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ABSTRACT

A three-dimensional cloud-resolving simulation of midlatitude continental convection during the Atmospheric
Radiation Measurement (ARM) program summer 1997 intensive observation period (IOP) is used to study the
similarity of several second and third statistical moments, and second-moment budgets among five episodes of
deep convection. Several parameter scales relevant to deep convection similarity are introduced. The dimen-
sionless vertical profiles of the vertical velocity variance and its third moment, cumulus kinetic energy, the
prognostic variables’ variances and fluxes, their budgets, as well as several triple correlations cluster together,
confirming the dynamical similarity of the simulated convective events.

The dimensionless budgets of several second-order moments, such as convective kinetic energy (CKE), its
vertical and horizontal components, variance, and vertical fluxes of the prognostic thermodynamic variables, as
well as the momentum flux, are also presented. The most interesting aspect of the simulated CKE budget is
that, in contrast to the boundary layer and shallow trade wind cumulus convection, the dissipation term is
relatively small compared to the dominant buoyancy production, transport, and pressure correlation terms. The
prognostic equation for the bulk CKE, defined as the vertically integrated mean CKE per unit area, is also
discussed. It is found that the so-called bulk CKE dissipation timescale ranges in the simulation from 4 to 8 h.
Therefore, the bulk CKE, mostly contained in the horizontal branches of mesoscale circulations associated with
the deep convective systems, can persist much longer than the lifetime of an individual convective cloud. It is
also found that the fraction of the bulk CKE associated with the vertical motions is about the same for all of
the events considered, suggesting a strong correlation between the bulk CKE and the strength of the convective
updrafts. It is shown that the bulk CKE dissipation timescale is inversely proportional to the square root of the
bulk CKE itself. It is also found that the convective velocity scale is closely related to the convective available
potential energy (CAPE) of the thermodynamic sounding taken immediately before a particular convective event.

1. Introduction

A cloud-resolving model (CRM), sometimes also
called a cloud ensemble model, is a model that resolves
most of the heat and water transport associated with
convective clouds developing in response to the external
forcing, for a simulated time period much longer than
a life cycle of individual clouds, and in a domain large
enough to contain many convective clouds. Although
the so-called large eddy simulation (LES) models can
also be viewed as CRMs when applied to a cloudy plan-
etary boundary layer (PBL) or shallow trade-wind cu-
muli, the term CRM is usually reserved for models of
deep cumulus convection.

The main focus of LES studies has always been on
statistical–dynamical properties of boundary layer tur-
bulence rather than on particular realizations of turbu-
lence. Dynamical similarity of various convective PBL
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regimes, from the surface-driven dry mixed layers (e.g.,
Deardorff 1974; Moeng 1984) to radiatively driven stra-
tocumulus-topped PBLs (e.g., Deardorff 1980; Moeng
1986; Stevens et al. 1998), has been shown using the
so-called convective scales that have made it possible
to collapse the multitude of the PBL dynamical and
thermodynamical characteristics into a smaller number
of dimensionless parameters and universal functions.

The main interest of CRM studies has been on in-
teractions among convective clouds, large-scale circu-
lation, and radiation, with the goal to evaluate and, ul-
timately, to improve the cloud parameterizations used
in general circulation models (GCMs) and mesoscale
models (e.g., Gregory and Miller 1989; Xu and Krueger
1991; Xu et al. 1992; Randall et al. 1996). Consequently,
the statistical properties of deep convection derived
from CRM simulations have almost exclusively been
limited to mean vertical profiles of convective mass flux-
es, heating and moistening rates, as well as water, en-
ergy, and momentum budgets, primarily because those
profiles could be compared in a rather straightforward
manner to the output produced by single-column ver-
sions of GCMs subjected to similar forcing.
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To our knowledge, there has been no systematic at-
tempt to apply the methodology developed by the LES
community to CRM simulations of deep cumulus con-
vection. In particular, there have been no CRM studies
of the dynamical similarity of the statistical properties
of deep convection and the associated budgets of second
moments such as kinetic energy, momentum fluxes, sca-
lar fluxes, and variances. Such detailed information
could be useful not only to add to our general under-
standing of how deep convection works, but also for
further progress and new ideas in parameterization of
convection in large-scale models. Among the obser-
vational studies, the dynamical similarity of deep con-
vection was probably first investigated by Zipser and
LeMone (1980) who looked at the similarity of the ratio
of mean updraft core velocity to the maximum possible
velocity, and who also compared the dimensionless ob-
served vertical profile of the vertical velocity in deep
convective cores to analogous profiles obtained for
boundary layer plumes.

In this paper, statistical information is derived for
several convective events over the United States Great
Plains as simulated by our three-dimensional CRM. Sec-
tion 2 briefly describes the model and the simulation
used in this study. Despite rather large differences in
the large-scale forcing, precipitation rates, and vigor, as
discussed in section 3, the convection during these
events was dynamically similar. This is shown by using
several appropriate convective scales as described in
section 4. Several dimensionless second-moment bud-
gets are presented in section 5, while section 6 shows
the third-moment profiles in relation to the correspond-
ing second moments. Section 7 describes some bulk
properties of simulated deep convection. This is fol-
lowed by a summary and conclusions in section 8.

