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ABSTRACT

Weather and climate models contain equations for transporting conserved quantities such as the mass of
air, water, ice, and associated tracers. Ideally, the numerical schemes used to solve these equations should
be conservative, spatially accurate, and monotonicity-preserving. One such scheme is incremental remap-
ping, previously developed for transport on quadrilateral grids. Here the incremental remapping scheme is
reformulated for a spherical geodesic grid whose cells are hexagons and pentagons. The scheme is tested in
a shallow-water model with both uniform and varying velocity fields. Solutions for standard shallow-water
test cases 1, 2, and 5 are obtained with a centered scheme, a flux-corrected transport (FCT) scheme, and the
remapping scheme. The three schemes are about equally accurate for transport of the height field. For
tracer transport, remapping is far superior to the centered scheme, which produces large overshoots, and is
generally smoother and more accurate than FCT. Remapping has a high startup cost associated with
geometry calculations but is nearly twice as fast as FCT for each added tracer. As a result, remapping is
cheaper than FCT for transport of more than about seven tracers.

1. Introduction

Weather and climate models contain many transport
equations of the form

��

�t
� � · ��u� � 0, �1�

where u is the velocity field in two or three dimensions,
and � is the density of a fluid such as air or water.
Associated with (1) are equations for the transport of
passive tracers:

�

�t
��T� � � · ��Tu� � 0, �2�

where T is the tracer concentration per unit mass.
Equations (1) and (2) imply that T is unchanged along
fluid trajectories:

dT

dt
�

�T

�t
� u · �T � 0, �3�

where dT/dt is the material or Lagrangian derivative.
Transport equations of the form (1) and (2) are

solved repeatedly in atmosphere, ocean, and sea ice
models. Ocean and atmosphere flows are characterized
by a high Reynolds number—that is, a large ratio of
advective to frictional terms in the equations of motion.
A momentum equation is solved for u, and then (1) is
solved for the fluid density or layer thickness to find the
new mass distribution. Simultaneously, equations of the
form (2) are solved to obtain the new distribution of
tracers such as temperature, salinity, and chemical spe-
cies concentrations. Sea ice flows have a low Reynolds
number, and sea ice is often modeled as a viscous-plas-
tic material (e.g., Hunke and Dukowicz 1997). The sea
ice momentum equation differs from the momentum
equations in ocean and atmosphere models, but sea ice
transport equations have the same form. Given the ve-
locity field, (1) is solved to find the new concentration
of ice area (the sea ice analog of fluid density), and (2)
gives the new values of tracers such as ice and snow
thickness.

Corresponding author address: Dr. William H. Lipscomb,
Group T-3, MS B216, Los Alamos National Laboratory, Los Ala-
mos, NM 87545.
E-mail: Lipscomb@lanl.gov

AUGUST 2005 L I P S C O M B A N D R I N G L E R 2335

© 2005 American Meteorological Society

MWR2983



Many numerical methods have been developed for
solving transport equations (e.g., LeVeque 1992). Ide-
ally, a numerical method should preserve the properties
of the continuous equations it seeks to approximate.
One important property is conservation. Equations (1)
and (2) are equivalent to the conservation equations

d
dt � �

VL

� dV� � 0, �4�

d
dt � �

VL

�T dV� � 0, �5�

where dV is a volume element, and the integral is taken
over a Lagrangian volume VL whose bounding surface
moves with the local fluid velocity. Numerical transport
schemes often are written in terms of fluxes across grid
cell faces so that conservation is satisfied automatically.
Another important property is monotonicity—the
avoidance of unphysical overshoots and undershoots. It
is desirable to preserve the monotonicity of tracers as
well as density; schemes that preserve tracer monoto-
nicity are said to be compatible (Schär and Smolar-
kiewicz 1996). Other desirable properties include sta-
bility, accuracy, and efficiency. Accuracy of at least
second order in space is often needed, since first-or-
der-accurate schemes are very diffusive. If the Cou-
rant–Friedrichs–Lewy (CFL) number [defined as max
(|u�t|/�x)] is close to 1, the method should also be at
least second-order accurate in time. Computational ef-
ficiency is an issue for complex schemes, especially if
many tracers are present. It is difficult to design
schemes that are simultaneously accurate, monotonic-
ity-preserving, and efficient.

Two simple, inexpensive, conservative schemes are
the first-order upwind, or donor cell, scheme and the
second-order centered scheme. The donor cell scheme,
which approximates the transported field at each cell
edge using the upwind value, preserves monotonicity
but is highly diffusive. In centered schemes the field is
estimated at each edge by averaging the values from the
cell centers nearest the edge. Centered differencing
conserves variance but violates monotonicity, produc-
ing ripples and negative values near steep gradients.
More complicated schemes have been developed to
provide accuracy without spurious overshoots. One
such scheme, flux-corrected transport (FCT; Zalesak
1979), blends the desired properties of low-order and
higher-order schemes. The flux across each edge has
two components: a low-order flux that preserves mono-
tonicity and a higher-order antidiffusive flux that cor-
rects the truncation error associated with the low-order
flux. The two fluxes are weighted such that as much of

the antidiffusive flux is applied as possible without vio-
lating monotonicity.

Another method that combines the best properties of
low-order and higher-order schemes is incremental
remapping, developed by Dukowicz and Baumgardner
(2000, henceforth DB) for 2D transport. In this scheme,
fluid velocities are projected backward from cell cor-
ners to define departure regions. Fields at time level n
are reconstructed over the grid, integrated over the de-
parture regions, and remapped onto the grid at time
level n � 1. Each field is reconstructed with second-
order spatial accuracy, except where limited to preserve
monotonicity. One advantage of remapping is that it
preserves tracer monotonicity without extra work.
Also, remapping can efficiently transport large num-
bers of tracers, since much of the work is geometric and
need not be repeated for each field. Lipscomb and
Hunke (2004, henceforth LH) showed that incremental
remapping is a robust, efficient, accurate scheme for
horizontal transport in sea ice models with multiple
thickness categories. Remapping is conceptually similar
to the cell-integrated semi-Lagrangian (CISL) schemes
developed by Machenhauer and colleagues (e.g., Nair
and Machenhauer 2002; Nair et al. 2003). In both meth-
ods, scalars are integrated over departure regions de-
fined by backward trajectories from cell corners. In
CISL schemes, however, the integral is taken over the
entire departure cell; in the DB scheme, scalars are
integrated only over the part of the cell that is trans-
ported across a cell edge.

