid box in low latitudes neither randomly nor at
constant intervals. The visit patterns are more complicated

than those assumed in many earlier sampling studies, in
which the visit intervals are nearly constant. Although riding
on the same satellite, each TRMM sensor appears to have its
own swath-width-related sampling frequency at the surface.
As shown below, diurnal undersamplings associated with the
satellite’s orbital geometry and sensors’ swath widths could
generate spurious oscillations in the reconstructed monthly
mean fields, and this appears to be especially serious for
sensors with narrower swath wide such as PR.
[16] Figure 5 compares the diurnal sampling frequencies

of the TRMM sensors within 1 month (solid lines), and 3
months (dashed lines) for three selected grid boxes at the
same longitude but different latitudes (one near the equator,
and the other two at 30�N and 30�S, respectively). For 1
month of TMI data the grid box at 30�N has significantly
more samples between 1900 and 0800 UTC compared to
0900–1800 UTC, while the grid box at 30�S at the same
longitude has significantly more samples between 0800 and
1900 UTC, suggesting possible large sampling bias asso-
ciate with the satellite’s orbital geometry. As will be
demonstrated in Section 4.2, this will lead to more daytime
samples (relative to nighttime samples) in one hemisphere
and more nighttime samples (relative to daytime samples) in
the other hemisphere. Similar biases may also exist in PR,
VIRS, and CERES products when studying monthly means
and diurnal variability using only one-month data. For grid
boxes near the equator the samples within a month are more
evenly distributed over each 1-hour interval, even for

Figure 2. Simulated orbits for TRMM Microwave Imager (TMI), precipitation radar (PR), Visible
Infrared Scanner (VIRS), and Clouds and the Earth’s Radiant Energy System (CERES) on the geodesic
version of the Colorado State University (CSU) GCM. The black belts represent the areas viewed by the
TRMM sensors during the first 2 hours of the simulation.
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sensors with narrow swath widths. As 3 months of TRMM
data are accumulated, the 2.25� � 2.25� grid box can be
sampled evenly for each 1-hour interval without a clear
sampling bias toward certain times of day, although this

does not guarantee that the diurnal signals for various
climate variables can be well captured. The seasonal-mean
satellite diurnal sampling rates near the equator for each 1-
hour interval are �1 or 2 for PR, 4 for TMI and VIRS, and 7

Figure 3. Zonal means of sampling frequencies for TMI, PR, VIRS, and CERES in January 1998
between �40� and 40�.

Figure 4. Time series of samples of TMI, PR, VIRS, and CERES within January 1998 on a 2.25� �
2.25� grid box (�60�W, 0�N) in the tropics.
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for CERES from December to February, compared to 90
times for the GCM.
[17] In summary, examination of the TRMM sampling

rates indicates that sensor swath widths have significant
impacts on sampling frequencies. The monthly mean and
seasonal-mean satellite sampling rates are about 1 or 2
orders smaller than the GCM sampling rate. For grid boxes
away from the equator, there are large diurnal undersam-
plings associated with the satellite’s orbital geometry, which
may lead to more daytime samples relative to nighttime
samples in one hemisphere, and more nighttime samples
relatively to daytime samples in the other hemisphere when
using only 1 month of TRMM data. This diurnal under-
sampling, as will be shown later, can bring significant
biases to both monthly mean fields and diurnal studies. In
order to adequately sample diurnal variability, it is neces-
sary to accumulate multiple months of TRMM pixel data
onto a grid.

4.2. Bias in Monthly and Seasonal Means

[18] Total precipitation rate and OLR are two important
variables that are commonly used in climate studies and
retrieved by TRMM. They have different diurnal variabil-
ities, as well as different amplitude scales, and thus possibly
different satellite sampling errors at seasonal-mean and
seasonal-mean diurnal timescales.
[19] One of the most important objectives of TRMM

sampling studies is to evaluate the sampling bias of the
inferred monthly mean precipitation and radiative fluxes.