2. Model and simulation setup

A detailed description of the CRM is given in Khai-
routdinov and Randall (2001, manuscript submitted to
J. Atmos. Sci., hereafter KR). The equations of motion
are written using the anelastic approximation. The prog-
nostic thermodynamic variables are the liquid/ice water
static energy hL 5 cpT 1 gz 2 Lc(qc 1 qr) 2 Ls(qi 1
qs 1 qg), the total nonprecipitating water qT 5 qy 1 qc

1 qi (water vapor 1 cloud water 1 cloud ice), and the
total precipitating water qp 5 qr 1 qs 1 qg (rain 1 snow
1 graupel). Here, T is the temperature; g is the gravi-
tational acceleration; cp is the specific heat at constant
pressure; and Lc and Ls are the latent heat of evaporation
and sublimation, respectively. Note that inclusion of the
precipitating water into the definition of hL allows one
to implicitly account for melting and freezing when pre-
cipitating water is represented by one prognostic vari-
able. The partitioning of the cloud condensate and pre-
cipitating water into the liquid and ice phases is assumed
to be a function of temperature only, with the hydro-
meteor conversion rates expressed similarly to the bulk

microphysics scheme of Lin et al. (1983). The subgrid-
scale model employs a 1.5-order closure based on a
prognostic subgrid-scale turbulent kinetic energy or a
simple Smagorinsky-type closure. The latter is used in
this study. The advection of momentum is computed
with the second-order finite differences in flux form with
kinetic energy conservation. The equations of motion
are integrated using the third-order Adams–Bashforth
scheme with a variable time step. All prognostic scalar
variables are advected using the fully three-dimensional
positive definite and monotonic scheme of Smolarkiew-
icz and Grabowski (1990). The surface fluxes are com-
puted using Monin–Obukhov similarity. A three-di-
mensional domain has 128 3 128 3 64 grid points with
2-km horizontal resolution and variable vertical reso-
lution gradually increasing from 100 m near the surface
to 500 m above 5 km. The domain uses periodic lateral
boundaries with the top at 27 km. The time step is 10 s.

The results of this study are based on a 28-day-long
simulation using the large-scale forcing derived from
observations made during the Atmospheric Radiation
Measurement (ARM) program summer 1997 intensive
observation period (IOP) campaign over the ARM
Southern Great Plains (SGP) site in Oklahoma and Ne-
braska (Zhang et al. 2001). The forcing data include the
large-scale temperature and water vapor advective ten-
dencies as well as the surface latent and sensible heat
fluxes. Since the large-scale pressure gradient is not
available, the domain averaged wind is relaxed toward
the observed profiles using a 6-h relaxation timescale.
The radiative heating rate is prescribed from the esti-
mates by the European Centre for Medium-Range
Weather Forecasts (ECMWF) model.

The choice of the domain size and resolution was
mostly constrained by relatively high computational
cost of prolonged three-dimensional simulations. In a
separate study (KR), using much shorter (4 day) sim-
ulations, we found that quadrupling the horizontal do-
main size from the domain size used in this study had
virtually no effect on the simulated convective statistics.
The grid resolution was a greater concern, especially in
the context of this study, since the perturbation statistics
derived from the three-dimensional fields are computed
using the resolved information. A similar problem exists
in LES studies of the boundary layer turbulence; how-
ever, it is generally accepted that as long as the bulk of
the advective transport is resolved, the perturbation sta-
tistics derived from the resolved fields should be robust.
Fortunately, in this study, less than 10% of simulated
fluxes associated with deep cumulus convection were
subgrid-scale and, therefore, parameterized, with the ex-
ception of a thin layer near the surface where the vertical
transport was mostly due to subgrid-scale diffusion.

3. Convective events

As demonstrated by the time series of simulated hour-
ly mean precipitation rate shown in Fig. 1, a few rather



2552 VOLUME 59J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 1. Time series of simulated hourly precipitation rate. The subperiods corresponding to the convective events used in this study are
highlighted by thick lines.

FIG. 2. Profiles of the (a) liquid/ice water static energy, (b) total nonprecipitating water content, large-scale advective (c) cooling and (d)
moistening tendencies, mean wind’s (e) amplitude and (f ) direction (counterclockwise from the west–east direction), (g) cloud fraction, and
(h) precipitation flux for different convective events.

strong episodes of deep convection occurred during the
simulated 28-day period. For this study, we identified
five subperiods or convective events that produced hour-
ly precipitation rates in excess of 10 mm day21 for at

least 5 consecutive hours (Table 1). The events were
from 5 to 15 h long, with the event-mean precipitation
rates in the range from 17 to 35 mm day21.

Figure 2 shows the vertical profiles of some of the
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TABLE 1. Convective events used in the study (also see Fig. 1).

Event A B C D E

Duration, (h)
Start (Julian day UTC)
End (Julian day UTC)
Mean precipitation (mm day21)

6
174.833
175.083

17.3

15
177.042
177.667

28.9

14
180.792
181.375

35.1

5
191.792
192.000

20.7

7
192.500
192.792

18.9

FIG. 3. Profiles of the (a) west–east and (b) south–north wind components and their (c), (d) corresponding fluxes for different convective
events.

properties of the environment, large-scale forcing, and
mean cloud statistics averaged over each of the con-
vective events. One can see that, although the domain-
averaged profiles of hL (Fig. 2a) and qT (Fig. 2b) do not
vary much for the considered events, the large-scale
advective cooling (Fig. 2c) and moistening (Fig. 2d)
tendencies, and the magnitude and direction of the ver-
tical wind shear (Fig. 2e and Fig. 2f), differ rather sig-
nificantly. These differences in the forcing result in rath-
er large quantitative differences in the vertical distri-
bution of simulated cloud cover fraction (Fig. 2g) and
precipitation flux (Fig. 2h). The momentum flux profiles
are also quite different (Fig. 3), which is not surprising
considering the differences among the corresponding
wind-component profiles (Figs. 3a and 3b). Overall, the
momentum fluxes tend to be downgradient, producing,
in some cases, rather substantial drag on the mean wind
field.