In most geophysical models the equations of motion
are solved for quadrilateral grid cells. The grid lines
either follow lines of constant latitude and longitude or
are stretched to avoid polar singularities (Smith et al.
1995). Several researchers, however, have built geo-
physical models on spherical geodesic grids (e.g., Sa-
dourny et al. 1968; Williamson 1968; Masuda and
Ohnishi 1986; Thuburn 1997; Ringler et al. 2000). These
grids typically are constructed by dividing the sphere
into 12 pentagons and a larger number of hexagons,
starting from the icosahedron (Heikes and Randall
1995). Geodesic grids are in some ways better suited for
GCMs than are conventional quadrilateral grids. Geo-
desic grids are highly isotropic: each grid cell is sur-
rounded by five or six nearly equidistant neighbors ly-
ing across cell edges, instead of by a mix of edge and
corner neighbors. Each geodesic grid cell has nearly the
same size and shape, unlike a latitude–longitude grid
where cell areas decrease and aspect ratios increase
toward the poles. Since geodesic grids have no polar
singularities, finite-difference methods can be applied
everywhere on the sphere.

Randall et al. (2002) are developing a global climate
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model in which each model component—atmosphere,
ocean, land, and sea ice—lies on a spherical geodesic
grid. The ocean, land, and sea ice models share a sur-
face grid. The atmospheric grid has the same shape as
the surface grid but typically a coarser resolution. The
atmosphere and ocean components have quasi-
Lagrangian vertical coordinates so that vertical advec-
tion is minimized and fluid motions are nearly two-
dimensional. Layer thicknesses evolve in time and are
periodically remapped onto a target vertical grid. Be-
cause the layer thickness can have large horizontal gra-
dients, care must be taken during horizontal transport
to ensure that mass remains positive.

Incremental remapping appears well suited for hori-
zontal transport in such a climate model. For quasi-
horizontal fluid motions a 3D transport scheme is not
needed, and a 2D scheme will suffice. Upwind transport
is too diffusive, and centered differencing is highly os-
cillatory. FCT is accurate and monotonicity-preserving,
but is relatively expensive in models with many tracers.
Historically, climate models have carried only a few
prognostic tracers: temperature and salinity in the
ocean, one or more phases of water in the atmosphere,
and thickness and temperature in one or two sea ice
thickness categories. This is no longer the case. Atmo-
spheric chemistry models, ocean biogeochemistry mod-
els, and multicategory sea ice models typically carry 10
to 100 tracers. Remapping could efficiently solve the
problem of transporting many tracers accurately.

Incremental remapping has not previously been ap-
plied on a geodesic grid. In this paper we describe a
remapping scheme for spherical geodesic grids and use
it to compute fluid transport in a shallow-water model.
Since the shallow-water equations are similar to the
equations for horizontal flow in a 3D model, this appli-
cation is a first step toward using incremental remap-
ping in isentropic ocean and atmosphere models. Sec-
tion 2 describes the spherical geodesic grid, and section
3 explains how incremental remapping is done on this
grid. Section 4 sets forth the shallow-water equations
and describes the solution method. Section 5 presents
results from three standard shallow-water test cases and
compares remapping to centered and FCT schemes.
Conclusions are given in section 6.

2. The spherical geodesic grid

A spherical geodesic grid can be generated by re-
peated subdivision of the 20 triangular faces of an icosa-
hedron (Heikes and Randall 1995). Figure 1 shows how
the grid is formed by recursive bisection and projection.
First, each edge is bisected to form four smaller tri-
angles on each face; then the triangle vertices are pro-

jected to the surface of the sphere. This process is re-
peated to yield progressively finer grids. A Voronoi
tesselation is then defined as the set of points closer to
a particular vertex than to any other vertex. After the
spherical Voronoi tesselation is obtained at the target
resolution, the tesselation is modified slightly such that
the center of each face coincides with the centroid of
that grid cell. Du et al. (1999) have shown that in many
cases centroidal Voronoi tesselations are optimal tes-
selations.

The grid cells are hexagons, except for 12 pentagons
lying at the 12 vertices of the original icosahedron. The
grid is oriented with 2 pentagons at the poles and the
other 10 pentagons in midlatitudes. The number of grid
cells for a given recursion level R is given by

N � 5 · 22R�3 � 2, �6�

where R � �1 corresponds to the original icosahedron.
The grids used in this paper correspond to R � 3, 4, 5,
and 6, with N � 2562, 10242, 40 962, and 163 842, re-
spectively. With N � 2562 the average distance be-
tween cell centers is 481.6 km, giving a resolution of
about 4.5° at the equator. This distance is halved with
each increase in resolution.

It is convenient to store grid cell data in logically
rectangular 2D arrays in which the closest neighbors on
the grid are also neighbors in computer memory. This is
done by dividing the grid into five equally shaped pan-
els (Fig. 2). Each panel consists of four adjacent spheri-
cal triangles corresponding to four faces of the initial
icosahedron. On each panel the arrangement of grid
cells is logically rectangular. The panel dimensions are
extended by one cell in each direction to include ghost
cells (i.e., neighboring cells belonging to other panels)
and the two poles. Each panel can be further divided
and the subblocks distributed over many processors in
order to exploit parallel computer architectures.

The number of vertices V and edges E is related to
the number of faces F by Euler’s formula:

F � V � E � 2. �7�

At the R � 3 recursion level, for example, the grid has
2562 faces, 5120 vertices, and 7680 edges. If the faces
corresponding to the two poles are excluded, then two
vertices and three edges can be associated uniquely
with each face. Consider the central hexagon in Fig. 3.
By convention, this hexagon owns the west, south-
west, and southeast edges, along with the two vertices
that bound the southwest edge. The neighboring grid
cells are indexed as shown in the figure. The indexing
is similar to that on a rectangular grid, except that the
cell has six neighbors instead of eight, and the (i � 1,
j � 1) and (i � 1, j � 1) grid cells do not border cell
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(i, j). The indexing is modified slightly for neighbors of
pentagons. More details can be found online at http://
kiwi.atmos.colostate.edu/BUGS/geodesic.