Figure 6 compares the TMI- and PR-sampled with fully
sampled monthly mean (January) GCM total precipitation.
Their geographical distributions and zonal means are very
similar. All of the large-scale features, including the
Intertropical Convergence Zone and rainfall maxima and
minima in the tropics and subtropics, are very well
sampled by TMI and PR. Area-mean differences are
0.02 and 0.03 mm day�1 respectively, much less than
the area-mean rain rate of 2.4 mm day�1. However, a few
grid boxes have differences larger than 2.0 mm day�1.
Owing to smaller sampling rates associated with a nar-
rower swath width, the PR-sampled total precipitation
tends to have larger sampling errors than the TMI-sampled
total precipitation, especially over the maritime continent
and the western Pacific, the Amazon Basin, and the
tropical Africa, where precipitation occurs frequently and
has large diurnal variations.
[20] In order to estimate the average amplitudes of differ-

ences between satellite-sampled and fully sampled monthly
mean total precipitation, using 2 years of simulated data, we
calculate the root-mean squares (RMSs) of TMI- and PR-
sampled monthly mean precipitation relative to the fully
sampled month-mean precipitation (Figure 7). The RMS
plots indicate that the TRMM sampling errors are correlated
with precipitation amount and sensor swath widths, as
noticed in previous sampling studies [e.g., Bell et al.,
1990]. The averaged TMI and PR sampling errors in the
tropics and midlatitudes, where deep convection dominates,
are �0.7 and 1.5 mm day�1, respectively. The sampling

Figure 5. Diurnal time series of sampling rates of TMI, PR, VIRS, and CERES within 1 month, and 3
months for three selected grid boxes at the same longitude but different latitudes (one near the equator,
and the other two at 30�N and 30�S, respectively).
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Figure 6. Horizontal distributions and zonal means of fully sampled, TMI- and PR-sampled
precipitation, and their differences (in unit of mm day�1).

Figure 7. Horizontal distributions and zonal means of root-mean-square differences between satellite-
sampled and fully sampled total precipitation (in units of mm day�1).
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errors in the subtropics, where convection seldom occurs,
are considerably smaller, especially over the oceanic regions
west of main continents, and large desert areas such as the
Sahara. Owing to smaller monthly sampling rates, the PR-
sampled precipitation has RMS errors two times larger than
the TMI-sampled precipitation. By simply dividing the
averaged RMS of total rain by averaged total rain rate, we
can estimate that the TRMM TMI and PR relative sampling
errors could be as large as 10 and 30% in the tropics, and 20
and 40% in the subtropics, for zonally averaged monthly
mean rain rates. Monthly mean precipitation over individual
grid boxes may have even larger relative sampling errors.
[21] Figure 8 compares the VIRS- and CERES-sampled

monthly mean (January) OLR with the fully sampled OLR
between 40�S and 40�N. Again, the sampled OLR fields
and their zonal means are very similar to the fully sampled
fields. The largest difference for a grid box is �8 W m�2,
and therefore the largest deviation is less than 5% in the
OLR field, if 160 W m�2 is assumed to be the lowest
monthly mean OLR value in low latitudes. One interesting
feature to notice is that both the VIRS- and CERES-sampled
OLR are systematically lower (2–6 W m�2) than GCM
OLR over the subtropical continents in the Northern Hemi-
sphere and higher than the GCM OLR over the subtropical

continents in the Southern Hemisphere. The February OLR
has also been examined, and the situation reverses (not
shown). A possible explanation, as suggested by the
monthly mean diurnal sampling rates (Figure 5), is that in
January (1998), TRMM tends to sample more nighttime
situations in the Northern Hemisphere, and thus correspond-
ingly more daytime situations in the Southern Hemisphere.
Since the diurnal variation of OLR is stronger over the
subtropical continents than over the oceans, the impact of
this uneven diurnal sampling in two hemispheres is seen on
the large landmasses in the subtropics.
[22] Figure 9 shows the RMS errors of VIRS- and

CERES-sampled monthly mean OLR. There appear to be
two major factors contributing to RMS errors. Large RMS
errors occur in the tropics, where deep convection usually
dominates. They are associated with diurnal undersampling
of tropical convection and could be substantially reduced
for sensors with wider swath widths. The CERES-sampled
OLR has smaller RMS errors (2–3 W m�2) than the VIRS-
sampled OLR (3–5 W m�2) in the tropics. Large RMS
errors over the subtropical continents, where precipitation
seldom occurs, are mainly related to uneven day and night
samplings between the hemispheres in each month due to
TRMM’s orbital geometry. Both VIRS- and CERES-

Figure 8. Horizontal distributions and zonal means of fully sampled, VIRS- and CERES-sampled OLR,
and their differences (in unit of W m�2).
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sampled OLR show similar order-of-magnitude RMS errors
over the subtropical continents (3–6 W m�2). Such uneven
samplings of daytime and nighttime in the subtropics have
almost no effects on the precipitation fields, since precip-
itation seldom falls over the subtropical continents and its
day-night variations are small. Over the subtropical oceans
west of the major continents, where clear-skies and/or
stratus clouds dominate, the RMS values are generally less
than 1.5 W m�2 and the OLR patterns can be well captured
by 1 month of TRMM data. Overall, most grid boxes within
the TRMM region have RMS errors smaller than 6 W m�2.
Therefore the TRMM satellite relative sampling errors are
generally smaller than 5% for the monthly mean OLR.