Several important dynamical characteristics are
shown in Fig. 4. As is well known, a virtual potential
temperature flux , also called a buoyancy1 flux,w9u9y
plays a dominant role in the production of the convective
kinetic energy. It is positive in the boundary layer as
the result of positive surface sensible and latent heat
fluxes; it becomes slightly negative just above the
boundary layer; then it turns positive again in the region
of free convection where most of the kinetic energy is
generated; finally, it becomes negative due to updrafts

1 In addition to virtual effects, the definition of the buoyancy in
the model also includes the water loading.

penetrating above the level of neutral buoyancy. The
minimum flux tends to be at about the same level as
the local maximum of the mean cloud fraction (Fig. 2g)
and mean cumulus kinetic energy (CKE; Fig. 4d). The
CKE is defined as [ 0.5 ( 1 1 ), where2 2 2e r u9 y9 w9
u, y, and w are the Cartesian components of the wind
velocity; the overbar represents the horizontal average;
and the prime represents a perturbation from that av-
erage. Note that this definition differs from the definition
of the turbulent kinetic energy (TKE) commonly used
in PBL studies, by incorporating the air density factor.
The vertical velocity variance (Fig. 4b) and third mo-
ment (Fig. 4c) vary among the events by factors of 5
and 8, respectively. The liquid water/ice static energy
flux (Fig. 4e) and the total nonprecipitating waterw9h9L
flux (Fig. 4f) are mostly downgradient, and varyw9q9T
by factors of 4 and 5, respectively. The variances of
both prognostic scalars (Fig. 4g) and (Fig. 4h)2 2h9 q9L T

show local maxima in the boundary layer; has the2h9L
largest maximum in the anvil layer. In two cases, has2q9T
a secondary maximum just above the boundary layer.

4. Convective scales and similarity

Dynamic similarity among the simulated convective
events will now be demonstrated using appropriate
scaling parameters. The height will be scaled by z*
defined as the height at which the buoyancy flux near
the cloud top is most negative. As was mentioned in
the previous section, this height approximately coin-
cides with the cloud fraction maximum near the cloud
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TABLE 2. Convective scales for the convective events in Table 1.

Event A B C D E

z
*

(m)
w

*
(m s21) [see (1)]

r
*

(kg m23) [see (2)]
T

*
(K) [see (3)]

q
*

(3 1023 kg kg21) [see (4)]

11 750
2.20
0.55

0.167
0.062

11 250
2.98
0.58

0.199
0.081

12 750
4.49
0.53

0.280
0.108

12 750
2.91
0.55

0.166
0.071

12 750
2.07
0.54

0.137
0.055

top; therefore, it can be a proper measure of the vertical
extent of a convective system. The convective velocity
scale w* is based on the vertically integrated buoyancy
flux following Deardorff (1980), who introduced this
scale for the convective stratocumulus-topped bound-
ary layers. Because the kinetic energy is proportional
to air density, we modified Deardorff’s original defi-
nition to include the nonnegligible variation of air den-
sity with height:

z*g
3w* 5 2.5 rw9u9 dz. (1)E yQr* 0

Here, Q is the mean tropospheric temperature, and r*
is the air density scale defined as

z*1
r* 5 r dz. (2)Ez* 0

Finally, the thermodynamic scales T* and q* for hL

and qT, respectively, are defined using the vertical in-
tegrals of the corresponding fluxes and asw9h9 w9q9L T

z*1
T* 5 rw9h9 dz, (3)E Lc r*w*z*p 0

z*1
q* 5 rw9q9 dz. (4)E Tr*w*z* 0

The values of the scales (1)–(4) for different con-
vective events are listed in Table 2. One can see that
while the values of z* varied only within 15% down
from their maximum, and r* even less, the other pa-
rameters varied by as much as a factor of 2. The sim-
ulated quantities can now be made dimensionless and
plotted against the dimensionless height z/z* as in Fig.
5, which is a dimensionless version of Fig. 4. One can
see that there is quite a remarkable similarity among the
simulated convective events in terms of the second-or-
der moment statistics and the third moment of the ver-
tical velocity.

The dimensionless buoyancy flux (Fig. 5a) has a rath-
er thick layer of negative values near the top, with the
thickness of about 0.35z*, presumably as a result of
updrafts overshooting their levels of neutral buoyancy
in the vicinity of z 5 0.85z*. The maxima of vertical
velocity variance (Fig. 5b) and third moment2 3w9 w9
(Fig. 5c) are about 0.13 and 0.4 , respectively, and2 3w w* *
both occur at z 5 0.7z*. Above the PBL, the CKE (Fig.
5d) seems to maintain a nearly constant value of
1.2r* , up to z 5 z*. Profiles of the scalar fluxes2w*

and have the extremes of about 21.8cpw*T*w9h9 w9q9L T

and 1.1w*q* at z 5 0.7z* and z 5 0.3z*, respectively.
The dimensionless profiles of liquid water static energy
variance show considerable scatter among the2h9L
events; they all have a sharp maximum near the surface,
presumably as a result of the convective downdrafts;
the largest maximum is located aloft, in the anvil layer,
in the vicinity of z 5 0.9z* where most of the detrain-
ment seems to occur. The total nonprecipitating water
variance also has a maximum near the surface; two2q9T
events, D and E, have also secondary maxima in the
vicinity of z 5 0.3z*. Note that the latter two cases also
have the strongest vertical gradient of above the PBLqT

(see Fig. 2b), and, consequently, relatively large gra-
dient-production rates of there, as shown in section2q9T
5c. Finally we note that convection is limited in the
vertical by z 5 1.2z*.