It is convenient to define several coordinate systems,
denoted by X1, X2, X3, and X4. System X1 is a global
3D Cartesian coordinate system whose origin lies at the
center of the earth, with the x and y axes passing
through the equator and the positive z axis intersecting
the North Pole. Systems X2, X3, and X4 are local 2D
coordinate systems defined at each vertex, cell center,
and edge midpoint, respectively. System X2, which is
defined at each vertex, lies in the plane formed by join-
ing the centers of the three faces surrounding the ver-
tex. Its x and y axes point in the local east and north
directions. System X3 is defined at each cell center and
lies in a plane that passes as close as possible to the five
or six cell corners, with its x and y axes pointing east-
ward and northward as in X2. Finally, X4 is defined for
each edge, with its origin at the midpoint of the edge,
the x axis lying along the edge, and the y axis perpen-
dicular to the edge. Vectors are transformed among
these four coordinates systems by matrix multiplica-
tion. Transformations between X1 and the 2D coordi-

nate systems are done directly, whereas transforma-
tions between two 2D systems are carried out via an
intermediate transformation to X1. Since neighboring
2D coordinate systems are not quite coplanar, a vector
in one system has a small component perpendicular to
the plane of the neighboring system. In the vector trans-
formations described below, this perpendicular compo-
nent is discarded, resulting in a small spatial discretiza-
tion error.

The equations of motion are discretized on the Z/ZM
grid (Ringler and Randall 2002a,b), in which scalars are
located at cell centers and vectors at cell corners. Ring-
ler and Randall (2002a, henceforth RR) defined dis-
crete divergence, gradient, curl, and Laplacian opera-
tors that retain important properties of their continuous
counterparts. Equations (1) and (2) contain the scalar
divergence operator, which is discretized by RR as

�� · u�i �
1
Ai
�
c�1

nc

�Fc� � Fc��, �8�

where

Fc� 	 uc · nc� dc� and Fc� 	 uc · nc�dc�. �9�

FIG. 1. Generating geodesic grids by recursive bisection and projection.

2338 M O N T H L Y W E A T H E R R E V I E W VOLUME 133



Here, Ai is the grid cell area, uc is the velocity in X2
coordinates at corner c, nc is the total number of cor-
ners (5 or 6), nc� and nc� are unit vectors normal to the
cell edges, and dc� and dc� are lengths of half-edges, as
shown in Fig. 4. The c� direction is counterclockwise
from corner c, and c� is clockwise. To find the diver-
gence of a product of a scalar and a vector, such as �u
in (2), � must be averaged to the cell corners. The
reader may refer to RR for definitions of the gradient,
curl, Laplacian, and averaging operators.

3. Incremental remapping on a geodesic grid

We now describe the incremental remapping algo-
rithm, emphasizing features specific to geodesic grids.
More details can be found in DB and LH.

Given a 2D velocity field u, we wish to update the
density field � and associated tracer concentration
fields T that evolve according to (1) and (2). Scalars are
located at cell centers and velocity vectors at cell cor-
ners. Incremental remapping proceeds in four stages:

1) Given the mean value of the density and tracer in
each cell at time level n, approximate the density
and tracer fields as linear functions of x and y. Limit
the field gradients as needed to preserve monoto-
nicity.

2) Given the velocity at cell corners, locate the depar-
ture regions from which material is transported
across the edges of each grid cell. Divide these re-
gions into triangles and find the vertices of each
triangle.

FIG. 2. The geodesic grid consists of 20 spherical triangles corresponding to the 20 faces of the original icosa-
hedron. (a) Spherical triangles overlying a low-resolution grid. (b) The grid is separated into five panels of four
triangles each. (c) The panels are stretched to show that each panel is logically rectangular.
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3) Integrate over the departure triangles to determine
the mass transported across each cell edge.

4) Compute the mass entering and leaving each grid
cell, and update the mean density and tracer values
to time level n � 1.

Since the velocity is the same for each transported field,
the departure triangles in step (2) are computed just
once per time step. The other three steps are repeated
for each field.

This process is illustrated in Fig. 5. The target grid
consists of regular hexagons, and the irregular shaded
hexagon is the departure region associated with the
central target hexagon. The arrows lie along the local
velocity field and must not extend beyond the nearest
neighbors of the target hexagon; this is what is meant by
incremental as opposed to general remapping. For sta-
bility, the arrows must not cross one another. The ma-
terial contained in the shaded hexagon at time level n is
assumed to arrive in the target hexagon at time level n
� 1. The density and tracer fields in the target hexagon
are updated by computing the mass transported across
each edge. The algorithm is described in detail below.

a. Reconstructing density and tracer fields

First, the density field � and tracer fields T at time
level n are reconstructed in each grid cell as functions of
r � (x, y) in coordinate system X3, whose origin lies at
the cell center. The mean density and tracer are � and

T, respectively; these are the prognostic variables stored
in computer memory. The reconstructed density and
tracer fields, when integrated over the grid cell, must
have means � and T:

FIG. 5. Incremental remapping on the geodesic grid. Conserved
quantities contained in the shaded hexagon at time level n arrive
in the central target hexagon at time level n � 1. The arrows
denote backward trajectories computed from the cell corner ve-
locities.

FIG. 3. Indexing of grid cells on the geodesic grid. The oblique
dashed lines pass through values of constant i, and the horizontal
dashed lines through values of constant j. Cell (i, j) owns the edges
to the west [E(1)], southwest [E(2)], and southeast [E(3)]. Cell (i,
j) also owns the vertices bounding the southwest edge [V(1) and
V(2)].