4.3. Tropical Means

[23] Tropical means and tropical-mean anomalies of
precipitation and radiation fluxes are valuable measures of
the sensitivity of the tropical hydrologic cycle to El Nino-
Southern Oscillation (ENSO) and of the skills of models’
predictability. Soden [2000], using satellite observations of
temperature, water vapor, precipitation, and longwave
fluxes, characterized the variations of the tropical hydro-
logic and energy budgets associated with ENSO. He found
that although multimodel ensemble-mean simulations can
realistically reproduce changes in the observed tropospheric
temperature, water vapor, and OLR, changes in model-
predicted precipitation and surface net longwave flux are
substantially smaller than observed. There are concerns that
such discrepancies may come partly from errors in satellite
observations and partly from a fundamental error that is
common to all GCMs [Soden, 2000].
[24] Although the current study is not able to determine

whether the satellite retrievals overestimate the amplitude of
interannual variability, we are able to examine the role of
TRMM sampling errors in constructing the seasonal
changes of the tropical hydrologic cycle and radiative
fluxes. Figure 10 shows the fully and TRMM-sampled

Figure 9. Horizontal distributions and zonal means of root-mean-square differences between satellite-
sampled and fully sampled OLR (in units of W m�2).

Figure 10a. Tropical means of precipitation (mm day�1)
and OLR (W m�2) derived from simulated monthly mean
averages.
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GCM annual cycle of tropical precipitation and OLR
(Figure 10a) and their deviations (Figure 10b) over three
different tropical belts (10�N–10�S, 20�N–20�S, 30�N–
30�S) using monthly mean averages. Although amplitudes
become smaller as the averaging areas become larger, the
time series of tropical-mean precipitation and OLR devia-
tions clearly indicate spurious low-frequency oscillations
associated with TRMM’s orbital geometry, with periods
ranging from 3 to 4 months. While the relative fluctuations
of the sampled OLR are negligible, the relative fluctuations
of the sampled precipitation are �1–2%, about one third of
satellite-derived long-term oceanic precipitation fluctuations
as derived by Soden [2000].
[25] Figure 11 shows TMI-sampled tropical-mean GCM

total precipitation deviation (from fully sampled total pre-
cipitation) as derived from daily values (Figure 11a), along
with the observed TMI daily precipitation (Figure 11b). All
the deviation plots indicate that there are strong oscillations
on 23-day period in tropical-mean daily precipitation
anomalies, which are due to that the TRMM orbit preces-
sion relative to the Sun direction has a 46-day cycle (C.
Kummerow, personal communication, 2001). Such spurious
oscillations have similar magnitudes (�0.5 mm day�1

between 20�N and 20�S) to the satellite-observed precip-
itation oscillation (�1.6 mm day�1). The 3–4 month
oscillations shown in Figure 10, in which monthly mean
values are used, may be examples of aliasing from the 23-
day oscillations. This shows that caution must be used when
applying satellite observations of tropical-mean precipita-

tion to interpret climate variations and/or evaluate climate
simulations at intraseasonal and interannual scales.

4.4. Frequency and Intensity

[26] Although frequency and intensity of precipitation are
important variables in climate diagnostics and simulations
and have been receiving more and more attentions [Petty,
1995; Chen et al., 1996; Petty, 1997; Dai, 2000], they are
rarely evaluated in satellite sampling studies due to the lack
of data. Rainfall on a specific grid box is not continuous
over time, and the monthly or seasonal-mean rain rate is
typically computed as the accumulated rain amount from
each observation divided by total number of observations.
The mean rain rate does not tell the distributions of intensity
and frequency of rain events within an individual month.
For example, it is possible that a region characterized by
frequent light rain has the same monthly mean rain rate as a
region with less frequent but heavier rain.
[27] Figure 12 illustrates the relationship between sea-

sonal-mean rain amount and rain incidence from GCM and
TMI for the entire TRMM region and for different climate
regimes. GCM rain incidence is defined as total rainy hours
divided by total hours, while TMI-sampled rain incidence is
defined as total rainy hours sampled by TMI divided by
total hours sampled by TMI. Over the entire TRMM region
(between 40�N and 40�S), GCM results indicate that there is
a general trend for regions having larger rain incidence to
have larger rain amounts. The TMI-sampled results can
capture this general increasing trend. Over the western