5. Second-moment budgets

In this section, the budgets of several second moments
are presented. The procedure that was used to compute
the budget terms was not straightforward and simple.
The direct evaluation of the budget terms using variable
interpolation would inevitably produce rather large re-
siduals of the budgets, because of the truncation errors
of the finite-difference representation of the model equa-
tions on a staggered grid as was pointed out by Dear-
dorff (1974). The budget terms in this study have been
obtained by multiplying the computed tendencies of the
prognostic variables, due to various terms of the cor-
responding prognostic equations, by an appropriate
prognostic variable in a manner similar to the analytical
derivations of the corresponding budget equations. Un-
fortunately, sometimes, only the sum of two budget
terms can be evaluated directly by this method. For
example, multiplication of the velocity advective ten-
dencies in the momentum equations by the vertical ve-
locity, and then summation over all three velocity com-
ponents, produces a sum of two CKE budget terms: the
advective transport term and the shear production term.
The transport term is then computed using a simple
interpolation method, while the shear production term
is estimated as the residual. This procedure has draw-
backs, a discussion of which is beyond the scope of this
paper, but, in general, it virtually guarantees smallness
of the computed budget residuals. The residual due to
the storage term was generally small due to the aver-
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FIG. 4. Profiles of the (a) buoyancy flux, (b) vertical velocity variance, (c) vertical velocity’s third moment, (d) cumulus kinetic energy,
(e), (f ) fluxes, and (g), (h) variances of the liquid/ice water static energy and total nonprecipitating water, respectively, for different convective
events.

aging of the budgets over a period of many hours for
each convective event.

a. Convective kinetic energy

A prognostic equation for the CKE is derived from
the equations of motion in a manner similar to the pro-
cedure used in the derivation of the TKE equation (see,
e.g., Stull 1988). Here, we present only the result, which,
in its horizontally averaged form, can be written as fol-
lows:

] ] ] ]u ]y
e 5 2 w9e9 2 w9p9 2 r u9w9 1 y9w91 2]t ]z ]z ]z ]z

T 1 P 1 S

1 rbw9u9 2 «. (5)y

1 B 1 D.

The term denoted by T is the transport of CKE by the
flow, P is the pressure correlation term, S represents the
production of CKE by the mean vertical wind shear, B

is the buoyancy production term, and D is the viscous
dissipation of CKE.2

The CKE budget terms, made dimensionless by
r* /z*, are shown in Fig. 6 as functions of z/z*.3w*
These terms vary with the dimensionless height in a
quite similar manner. One of the most interesting as-
pects of the simulated CKE budget is that above the
PBL the buoyancy production, transport, and pressure
correlation terms dominate, while the dissipation term
is relatively small. Despite its relatively small am-
plitude, the domain-integrated CKE dissipation nearly
balances the domain-integrated buoyancy production,
as discussed further in section 7, because the transport
and pressure correlation terms neither produce nor
destroy the CKE but rather redistribute it vertically
(their vertical integrals over the whole depth of the
atmosphere are zero). It is the triple-moment transport
term that brings the CKE generated in the middle
layers up to the anvil region where it is mostly con-

2 For physical interpretations of each term of the CKE equation
and other budget equations used in this paper see, for example, Stull
(1988).
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FIG. 5. Same as Fig. 4, but made dimensionless for each convective event using the convective scales (1)–(4).

sumed by the work against the buoyancy forces, pre-
sumably in the overshooting updrafts. The pressure
correlation term generally works against the buoyancy
production term to restore the hydrostatic balance dis-
turbed by the vertical motions. Wind shear does not
seem to play any important role in the CKE produc-
tion above the PBL.

b. Horizontal and vertical velocity variance budgets

The CKE budget can be broken into its horizontal
and vertical velocity components as

2 2] u9 1 y9
r

]t 2

2 2] (u9 1 y9 ) ]u ]y
5 2 r w9 2 r u9w9 1 y9w91 2]z 2 ]z ]z

T 1 S

p9 ]rw9
2 2 « , (6)uur ]z
1 R 1 D

2] w9
r

]t 2
3] w9 ] p9 ]rw9

5 2 r 2 w9p9 1 rbw9u9 1 2 « ,y ww]z 2 ]z r ]z
T 1 P 1 B 1 R 1 D

(7)

where the term notation is similar to one used in the
CKE budget equation; one additional symbol R denotes
the pressure redistribution term. One can see in Figs. 7
and 8 that the horizontal velocity variance is produced
by 1) conversion of the vertical motions into the hori-
zontal motions through the pressure redistribution term,3

and 2) shear production in the boundary layer. It is then
transported to the anvil region by the updrafts. It is
interesting that the pressure redistribution term by itself
does not seem to play a dominant role in maintaining
the horizontal velocity variance aloft; instead, the hor-

3 Note that the pressure redistribution term has opposite signs in
the horizontal and vertical variance budgets; therefore, CKE cannot
be created or destroyed by that term.
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FIG. 6. Dimensionless profiles of various terms of the CKE budget (5) for different convective
events.