FIG. 4. Quantities associated with the discrete divergence op-
erator. Vectors are defined at cell corners and scalars at cell cen-
ters. The velocity at the corner is uc; dc� and dc� are lengths of
half-edges; and nc� and nc� are unit vectors normal to cell edges,
where c� denotes the counterclockwise direction from the cell
corner and c� the clockwise direction. The cell area Ai is defined
by the perimeter of the hexagon.
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�
A

��r� dA � �A, �10�

�
A

��r�T�r� dA � �TA, �11�

where A is the grid cell area. Equation (10) is satisfied
if � (r) has the form

��r� � � � ��
��� · �r � r�, �12�

where 
��� is the cell-centered density gradient, 
� is a
coefficient between 0 and 1 that preserves monotonic-
ity, and r is the cell centroid. Similarly, (11) is satisfied
if T(r) is given by

T�r� � T � �T
�T� · �r � r̃�, �13�

where r̃ is the center of mass. The centroids are pre-
computed and stored, and the centers of mass are
evaluated at each time step. For the centroidal Voronoi
tesselations used in this paper, r � 0 in each grid cell.
The gradients �� and �� are computed at cell corners
as in RR, and then averaged to cell centers. These gra-
dients are limited, if necessary, so that the maximum
and minimum values of �(r) and T(r) in each cell are in
the range of the mean values in the cell and its nearest
neighbors. This procedure, based on van Leer (1979), is
sufficient to preserve monotonicity. A linear recon-
struction of scalar fields gives a numerical scheme that
is second-order accurate in space. With van Leer limit-
ing, the accuracy is formally reduced to first order, but
if the limiting is confined to a small fraction of grid cells
at any given time, the scheme may converge in practice
with close to second-order accuracy.

b. Locating departure triangles

The next step is to locate the vertices of the depar-
ture regions associated with each cell edge. The depar-
ture regions are quadrilaterals whose four vertices are
the two cell corners bounding the cell edge, along with
the endpoints of the backward trajectories associated
with these corners. Each departure quadrilateral is par-
titioned into two or more triangles, with the rule that
each triangle must lie entirely within a single grid cell.
We first describe the procedure for finding departure
points, then show how to find the vertices of the depar-
ture triangles.

The velocity at each grid cell corner is known in X2
coordinates. The simplest way to find departure points
xd is to project the velocity directly backward in time
from the cell corner:

xd � x0 � u0�t, �14�

where x0 is the corner location and u0 is the corner
velocity. This method is first-order accurate. A second-
order-accurate procedure is to estimate the trajectory
midpoint, xm � x0 � u0 �t/2, then approximate the
velocity um at the midpoint and replace u0 with um in
(14). Let the three neighboring corners be denoted by
x1, x2, and x3, and suppose xm lies in a triangle whose
vertices are x0, x1, and x2. The midpoint velocity can be
interpolated from the vertices using

um � u0 � ��u1 � u0� � ��u2 � u0�, �15�

where 
 and � are the solutions of

xm � x0 � ��x1 � x0� � ��x2 � x0�. �16�

In (15) and (16), all vectors lie in the X2 coordinate
system located at x0. The accuracy of the backward
trajectories can be improved by iterating the midpoint
method or by using the noniterative scheme of McGre-
gor (1993), as applied on the geodesic grid by Giraldo
(1999). For the test problems below, these refinements
do not significantly change the results.

Given the departure points, the quadrilateral depar-
ture region is divided into one or more triangles, each
of which encloses material transported across the edge
from a single grid cell (Fig. 6). The departure region lies
in up to four grid cells: the two cells (T and B) that
border the cell edge, and the two cells (L and R) that
contain an endpoint of the edge. This region can con-
tain at most four triangles: one each in cells L and R,
and two in cells T and B combined. The appendix de-
scribes in detail the procedure for finding the vertices of
departure triangles.

Each grid cell (except the two pole cells) owns three
edges; for each edge there are up to four departure
triangles, and each triangle has three vertices. Thus the
2D positions of 3 � 4 � 3 � 36 vertices are stored for
each grid cell. These vertices are computed initially in
X4 and then transformed to the X3 coordinates of the
cell contributing the transport. The area and sign of
each departure triangle are also computed. If the ver-
tices are xi � (xi, yi), i ∈ {1, 2, 3}, the triangle area AT

is given by

AT �
1
2

|�x2 � x1��y3 � y1� � �y2 � y1��x3 � x1�|. �17�

By convention, flows directed out of the cell that owns
the edge are positive, and flows into that cell are nega-
tive.

c. Integrating the transport

Next the transported mass is integrated over each
departure triangle for each conserved field. Polynomial
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functions can be integrated exactly over triangles using
simple cubature formulas (Stroud 1971). The integrals
of linear, quadratic, and cubic functions f(x) over a tri-
angle with vertices xi and area AT are given, respec-
tively, by

I1 � ATf�x0�, �18�

I2 �
AT

3 �i f�x�i�, �19�

I3 � AT�� 9
16

f�x0� �
25
48�i f�x�i��, �20�

where x0 is the triangle midpoint,

x0 �
1
3�i xi, �21�

and the cubature points in (19) and (20) are x�i 	 (x0 �
xi)/2 and x�i 	 (3x0 � 2xi)/5. Suppose the transported
fields are � and �T as in (1) and (2). Then �, a linear
function of x and y, can be integrated exactly using (18),
and �T, a quadratic function, using (19). Equation (20)
can be used to integrate the product of a density and
two tracers: for example, the internal energy of sea ice,
which is a product of ice area, thickness, and enthalpy.
In practice, it may be possible to integrate quadratic
and cubic functions using (18) instead of (19) or (20)
with little loss of accuracy.

d. Updating mass and tracer fields

Given the mass transports mk and mass-weighted
tracer transports (mT)k across each edge k of a grid cell
with area A, the values of � and T at time level n� 1 are
given by

�n�1 � �n �
1
A�k � mk, �22�

Tn�1 �

�nTn �
1
A�k � �mT�k

�n�1 . �23�

Following the sign convention above, the positive sign
is taken for transports across the three edges owned by
the cell and the negative sign for the other edges.
Dukowicz and Baumgardner (2000) showed that (23)
satisfies tracer compatibility, since the new-time tracer
is a density-weighted average of old-time values over
the departure region.

4. The shallow-water equations

We wish to evaluate incremental remapping as a
scheme for mass and tracer transport in geophysical
models on a spherical geodesic grid. To this end we
solve the frictionless shallow-water equations, which
describe 2D motion of a single layer of fluid under the
influence of gravity and the Coriolis force. Following
RR, these equations can be written as

�u
�t
� �	k � u � ��K � g�h � hs��, �24�

�h

�t
� �� · �hu�, �25�

�

�t
�hT� � �� · �hTu�, �26�

where h is the fluid depth, hs is the surface height, g is
the gravitational constant, K � u · u/2 is the kinetic
energy, k is the vertical unit vector, and � � f � k · �

FIG. 6. To compute the transport across the edge joining CL and
CR, the departure points DL and DR are connected to each other
and to their respective arrival points. The figure shows two of
many possible geometric configurations: (a) a triangle in the left
cell (L), a triangle in the right cell (R), and a quadrilateral in the
top cell (T ), and (b) triangles in cell T and in the bottom cell (B).
See the appendix for a complete discussion.
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� u is the absolute vorticity (where f is the Coriolis
parameter). Equation (24) is the momentum equation,
and (25) and (26) are transport equations analogous to
(1) and (2). This form of the shallow-water equations is
known as the momentum formulation. Taking the curl
and divergence of (24) results in equations for the vor-
ticity and divergence:

�	

�t
� �� · �	u�, �27�

�


�t
� k · � � �	u� � �2�K � g�h � hs��, �28�

where � � � · u is the divergence. The vorticity and
divergence are related to the velocity by

	 � �2�, �29�


 � �2�, �30�

where � is the streamfunction, � is the velocity poten-
tial, and

u � k � �� � ��. �31�

Equations (25)–(28) are known as the vorticity-diver-
gence form of the shallow-water equations; they are
equivalent to the momentum formulation in the con-
tinuous limit. In this paper the equations are solved
using the vorticity-divergence formulation, which elimi-
nates the computational modes permitted by the mo-
mentum formulation.

The shallow-water equations must be discretized on
the geodesic grid. The scalar quantities associated with
each grid cell i include the fluid thickness hi, surface
height hsi, tracer concentration Ti, absolute vorticity �i,
potential vorticity qi � �i/hi, potential enstrophy q2

i ,
kinetic energy Ki, and potential energy g(hsi � hi/2).
Ideally, a discretization should conserve as many as
possible of the infinitely many quantities conserved by
the continuous equations. Ringler and Randall (2002a)
defined discrete operators that guarantee conservation
of global mass, mass-weighted tracer, mass-weighted
potential vorticity, mass-weighted tracer variance, mass-
weighted potential enstrophy, and total (kinetic plus
potential) energy. Mass, mass-weighted tracer, and
mass-weighted potential vorticity are conserved simply
by writing the transport Eqs. (25)–(27) in flux form.
[Note that (27) has the same form as (26) when hq is
substituted for �.] Tracer variance, potential enstrophy,
and total energy are conserved provided that T, q, and
h are averaged to cell edges and corners as described
in RR.

In the RR scheme the shallow-water equations are
integrated in time using the third-order Adams–Bash-

forth method (AB3; Durran 1991). The value of a field
� at time level n � 1 is given by


n�1 � �n � �t�23
12

��n �
4
3

��n�1 �
5

12
��n�2�, �32�

where the �� are tendencies at three successive time
levels. Assuming that the tendencies at time levels n �
1 and n � 2 have already been computed and stored,
the algorithm proceeds as follows. First, the thickness
field is advanced using (25) and (32); the discrete di-
vergence of hu in (25) is computed using (8) and (9).
Tracers are integrated analogously. Next, K is obtained
from the velocity; the various discrete operators are
used to evaluate the tendency terms in (27) and (28);
and � and � are stepped forward using (32). Then (29)
and (30) are inverted to find the streamfunction � and
velocity potential � using an elliptic solver (Heikes and
Randall 1995). The new velocity is obtained by differ-
entiating � and �.

This solution scheme is second-order accurate in
space and has excellent conservation properties. As RR
showed, it is well suited for computing the shallow-
water thickness field, which is smooth everywhere,
never approaches zero, and is controlled by the dynam-
ics. However, centered transport is unsuitable for fields
with sharp gradients, especially tracer fields that are not
restored dynamically.

For the standard divergence operator used in (25)
and (26), the transport across each edge is computed
using the centered average thickness and tracers. By
replacing these centered averages with the values in the
grid cell upwind of each edge, one obtains an upwind
divergence operator. The resulting transport scheme is
monotone but is too diffusive for most applications. A
more accurate scheme is obtained if the first-order up-
wind and second-order centered fluxes are combined in
an FCT scheme, following Smolarkiewicz (1991). The
resulting scheme limits the higher-order fluxes so that
monotonicity is preserved, provided the transport
equations are integrated forward in time. With AB3
time differencing, monotonicity is no longer guaran-
teed, but the solutions are much smoother than those
given by the centered scheme.

Incremental remapping can also be used to solve the
transport equations in the shallow-water model.
Remapping was applied by DB and LH as a two-time-
level scheme, with density and tracer fields advanced
from level n to n � 1 as described in section 3. How-
ever, remapping is easily incorporated in a multilevel
AB3 scheme. The new thickness and tracer fields given
by remapping, h̃n�1 and T̃n�1, are used to evaluate the
right-hand sides of (25) and (26):
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�h

�t
�

h̃n�1 � hn

�t
, �33�

�

�t
�hT� �

h̃n�1T̃n�1 � hnTn

�t
, �34�

where a tilde denotes a temporary value. These tenden-
cies are stored at three time levels and are used in (32)
to find hn�1 and Tn�1, the actual values at the new time
level. With AB3 time stepping, this scheme is not for-
mally monotone but is very nearly so in practice. When
run as a two-time-level scheme, remapping is unstable
in combination with the AB3 momentum solver.

5. Shallow-water test cases

We now apply these three solution schemes—the RR
scheme with centered differencing, the FCT scheme,
and incremental remapping—to standard test prob-
lems. We consider three of the seven test cases pro-
posed by Williamson et al. (1992) for evaluating nu-
merical solutions of the shallow-water equations on a
sphere. The first problem, known as shallow-water test
case 1 (SWTC1), tests pure advection by an unchang-
ing, nondivergent velocity field. The second problem,
shallow-water test case 2 (SWTC2), consists of steady-
state zonal flow. Finally, shallow-water test case 5
(SWTC5) consists of initially zonal flow impinging on a
midlatitude mountain. Each scheme was run at four
resolutions (N� 2562, 10 242, 40 962, and 163 842) with
a time step �t � 50 s, close to the maximum stable step
for the finest resolution.