Figure 10b. Same as Figure 10a, except for tropical mean deviations.
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Pacific warm pool and the summer Amazon Basin, where
deep convection usually dominates, the TMI-sampled
results agree well with the GCM results and the scattering
is similar; most grid boxes are characterized of large rain
amount with high rain incidence. Hawaii is characterized by
light rain, The fully and TMI-sampled GCM results agree
very well and indicate that the mean rain rate over Hawaii is
below 4 mm day�1, and precipitation falls less than 20% of
total observations. The eastern Pacific ocean is in the
subsidence region of the Walker circulation and usually
dominated by clear sky situations and shallow stratus or
cumulus clouds. Both fully and TMI-sampled GCM results
show very light precipitation over the eastern Pacific with
rain incidence ranging from 0 to 20%, consistent with
Petty’s [1995] observations, based on shipboard weather

reports, that drizzle is the preferred form of precipitation
over persistent marine stratus and stratocumulus areas in the
subtropical highs.
[28] Figure 13 shows the probability density distribution

of precipitation for a 2.25� � 2.25� grid box over the
summer Amazon Basin, the western Pacific warm pool,
the maritime continent, and the eastern Pacific Ocean. Over
the Amazon Basin where convection frequently occurs,
light rain events with rain rate below 0.5 mm day�1

dominate and are �20–30% of the total rain events. Other
rain event frequencies, starting from 5% for rain rates
between 0.5 and 1.0 mm day�1, gradually decrease as rain
rate becomes larger. The TMI-sampled rain event frequency
in general agrees well with fully sampled rain event
frequency, especially at low rain rate ranges. At high rain
rate ranges, satellite observations may slightly overestimate
or underestimate precipitation frequency due to inadequate
sampling. The fully and TMI-sampled rain events over the
warm pool and maritime continents indicate similar fea-
tures, except that rain event frequency for rain rate below
0.5 mm day�1 is �14% of total rain events. The eastern
Pacific Ocean is characterized by clear sky and shallow
stratus clouds. Precipitation events, if there are any, are
mostly light rain events. Satellite observations from TRMM
can accurately capture these features.
[29] Figure 14 shows the probability density distribution

of OLR for a 2.25� � 2.25� grid box over the summer
Amazon Basin, the western Pacific warm pool, the maritime
continent, and the eastern Pacific. Fully sampled OLR tends
to have frequency maxima between 200 and 240 W m�2

over the Amazon, 200 W m�2 over the warm pool and
maritime continent, respectively. VIRS- sampled OLR, if
smoothed, can well capture the broad features over these
deep convective regions. Over the eastern Pacific, fully and
VIRS-sampled OLR agree with each other very well since
stable condition prevails over this region. Both of them
show a double-peak structure with the major frequency peak
(36%) associated with clear sky situation at 290 W m�2, and
the secondary peak (16%) probably associated with shallow
stratus clouds at �260 W m�2.

4.5. Bias in the Seasonal-Mean Diurnal Cycle

[30] Numerous observations have shown that the diurnal
variation of convection is generally stronger over land than
over oceans and that the strongest convection over the

Figure 11a. Tropical mean deviation of simulated pre-
cipitation (mm day�1), as derived from daily values.

Figure 11b. Tropical mean precipitation from real TMI
data (20�N–20�S), as derived from daily values.
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summer continents such as the Amazon Basin usually
occurs in the late afternoon or early evening, owing to
dominant daytime boundary layer heating [e.g., Wallace,
1975; Gray and Jacobson, 1977; Short and Wallace, 1980;
Kousky, 1980; Meisner and Arkin, 1987; Liebmann and
Gruber, 1988; Hartmann et al., 1991; Lin et al., 2000]. Lin
et al. [2000] examined the CSU GCM-simulated diurnal
variability of the hydrologic cycle and radiative fluxes over
the Amazon Basin. They found that the CSU GCM can
capture many aspects of the observed diurnal cycle of
convection, although there are 2–3 hour lags in peak
precipitation and OLR relative to observations. In this
subsection we examine the sampled Amazon diurnal cycle

for an individual grid box and also averaged over the entire
Amazon Basin.
[31] Figure 15 compares the fully, and TRMM-sampled