FIG. 7. Dimensionless profiles of various terms of the horizontal velocity variance budget (6) for different convective events.
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izontal velocity variance there is mostly maintained by
the mechanical transport of variance generated by the
shear and pressure redistribution term in the lower tro-
posphere. The vertical velocity variance budget closely
resembles the CKE budget; for example, it is generated
by the positively buoyant updrafts in the middle tro-
posphere and then transported into the upper and lower
troposphere to be consumed by the work against buoy-
ancy forces.

c. Variance budgets for hL and qT

The prognostic equations for the hL and qT variances
are derived by subtracting the horizontally averaged
prognostic equations from their full versions (given in
KR), and multiplying the result by the corresponding
perturbation. The horizontally averaged equations are
then written as follows:

]
2h9L]t

] ]h ]L21 25 2r (rw9h9 ) 2 2w9h9 2 2h9 LP 2 « ,L L L hh]z ]z ]z
T 1 G 1 PC 1 D

(8)

]
2q9T]t

] ]q ]qT T21 25 2r (rw9q9 ) 2 2w9q9 1 2q9 2 « ,T T T qq1 2]z ]z ]t
prec

T 1 G 1 PC 1 D

(9)

where LP [ LcPr 1 LsPs 1 LsPg; and Pr, Ps, and Pg

are the rain, snow, and graupel precipitation fluxes, re-
spectively. The subscript ‘‘prec’’ represents the tenden-
cy of nonprecipitating water due to conversion to and
evaporation of precipitating water. The terms denoted
by T represent the transport by flow, G denotes the
gradient production of variance by a variable’s mean
vertical gradient, PC represents the effect of precipita-
tion, and D denotes dissipation of the variance due to
the effects of diffusion.4

The budgets (8) and (9), made dimensionless by
w* /z* and w* /z*, are shown, respectively, in Figs.2 2T q* *
9 and 10. One can see that the gradient production of
the variances by the vertical motions is mostly offset
by precipitation. As with the CKE budget, the molecular
dissipation seems to play a small role in the scalar var-
iance budget.

4 The term with radiation production is omitted from Eq. (8), since
the prescribed radiative cooling was applied uniformly at each model
level.

d. Flux budgets for hL and qT

The prognostic equations for the mean vertical fluxes
of hL and qT can be derived by multiplying a corre-
sponding variable’s perturbation equation by the vertical
velocity perturbations, the vertical velocity equation by
the variable’s perturbations, and combining the results.
The horizontally averaged budgets then read

] 1 ] ]hL2w9h9 5 2 (rw9w9h9) 2 w9 1 bh9u9L L L y]t r ]z ]z
T 1 G 1 B

] p9 ]
2 h9 2 w9 LP,L]z r ]z

(10)

1 P 1 PC

] 1 ] ]qT2w9q9 5 2 (rw9w9q9) 2 w9 1 bq9u9T T T y]t r ]z ]z
T 1 G 1 B

] p9 ]qT2 q9 1 w9 ,T 1 2]z r ]t
prec

(11)

1 P 1 PC

where T is the transport of flux by the flow, G is the
gradient production of flux due to a variable’s mean
vertical gradient, B is the buoyancy covariance produc-
tion term, P is called the pressure-scalar covariance
term, and PC represents the effects of precipitation.

The budgets (10) and (11), made dimensionless by
cpT* /z* and q* /z*, are shown, respectively, in2 2w w* *
Figs. 11 and 12. Note that only the sum of the buoyancy
and pressure-scalar correlation terms is shown. These
terms are much bigger than the rest due to relatively
large mesoscale perturbations of the temperature and
water vapor fields in the cold pools formed by the
convective outflow in the boundary layer and in the
anvil. Despite their relatively large magnitudes, these
terms tend to be in very close equilibrium because of
the quasi-hydrostatic balance of the mesoscale pertur-
bation pressure gradient and the perturbation buoy-
ancy; therefore, only the deviation from that balance
matters for maintaining the scalar fluxes. It appears
that the combined buoyancy and pressure terms act to
reduce the corresponding flux; a similar effect is ex-
erted by the precipitation processes. Because the sign
of the gradient production term is always opposite to
that of a transported variable’s vertical gradient, the
vertical motions always increase the magnitudes of the
fluxes of hL and qT .

e. Momentum flux budget

The momentum flux budget for the west–east wind
components can be derived in the following form:
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FIG. 8. Dimensionless profiles of various terms of the vertical velocity variance budget (7) for different convective events.

FIG. 9. Dimensionless profiles of various terms of the liquid/ice water static energy variance budget (8) for different convective events.