When the thickness is controlled dynamically, we
would expect the centered scheme to give an accurate
thickness field but oscillatory tracer fields. The FCT
scheme should generate a thickness field similar to that
given by the centered scheme, along with nearly mono-
tone tracer fields. If the incremental remapping scheme
is to prove useful, it should produce thickness and
tracer fields at least as accurate as those given by FCT,
but more efficiently than FCT when many tracers are
present. As shown below, remapping satisfies these re-
quirements.

a. Shallow-water test case 1

SWTC1 tests the advective component of the shal-
low-water model in isolation. The steady, nondivergent
wind field is given by

u � u0�cos� cos� � sin� cos� sin��, �35�

� � �u0 sin� sin�, �36�

where � is latitude, � is longitude, and 
 is the angle
between the axis of solid-body rotation and the earth’s
rotation axis. The maximum speed u0 � 2�a/(12 days),
where a is the earth’s radius. On a geodesic grid the
results are insensitive to the value of 
; we set 
 � 0 in
the tests described below. Two shapes are advected.
First, following Williamson et al. (1992), we advect a
cosine bell whose initial height is

h � �h0

2 ��1 � cos��r

R �� �37�

for all points within a distance r � R of the bell’s center
on the equator, and h � 0 elsewhere. We set h0 � 1000
m and R � a/3. Next, following Zalesak (1979), we
advect a slotted cylinder of initial height h0 � 1000 m
and radius R � a/2, also centered on the equator. We
set h � 0 for r � R and also in a slot of width a/6 and
length 5a/6, with the long axis perpendicular to the
equator. Because of the sharp discontinuities at the pe-
rimeter, the slotted cylinder is a harder test for advec-
tion schemes than the cosine bell. The model was run
using each scheme at each resolution for 12 days, at the
end of which a perfect scheme would give a solution
exactly equal to the initial condition.

Solutions can be compared quantitatively by comput-
ing the L2 and L� error norms. The L2 norm is the
area-weighted rms thickness error, normalized by the
area-weighted rms thickness:

L2 �
 � Ai�hi � ĥi�

2

 � Aiĥi
2

, �38�

where ĥi is the exact thickness in grid cell i and the
summation is over all grid cells. The L� norm is the
maximum thickness error, normalized by the maximum
thickness:

L� �
max|hi � ḧi|

max| ĥi|
. �39�

In theory, each doubling of resolution should reduce
the norms by a factor of 2 for first-order-accurate
schemes and by a factor of 4 for second-order-accurate
schemes. Both norms increase smoothly during the 12-
day run. Figure 7 shows how the L2 norm at the end of
12 days varies with grid resolution for each scheme. At
the three lower resolutions, remapping is the most ac-
curate scheme for both the cosine bell and the slotted
cylinder, followed by FCT; the centered scheme is least
accurate. At the highest resolution, remapping and
FCT are about equally accurate. The convergence rates
for the cosine bell generally lie between first-order and
second-order. For the slotted cylinder the convergence
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rates are slower than first-order. This slow convergence
results from the height discontinuity, which becomes
sharper as the distance between neighboring grid cells
decreases. The L� norms (not shown) are similar;
remapping is the most accurate scheme for both shapes
and at all resolutions.

Figure 8 shows equatorial cross sections of the 12-day
solutions with N � 40 962 for both shapes and each
scheme, along with the exact solutions. All three
schemes are reasonably good at preserving the shape of
the cosine bell, although the centered scheme is non-
monotone at the trailing edge. Remapping allows more
peak clipping than the other schemes, but also has the
smallest phase error. For the slotted cylinder the oscil-
lations given by the centered scheme are more pro-
nounced, with a maximum thickness of 1778 and a mini-
mum of �433. The remapping and FCT solutions are
both of good quality and very nearly monotone, but
remapping does better at keeping the slot centered.
Figure 9 shows the slotted cylinder solutions in color,
again with N � 40 962. Remapping (Fig. 9d) does the
best job of preserving the initial shape. The FCT solu-
tion (Fig. 9c) is smooth and monotone, but with distor-
tions along the trailing edge. Figure 9b vividly illus-
trates the oscillations in the centered solution. The re-
sults at other resolutions are qualitatively similar.

If either the bell or the cylinder were a positive-
definite geophysical field, frequent ad hoc corrections
would be needed to remove the negative values in the
centered solution. These corrections would reduce the
formal accuracy of the centered scheme. For the FCT
and remapping schemes, negative values arise occasion-
ally because of the AB3 time stepping, but are so small

that corrections, if needed, would have little effect on
the solutions.

b. Shallow-water test case 2

In SWTC2 the flow is zonal and in geostrophic bal-
ance with the thickness field. The initial velocity field is
given by (35) and (36) with 
 � 0. The initial thickness
field is

h � h0 �
1
g �a�u0 �

u0
2

2 � sin2�, �40�

where ! is the earth’s angular velocity, u0 � 2�a/(12
days), and h0 � 5960 m. With a perfect numerical
scheme, u and h would not change in time.

The resulting thickness errors, as measured by the
departure from (40), are very small. Figure 10 shows
how the L2 and L� norms vary with grid resolution for
each scheme. These error norms are computed once
per day and averaged over 12 days. (For this test case
the norms do not increase smoothly after the first day
but fluctuate randomly.) For all three schemes the plot-
ted slope is close to �2, the expected value for second-
order schemes on a log–log scale. The three schemes
have nearly the same errors, except that remapping is

FIG. 7. SWTC1 L2 error norms for advection of a cosine bell
(solid lines) and slotted cylinder (dashed lines), as given by the
centered, FCT, and remapping schemes. A line of slope �1, cor-
responding to first-order accuracy, is shown for reference.

FIG. 8. Equatorial cross sections of the SWTC1 thickness field
with N � 40 962 after one revolution, as given by the centered
scheme (dotted lines), FCT (dashed lines), and remapping (thin
solid lines). The exact solutions (thick solid lines) are shown for
reference. (a) Cosine bell. (b) Slotted cylinder.
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slightly less accurate than the other two schemes at N�
163 842.