GCM seasonal-mean diurnal cycles of total precipitation and
OLR for a grid box at the center of the Amazon. Each
2.25� � 2.25� grid box is sampled by the satellite on the
average 3–4 times for TMI, 1–2 times for PR, 4 times for
VIRS, and 6 times for CERES for each 1-hour interval within
a single season, compared to�90 times within the GCM. The
diurnal cycle of the GCM precipitation (Figure 15a) shows a
maximum (20 mm day�1) at 1800 LST and a minimum
(8 mm day�1) in the morning between 0900 LST and 1100
LST. The diurnal cycle of OLR (Figure 15b) shows a

Figure 12. Relationship between monthly mean rain rates and rain incidence over the different climate
regimes in the tropics for fully and TMI-sampled precipitation.
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maximum at 0900 LST and a minimum at 1800 LST. The
TMI-sampled precipitation and VIRS-sampled OLR time
series show large deviations for most 1-hour intervals, due
to inadequate samplings. Maxima and minima in precip-
itation and OLR can even shift their timings.
[32] By averaging over a large area with relatively

uniform diurnal signals, the diurnal sampling can be

significantly improved. Figure 16 compares the fully
sampled and TRMM-sampled GCM seasonal-mean diurnal
cycle of total precipitation and OLR over the Amazon
Basin (ensembles of 65 grid boxes). The differences
between fully sampled and TRMM-sampled at each 1-hour
interval became much smaller than those computed for one
grid box, and daily maxima and minima in total precip-

Figure 13. Probability density function of fully and TMI-sampled rain events over the Amazon Basin,
the western Pacific warm pool, the maritime continent, and the eastern Pacific.

Figure 14. Probability density function of fully and VIRS-sampled OLR over the Amazon Basin, the
western Pacific warm pool, the maritime continent, and the eastern Pacific.
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itation and OLR are well captured by the simulated satellite
(within 1–2 hours).

5. Summary and Conclusions

[33] Remote sensing data from the TRMM satellite
have for the first time provided comprehensive and
synchronous measurements of precipitation and radiative
fluxes in the tropics and subtropics. TRMM data will be
extensively used to study natural variability on the annual,
seasonal, and composited diurnal timescales and to eval-
uate climate models’ skills in predicting climate changes.
The TRMM satellite typically visits an area the size of a
GCM grid box about once a day or less, and the
constructed fields on different temporal and spatial scales
may suffer large uncertainties due to inadequate samplings
and intrinsic factors embedded in the satellite’s orbital
geometry. A number of sampling studies of TRMM
precipitation were conducted before launch but most
rainfall statistics were derived over very limited regions
in the tropics within short time periods. The satellite
sampling impacts on the measured tropical hydrologic
cycle and radiative energy budgets, which are very
valuable for accurately monitoring climate variations and

evaluating climate simulations, are difficult to estimate
due to the lack of data.
[34] By incorporating the TRMM orbital information in

the geodesic version of the CSU GCM, we are able to fly a
satellite in the GCM and sample the simulated atmosphere
the same way as TRMM samples the real atmosphere. The
TRMM sampling errors on interannual, intraseasonal,
monthly, and composited diurnal timescales can then be
inferred by directly comparing fully sampled GCM atmos-
phere with TRMM-sampled GCM atmosphere.
[35] There are four sensors aboard TRMM measuring

precipitation, brightness temperatures, and radiative fluxes,
respectively. Sampling frequency analyses indicate that the
sensors’ swath widths have significant impact on the sam-
pling rates. TMI and VIRS sample each 2.25� � 2.25� grid
box in the tropics and subtropics about once per day but at
different local times everyday while PR and CERES visit
each grid box about once every 3 days and twice per day,
respectively. Besides inadequate sampling resulting from
the sensors’ swath widths, there are large diurnal under-
samplings associated with TRMM’s orbital geometry for
grid boxes away from the equator. This diurnal undersam-
pling leads to more daytime samples relative to nighttime
samples in one hemisphere, and more nighttime samples