] ] ]u
2ru9w9 5 2 rw9w9u9 2 rw9 1 rbu9u9y]t ]z ]z

T 1 S 1 B

] p9 ]rw9 ]ru9
2 u9p9 1 1 ,1 2]z r ]x ]z

(12)

1 P 1 R

where T denotes the transport, S is the shear production
of flux due to a variable’s mean vertical gradient, B is
the buoyancy covariance production term, P is the pres-
sure correlation term, and R is the pressure anisotropy
or ‘‘return-to-isotropy’’ term. The budget of the south–
north wind component is written in a similar fashion
and will not be discussed here. The budget terms are
plotted in Fig. 13. As was the case with the scalar flux
budgets, both pressure terms P and R and the buoyancy
term B are about an order of magnitude larger than the
other terms (especially in the boundary layer), and seem
to be also in approximate balance with each other, so

that only a deviation from that balance affects the mo-
mentum flux. The combined effect of the pressure and
buoyancy terms is to reduce the magnitude of the mo-
mentum flux mostly produced by the wind shear inter-
action with the convective updrafts and downdrafts as
indicated by the shear production term.

6. Triple correlations

The second-moment budgets, presented above, ex-
press the transport terms as divergences of the corre-
sponding fluxes of the second moments. These third
statistical moments, or triple correlations, are shown in
Fig. 14. In general, these moments have rather unique
dimensionless profiles for different convective events.
Note that the second-moment fluxes share their signs
with the second moments themselves, but not neces-
sarily with the second moments’ vertical gradients. This
behavior suggests that, in the case of simulated deep
convection, the second-moment fluxes cannot be, in
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FIG. 10. Dimensionless profiles of various terms of the total nonprecipitating variance budget (9) for different convective events.

FIG. 11. Dimensionless profiles of various terms of the liquid/ice water static energy flux budget (10) for different convective events.

general, parameterized as diffusion of the corresponding
second moments, because this approximation requires
downgradient transport. Instead, the shapes of the pro-
files for the second and the third moments suggest that
it is perhaps better to assume ‘‘advection’’ rather than
‘‘diffusion,’’ so that the second-moment fluxes are pro-
portional to the second moments themselves as

rw9w9c9 5 rW w9c9, (13)wc

where Wwc is some effective advection velocity. Figure
15 shows these velocities computed for each of the triple
correlations in Fig. 14. Note that the velocities were
computed when the second moments exceeded 5% of
their maximum magnitudes within the convective layer.
One can see that the velocities are indeed positive, sug-
gesting the upward transport of the second moments by
the convection. The shapes of the dimensionless profiles
suggests that the advection velocity for the scalar-flux
fluxes and for the vertical-velocity-variance flux (which
is the vertical-momentum-flux flux) could be modeled

as linear with the dimensionless height, while the ad-
vection velocities for the scalar-variance fluxes and the
CKE flux could be modeled as proportional to the ver-
tical velocity variance, or, perhaps, its square root.

Note that there is a consistent difference of about a
factor of 2 in the advection velocity between two groups
of the convective events, with the first group including
events B, C, and D, and the second group including
events A and E. As seen in Fig. 2, the first group is
characterized by positive wind shear (relatively light
surface winds), and by rather large directional shear in
the lower troposphere; the second group, on the other
hand, has negative wind shear (relatively strong surface
winds) and small directional shear. These factors may
have affected the mesoscale organization of convective
cells in the model. Perhaps, the triple correlations are
particularly sensitive to even subtle changes in the con-
vective statistics associated with different organizational
patterns (e.g., squall lines vs super cells). We leave this
topic for future investigation.
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FIG. 12. Dimensionless profiles of various terms of the total nonprecipitating water flux budget (11) for different convective events.

FIG. 13. Dimensionless profiles of various terms of the west–east momentum flux budget (12) for different convective events.

7. Bulk CKE budget and dissipation timescale

In this section, a balance of the vertically integrated
or bulk CKE is discussed. A bulk CKE K is defined as

top

K 5 e dz, (14)E
0

where ‘‘top’’ denotes the top of the domain. The prog-
nostic equation for K is obtained by vertically inte-
grating the CKE prognostic equation (5) over the depth
of the domain. The result can be written in the following
generic form:

]K
5 B 1 S 2 D, (15)

]t

where B, S, and D denote the bulk CKE buoyant and
shear production, and viscous dissipation, respective-

ly.5 The values of these terms averaged over each con-
vective event are given in Table 3. The bulk buoyancy
production is in near balance with viscous dissipation,
while shear production is not as significant. A rather
large residual of the sum of these terms for some events
may be explained by relatively short averaging inter-
vals and therefore relatively large storage of K (note
that the largest residual values correspond to the short-
est events A, D, and C) as well as by the truncation
and interpolation errors in the estimate of the CKE
budget terms.

Equation (15) is similar to the equation used in the
so-called prognostic mass-flux closure of Randall and

5 Note that the vertically integrated transport and pressure corre-
lation terms vanish since the vertical velocity is exactly zero at the
surface and the top of the domain.
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FIG. 14. Dimensionless profiles of the triple correlations from the second-moment-budget transport terms.

Pan (1993), which they applied to individual cloud types
in their variant of the Arakawa–Schubert convective pa-
rameterization. They assumed a simple exponential-de-
cay-like expression for the dissipation rate:

D 5 K/t ,d (16)

where td is the dissipation timescale, which they pre-
scribed to be in the order of 103 s, arguing that it should
not be larger than the lifetime of an individual cloud.
We can compute td directly; the results are given in
Table 3. One can see that the bulk CKE dissipation
timescale is about a factor of 4–5 larger than the ‘‘eddy
overturning’’ timescale z*/w*. In dimensional units, td

varies in the range from 4 to more than 8 h, which is
much longer than the lifetime of an individual convec-
tive cloud. In order to understand that rather unexpected
result, we computed the fraction of the bulk CKE that
is associated with the vertical motions only:

top1
2m 5 rw9 dz. (17)E2K 0

One can see from the values of m listed in Table 3 that
less than 10% of the cumulus kinetic energy in the do-
main is associated with the convective updrafts and
downdrafts; therefore, the CKE is mostly contained in
the horizontal branches of the circulations, which is in

agreement with the findings by Xu et al. (1992). The
circulation associated with a deep convective system
apparently persists much longer than the lifetime of an
individual convective cloud in that system. Note that
the values of m are nearly universal (consensus mean
is 0.075), suggesting a strong correlation between the
bulk CKE and the strength of the convective updrafts.
This supports the assumption in the Randall–Pan closure
that the CKE can be used to diagnose the updraft mass
flux.