In addition to the thickness, two passive tracers are
transported: T1 and T2. Both tracers are initially zero
everywhere except within a circular region of radius R
� �a/9, centered at 30°N. Since the tracers are dis-
placed from the equator, they must pass through the
midlatitude pentagons where the grid is least regular.
At t � 0, T1 in the circular region is given by

T1 � T10�1 � r �R�, �41�

where r � R is the distance from the center. This dis-
tribution is conical and is continuous in the tracer field,
though not its first derivative. Tracer T2 is initialized
with a constant value in the circular region and a dis-
continuity at the edge. As for SWTC1, a perfect scheme
would return both tracer distributions exactly to their
initial positions after 12 days. Error norms can be found
using (38) and (39), replacing h with hT. Although
these norms measure errors in both thickness and
tracer, the tracer errors dominate. The L2 norms (not
shown) for these thickness-weighted tracer fields are
similar to those shown in Fig. 7. For both tracers at all

resolutions, remapping is more accurate than the cen-
tered scheme by about a factor of 2. The FCT scheme
is intermediate in accuracy. The convergence rates are
roughly first order for T1 and slower than first order for
T2. For the L� norms, no scheme is clearly best for T1,
but remapping gives the smallest errors for T2. As in
SWTC1, remapping does best at maintaining the initial
shapes. The FCT solutions are somewhat ragged along
the trailing edge, and the centered solutions have large
oscillations.

c. Shallow-water test case 5

SWTC5 consists of zonal flow impinging on a moun-
tain. The mountain has the same conical shape as the T1

field defined in (41):

hs � hs0�1 � r�R�, �42�

where r � R, and hs � 0 elsewhere. The mountain is
centered at 30°N with hs0 � 2000 m and R � 20°. The
initial velocity, thickness, and tracer fields are the same
as in SWTC2, except that u0� 20 m s�1, giving a period
of about 23 days for fluid parcels to circle the earth. The

FIG. 9. Slotted cylinder thickness fields for SWTC1 with N � 40 962 after one revolution. Each plot uses the same
color scale. (a) Exact solution, identical to the initial condition. (b) Centered scheme. (c) FCT. (d) Remapping.
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thickness and velocity fields change under the influence
of the mountain, testing the scheme’s ability to simulate
geostrophic adjustment and dynamical flow. We first
examine the thickness field at the end of a 15-day simu-
lation, then discuss the conservation properties of each
scheme.

The analytical solution for the thickness field is un-
known but can be estimated very accurately using a
high-resolution spectral model. The L2 thickness error
norm is computed by comparison to the reference spec-
tral solution and is plotted in Fig. 11 for each scheme.
All three schemes have nearly the same accuracy, with
a convergence rate between first order and second or-
der. The L� norm is not shown; the spectral solution
does not give a valid estimate of this norm because of
spectral ringing near the mountain’s perimeter.

All three schemes conserve mass, mass-weighted
tracer, and mass-weighted potential vorticity. The cen-
tered scheme was designed by RR to conserve three
additional properties: total energy, potential enstrophy,
and tracer variance. The FCT and remapping schemes
do not conserve energy and potential enstrophy, and
they dissipate tracer variance. Since the FCT scheme
uses centered fluxes to advance the mass field, one
might expect it to conserve energy and potential en-
strophy as well as the centered scheme. This would be
true for an FCT scheme with two time levels. The con-
servation of quadratic quantities is broken, however, by
the modifications required to use FCT in an AB3
scheme.

Figure 12 shows how much each scheme violates con-

servation of energy and potential enstrophy in SWTC5
during the 15-day run. As expected, the centered
scheme is best. At N � 2562 the fractional energy con-
servation error with centered differencing is 5.6� 10�7,
about half as large as the remapping and FCT errors.
The centered scheme’s energy error decreases by a fac-
tor of 2–4 with each doubling of resolution. Remapping
conserves energy as well as the centered scheme for N
� 10 242 but does not improve at higher resolution. The
FCT energy error is nearly independent of resolution
and is larger than the remapping error at the three finer
resolutions. The potential enstrophy error for the cen-
tered scheme is about 3 � 10�10 at all resolutions, sev-
eral orders of magnitude smaller than the errors given
by remapping and FCT. At N � 2562 the FCT enstro-
phy error is 15 times smaller than the remapping error.
However, the remapping error is reduced by a factor of
4 with each doubling of resolution, whereas the FCT
error increases slightly at finer resolution. At N� 163 842
the FCT enstrophy error is about 5 times larger than
the remapping error.

Figure 13 shows how well each scheme preserves
tracer variance, defined as the global sum of the area-
and thickness-weighted squared tracer. The ratio of fi-
nal to initial tracer variance for SWTC5 is plotted at
each resolution. The centered scheme conserves vari-
ance to within roundoff error for both tracers. The per-
centage of tracer 1 variance preserved by remapping
increases from 33% at N� 2562 to 87% at N� 163 842.
For tracer 2, remapping preserves 40% of the variance
at N � 2562 and 84% at N � 163 842. The FCT results
are nearly identical to the remapping results, except
that FCT preserves 94% of the tracer 1 variance at the
finest resolution.

FIG. 10. SWTC2 thickness field error norms for the centered,
FCT, and remapping schemes as a function of grid resolution. The
L2 norm (solid lines) measures the rms global error, and the L�
norm (dashed lines) measures the absolute value of the largest
local error. Also shown are reference lines with slopes of �1 and
�2, corresponding to first-order and second-order accuracy, re-
spectively.

FIG. 11. SWTC5 thickness field L2 error norms for the centered,
FCT, and remapping schemes as a function of grid resolution.
Lines with slopes of �1 and �2 are shown for reference.
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d. Performance

The computational cost of each scheme was mea-
sured using SWTC2, as suggested by Williamson et al.
(1992). Each scheme was run for 12 model hours with a
time step of 50 s on a single processor of an SGI Origin
2000 computer. Figure 14 shows how the CPU time for
this test case varies with the number of tracers at N �
2562. (The cost ratios are similar at higher resolutions.)
With two tracers, remapping is 1.8 times as expensive as
the centered scheme. The cost of the momentum solver
is about the same, but the transport solver is 4.0 times
as expensive for remapping. The FCT scheme with two

tracers is 1.4 times as expensive as the centered scheme
for the entire model, and 2.7 times as expensive for
transport alone.

The relatively expensive geometry calculations of
section 3b are not repeated for each tracer. As a result,
remapping scales better than FCT as tracers are added;
each additional FCT tracer costs about 1.8 times as
much as an additional remapped tracer. Remapping
and FCT have about the same cost when seven tracers
are present. With 25 tracers, remapping is 30% cheaper
than FCT for transport alone and 25% cheaper for the
model as a whole. The centered scheme is much
cheaper than either remapping of FCT for any number
of tracers. Each new tracer in the centered scheme is 2.6
times cheaper than a remapped tracer and 4.7 times
cheaper than an FCT tracer.