Figure 15. Seasonal-mean diurnal time series of fully and TRMM-sampled GCM precipitation and
OLR on a grid box in Amazon.
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relatively to daytime samples in the other hemisphere when
only 1 month of TRMM data are used. These sampling
problems, if not carefully managed, could bring significant
biases to constructed climate fields on various temporal and
spatial scales and may interfere with climate monitoring.
[36] The sampling errors in OLR and precipitation

monthly means are calculated based on a 2-year simulation.
The VIRS- and CERES-sampled GCM OLR monthly
means are very similar to the fully sampled GCM OLR
and are able to capture all the large-scale features in the
tropics and subtropics. There are two major factors contri-
buting to RMS errors in sampled OLR monthly means.
RMS errors (3–5 W m�2) located in the tropics, where deep
convection usually dominates, are associated with inad-
equate temporal sampling of tropical convection, and can
be substantially reduced for sensors with wider swath
widths. RMS errors (3–6 W m�2) over the subtropical
continents, where precipitation seldom falls, are mainly
related to uneven samplings of daytime and nighttime
situations in two hemispheres within individual months
due to TRMM’s orbital geometry. Both VIRS- and
CERES-sampled OLR show similar order of magnitude of
RMS errors over the subtropical continents. Overall, the
largest OLR difference for a grid box is �8 W m�2 and

therefore the largest deviation is less than 5% in the OLR
field, if 160 W m�2 is assumed to be the lowest monthly
mean OLR value. Although there are sampling errors
associated with inadequate sampling resulting from sensor
swath widths and diurnal undersampling resulting from
TRMM’s orbital geometry, the OLR monthly and seasonal
means are not sensitive to these sampling errors by TRMM.
This is mainly because of the relatively large OLR values
(of the order of 102 W m�2) and insignificant diurnal
variability compared to precipitation (ranging between 0
and 10 mm day�1 or larger). Therefore both monthly mean
and seasonal mean OLR can be well sampled by VIRS and
CERES.
[37] TMI- and PR-sampled monthly mean precipitation

can also capture all the large-scale features in the tropics and
subtropics. However, owing to smaller sampling rates
associate with a narrower swath width, PR-sampled total
precipitation tends to have larger difference than the TMI-
sampled total precipitation. TMI and PR relative sampling
errors are estimated to be as large as 10 and 30% in the
tropics and 30 and 40% in the subtropics for zonally
averaged monthly mean rain rates.
[38] Correlationships between rain amount and rain inten-

sity, as well as probability density function of precipitation

Figure 16. Seasonal-mean diurnal time series of fully and TRMM-sampled GCM precipitation and
OLR averaged over the Amazon.
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and OLR are also investigated over different climate
regimes using seasonal-mean data. TRMM-sampled data
agree well with fully sampled data, especially over the
eastern Pacific where stable conditions prevail.
[39] TMI and VIRS sample each 2.25� � 2.25� grid box

in the tropics and subtropics �3 times for each 1-hour
interval within a single season. With so few samples, the
seasonal-mean diurnal cycles of precipitation and OLR
cannot be well captured for one grid box. Maxima and
minima in rainfall and OLR may even shift significantly. By
accumulating the satellite data for a long enough period
(seasonal ensembles for a few years) and/or by averaging
the data over a large area with relatively uniform diurnal
signals, the diurnal cycles of precipitation and OLR can be
well sampled at 1-hour intervals for 2.25� � 2.25� grid
boxes.
[40] Tropical means and tropical-mean anomalies of

precipitation and radiation fluxes are valuable measures of
the sensitivity of the tropical hydrologic cycle to ENSO and
of the skills of models’ predictability. The TRMM sampling
impact on tropical mean hydrologic cycle and radiative
fluxes are also evaluated. There are strong spurious oscil-
lations associated with TRMM’s orbital geometry, with
periods of 23 days and 3–4 months, in tropical-mean daily
and monthly precipitation. While the relative fluctuations of
the sampled-OLR are negligible, the relative fluctuations of
the sampled precipitation are of the same order of magni-
tude as the observed climate variability. Caution must be
used when applying TRMM observations of tropical-mean
precipitation to interpret climate variations at intraseasonal
and interannual scales.
[41] Satellite data, along with other data, are commonly

assimilated into operational model reanalyses to provide
better forecasting and monitoring of daily weather changes
and are extensively used to evaluate long-term climate
simulations. This is useful because satellites can view large
areas where in situ observations are not available. However,
large, spurious low-frequency signals can result from satel-
lite sampling. If not carefully managed, these errors can
easily contaminate the inferred climate fields at various
temporal and spatial scales.
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