From the dimensional analysis, D can be expressed
in an alternative form as

21/2 23/2 3/2D 5 cr z K ,* * (18)

where c is some ‘‘universal’’ dimensionless constant.
Note from values of c in Table 3 that indeed its range
is rather narrow (consensus mean is 0.18), suggesting
a universal nature of the expression (18). Comparing
(16) and (18), we can express the dissipation timescale
as

1/2 3/2 21/2t 5 c r z K ,d 1 * * (19)

where c1 5 1/c (consensus mean is 5.5). For deep cu-
mulus convection, the parameters r* and z* change in
a rather narrow range (after all, the vertical extent of
deep convection is limited by the depth of the tropo-
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FIG. 15. Dimensionless profiles of the ratio of the triple correlations to the corresponding double cor-
relations, or the effective advection velocity for the triple correlations in Fig. 14 (see the text for explanations).

TABLE 3. Various bulk statistics for the convective events in
Table 1.

Event A B C D E

K/(r*w z*) [see (14)]2*
B/(r*w ) [see (15)]3*
S/(r*w ) [see (15)]3*
D/(r*w ) [see (15)]3*
t d (h)
w*t d /z*
m [see (17)]
c [see (18)]

1.29
0.33
0.12
0.32
6.0
4.03
0.072
0.21

1.49
0.31
0.01
0.27
5.8
5.52
0.072
0.15

1.49
0.31
0.04
0.30
3.9
4.96
0.076
0.16

1.05
0.39
0.00
0.24
5.3
4.37
0.080
0.22

1.22
0.33
0.1
0.25
8.3
4.88
0.073
0.18

sphere); therefore, the dissipation timescale depends al-
most entirely on a measure of the vigor of the convec-
tion, namely, K; specifically, it is inversely proportional
to . Thus, the CKE dissipation timescale becomesÏK
shorter for more vigorous convective systems.

8. Velocity scale and CAPE

Another important issue is whether the convective
available potential energy (CAPE) can be related to the
velocity scale (1). The CAPE is a measure of the max-
imum velocity wc 5 [2(CAPE)]1/2 that a pseudoadi-
abatically lifted nonentraining parcel would achieve if

the CAPE was converted into the parcel’s kinetic energy.
The CAPE decreases rather rapidly as the result of con-
vection; therefore, it has been computed for a simulated
sounding taken right before a particular convective
event. The values of CAPE, wc, and the w*/wc ratio
computed for each convective event are given in Table
4. While CAPE and corresponding wc vary within fac-
tors of 4 and 2, respectively, the ratio w*/wc remains
nearly constant (consensus mean is 0.063). Thus, in
these particular instances of continental convection, the
convective velocity scale w* can, in fact, be directly
computed from the CAPE of a sounding sampled right
before a convective event: w* 5 c2(CAPE)1/2, with con-
sensus coefficient c2 5 0.089.

As one can see from Table 3, the dimensionless bulk
dissipation rate is rather robust, with a consensus value
of 0.28. If we take the value for the density scale r* as
being 0.55, we can relate the bulk dissipation rate di-
rectly to CAPE in SI units as D 5 1.1 3 1024 (CAPE)3/

2. It is estimated that the global dissipation rate from
the energy transfer from the large scales to the smallest
scales is about 2 W m22 (Peixoto and Oort 1992); from
the expression above we estimate that the corresponding
value of CAPE would be about 700 J kg21 if all of the
dissipation was due to deep cumulus convection. This
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TABLE 4. Convective available potential energy (CAPE) statistics.

Event A B C D E

CAPE (J kg21)
wc 5 (2 CAPE)1/2 (m s21)
w*/wc

734
38.3

0.057

1267
50.3

0.059

2235
66.8

0.067

928
43.1

0.067

536
32.7

0.063

‘‘typical’’ value of CAPE is rather similar to the ob-
servations (e.g., Williams and Rennó 1993) as well as
theoretical estimates (e.g., Rennó and Ingersoll 1996;
Emanuel and Bister 1996).

9. Summary and conclusions

In this study, we used the results of a three-dimen-
sional cloud-resolving simulation of a midlatitude con-
tinental convection during the ARM summer 1997 IOP
to show the similarity of several second and third sta-
tistical moments, as well as the second-moment budgets,
among five episodes of deep convection using several
convective scales similar to the scales used in LES stud-
ies of the cloud-topped PBLs. The dimensionless bud-
gets of several second-order moments such as convec-
tive kinetic energy (CKE), its vertical and horizontal
components, variance, and vertical flux of the prognostic
thermodynamic variables, as well as momentum flux
have also been presented.