6. Conclusions

Incremental remapping has been shown to be a prac-
tical scheme for solving the transport equations of the
shallow-water model on a geodesic grid. To our knowl-
edge, this is the first successful use of a DB-type remap-
ping scheme in a fluid dynamical problem with high
Reynolds number (i.e., low frictional force compared to
inertial force). Previously, these schemes have been
used in transport-only test problems and in sea ice mod-
els with low Reynolds number. Remapping can be
adapted to a third-order Adams–Bashforth time-
stepping scheme without significant violations of mono-
tonicity, at least in the test problems studied here.

The remapping scheme was compared to the cen-

FIG. 13. Ratio of final to initial variance of tracer 1 (solid lines)
and tracer 2 (dashed lines) for the centered, FCT, and remapping
schemes in SWTC5. The centered scheme conserves tracer vari-
ance exactly.

FIG. 12. Fractional conservation errors for energy (solid lines)
and potential enstrophy (dashed lines) in SWTC5 for the cen-
tered, FCT, and remapping schemes, as measured by the frac-
tional difference between the final and initial values. Lines with
slopes of �1 and �2 are shown for reference.

FIG. 14. Computational cost (seconds of CPU time) of the shal-
low-water model using the centered, FCT, and remapping
schemes, as a function of the number of tracers transported. These
costs are for SWTC2, run for 12 model hours on a single processor
with a time step of 50 s and grid resolution N � 2562.
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tered, second-order-accurate RR scheme and to an
FCT scheme in shallow-water test cases 1, 2, and 5. For
the dynamically controlled thickness fields in SWTC2
and SWTC5, all three schemes are about equally accu-
rate, as measured by the L2 and L� error norms. For
passive tracers, remapping is far superior to the cen-
tered scheme, which produces large overshoots and un-
dershoots, and is generally more accurate than FCT.
Remapping preserves the shape of tracer fields better
than FCT, which tends to distort solutions at the trailing
edge. Remapping does not conserve total energy, po-
tential enstrophy, or tracer variance as well as the cen-
tered scheme, which was specifically designed to con-
serve these properties. However, remapping conserves
these properties about as well as FCT.

The main advantage of remapping compared to the
RR scheme is its improved treatment of tracers. The
main disadvantage is its failure to conserve higher-
order quantities such as energy and potential enstro-
phy. However, the remapping conservation errors are
relatively small: less than one part in 106 for a 15-day
SWTC5 run at a resolution of N � 40 962. If conserva-
tion of total energy and potential enstrophy were de-
sired in addition to tracer monotonicity, one could de-
sign a hybrid scheme using centered fluxes to transport
the mass field while using remapping to transport trac-
ers. Care would have to be taken to ensure that the
mass-weighted tracer fluxes were consistent with the
mass fluxes. This scheme would give improved results
for the shallow-water model but would be limited to
flows with thick, smooth layers. For problems with thin
layers and steep mass gradients, the mass would have to
be limited to remain positive. In this case the centered
scheme would not work, and energy and potential en-
strophy would no longer be conserved.

The biggest advantage of remapping relative to FCT
is its lower marginal cost per tracer. FCT is cheaper for
transport of fewer than seven tracers, because of the
high startup cost associated with geometric calculations
in remapping. However, remapping is nearly twice as
fast as FCT for each additional tracer, giving substantial
savings in models that transport many tracer fields.

Remapping will next be tested in an ocean model
with a quasi-Lagrangian vertical coordinate. Such a
model is basically a set of stacked shallow-water models
in which the layer thickness can have large horizontal
gradients. Remapping will also be used for horizontal
transport in a sea ice model that is being designed for a
geodesic grid. Results from these experiments will be
reported in future publications.
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APPENDIX

Departure Triangles

In the following discussion, grid cells are denoted by
a single letter, points by two letters, and line segments
by three letters. Referring to Fig. 6, four grid cells can
contribute to the departure region across each cell
edge. The two grid cells bordering the edge are denoted
as top (T) and bottom (B), and the two cells containing
an endpoint of the edge are left (L) and right (R). The
endpoints of the edge are center left (CL) and center
right (CR). The four neighboring edges have additional
endpoints top left (TL), top right (TR), bottom left
(BL), and bottom right (BR). The departure points as-
sociated with CL and CR are DL and DR, respectively.
The primary edge is CLR; the segment joining the de-
parture points is DLR; and the four neighboring edges
are TCL, TCR, BCL, and BCR. It is convenient to
work in coordinate system X4, whose origin is the mid-
point of CLR. The x axis points toward R along CLR;
the y axis is perpendicular to CLR and points toward T.

Figure 6 shows two examples of departure regions;
many other configurations are possible. In Fig. 6a, seg-
ment DLR intersects segments TCL and TCR at points
IL and IR, respectively. There are four departure tri-
angles: one in L, one in R, and two in T. In Fig. 6b,
DLR intersects CLR at point IC, without entering cells
L or R. There are two departure triangles: one in T and
one in B. The vertices of all possible departure triangles
are included in the set (CL, CR, DL, DR, IC, IL, IR).

The first step in computing the vertices of departure
triangles is to locate CL, CR, TL, TR, BL, BR, DL, and
DR in X4 coordinates. The first six of these points can
be precomputed and stored, whereas DL and DR are
computed during each time step as described in section
3b. Next the slope and y intercept of DLR are com-
puted. If DLR intersects CLR, the position of IC is
found. The position of IL is determined if DL lies in cell
L, and similarly for IR if DR lies in cell R. Given the
locations of all potential vertices, logical tests deter-
mine the vertices of each departure triangle. The pos-
sible triangles can be divided into six types as shown in
Table A1. At most four types can be present at one
time. Figure 6a illustrates types 1 and 2, located in cells
L and R, along with types 3a and 4a, which coexist
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when DLR does not intersect CLR. Figure 6b shows
types 3b and 4b, which coexist when DLR intersects
CLR. Each of the six types is associated with a distinct
set of three vertices. Point DL* refers to IL if type 1 is
present; otherwise, DL* refers to DL. Analogously,
DR* refers to either IR or DR.
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TABLE A1. Logical conditions and vertices for departure
triangles.

Triangle
type Logical conditions Triangle vertices

1 DLR intersects TCL or BCL CL, DL, IL
2 DLR intersects TCR or BCR CR, DR, IR
3a DLR does not intersect CLR CL, DL*, DR*
4a DLR does not intersect CLR CL, CR, DR*
3b DLR intersects CLR CL, DL*, IC
4b DLR intersects CLR CR, DR*, IC
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