The most interesting aspect of the simulated CKE
budget is that, above the PBL, the dissipation term is
relatively small compared to the dominant buoyancy
production, transport, and pressure correlation terms.
The large amount of CKE generated in the updraft cores
is mostly removed aloft by the work against buoyancy
forces at the cloud top, so that only a relatively small
portion of the total CKE is actually dissipated. This
makes the CKE budget in the case of deep convection
differ from the CKE budget for the cloudy boundary
layer and shallow trade wind convection, where the dis-
sipation is a major player in the cloud layer itself, and
the work done against the negative buoyancy forces is
very small.

To illustrate this point, we conducted a simulation of
shallow trade wind cumulus convection forced by the
Barbados Oceanographic and Meteorological Experi-
ment (BOMEX) data as used by the Global Energy and
Water Cycle Experiment (GEWEX) Cloud System Stud-
ies (GCSS) Working Group 1 for their LES model in-
tercomparison project (Siebesma et al. 2002, manuscript
submitted to J. Atmos. Sci.). We utilized a version of
the CRM that was identical to one used in this study of
deep convection, but with a domain that had 128 3 128
3 75 grid points and a uniform grid spacing of Dx 5
Dy 5 2.5Dz 5 100 m. The model was run for 6 h using
a 2-s time step. Since there is no conventional way to
identify the top of the trade wind cumulus convection,
z* was defined as the height at which the advective
transport term reaches its local maximum, where, pre-
sumably, most of the detrainment takes place. The other

scales were defined using definitions (1)–(4). The scales
were as follows: z* 5 1540 m, w* 5 0.86 m s21, r*
5 1.1 kg m23, T* 5 0.017 K, and q* 5 0.058 g kg21.
These scales are very similar to those observed in the
marine boundary layer, as presented by Lambert et al.
(1999). Figure 16 shows the composite (averaged over
all five events) dimensionless CKE budget for deep con-
vection versus a corresponding dimensionless budget
for the shallow convection averaged over the last three
simulated hours. One can see that the viscous dissipation
plays a dominant role in the dynamics of shallow con-
vection; also, in contrast to the deep convection, the
buoyancy flux for shallow convection remains strictly
nonnegative except for a very shallow layer right at the
top of the PBL.

The relative smallness of the dissipation rate in the
case of deep convection may be a consequence of much
wider deep convective cores and, presumably, smaller
entrainment/detrainment rates per unit mass flux (e.g.,
de Roode et al. 2000). This notion is supported by larger
contribution of the CKE transport term in the case of
deep convection than in the case of shallow convection:
0.8 versus 0.5 r* /z* (see Fig. 16), which is similar3w*
to the relative magnitudes of dissipation rates: 0.2 versus
0.3 r* /z* (as pointed out by C. Bretherton 2002,3w*
personal communication).

The budgets for the variances of the prognostic sca-
lars, which are the liquid/ice water static energy and the
total water content, also have negligible molecular dis-
sipation, while the dominant gradient production terms
are mostly offset by the precipitation related terms. For
the scalar and the momentum flux budgets, the pressure
and buoyancy correlation terms are very large due to
large mesoscale perturbations of temperature and water
vapor fields in the boundary layer (cold pools) and in
the anvil. However, these two terms tend to be in very
close ‘‘quasi-hydrostatic’’ equilibrium with each other,
so that only the deviation from that equilibrium (as ex-
pressed by their sum) affects the fluxes. In particular,
the combined effect of these terms is to reduce the flux
magnitude produced by the interaction of the vertical
motions with the transported variable’s vertical gradient
(gradient production and shear production terms). Pre-
cipitation seems always to reduce the magnitude of the
fluxes of the prognostic scalars.

We demonstrated that the triple correlations, such as
the second-moment vertical fluxes, cannot be modeled
as the diffusion of the second moments themselves, be-
cause of the upgradient transport over substantial depths
of a convective layer. Instead, it is shown that the sec-
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FIG. 16. The comparison of the CKE budgets for the (a) deep and (b) shallow convection. The deep convection
budget is obtained by averaging the dimensionless CKE budgets for five ARM convective events. The shallow convection
budget is obtained from the BOMEX trade wind cumulus convection simulation. Symbols are S for shear production,
P for pressure correlation, T for transport, D for dissipation, and B for buoyancy production.

ond-moment fluxes can be modeled as an upward ad-
vection of the second moments themselves with an ef-
fective vertical velocity. The latter can be modeled as
a linear function of the height in the case of the fluxes
of fluxes, or as proportional to the vertical velocity var-
iance (or its square root) in the case of scalar-variance
fluxes.

We also discussed the prognostic equation for the bulk
CKE, defined as the vertically integrated mean CKE per
unit area. We showed that the so-called dissipation time-
scale that is usually chosen to be on the order of 1 h
can actually range from 4 to more than 8 h for the
convective events used in this study, which is much
longer than the lifetime of an individual convective cell.
Thus, the ratio of the bulk CKE dissipation timescale
to the eddy overturning timescale z*/w* is a factor 4–
5 in the case of deep convection. In contrast, a similarly
defined ratio in the case of simulated BOMEX shallow
convection is found to be close to one.

Our results also support the findings by Xu et al.
(1992) that the most of the bulk CKE is contained in
the horizontal branches of the circulation associated
with deep convection. We found that the fraction of the
bulk CKE associated with the vertical motions is about
the same for all the considered events suggesting a
strong correlation between the bulk CKE and the
strength of the convective updrafts. This supports the
assumption (used in the Randall–Pan prognostic clo-

sure) that the bulk CKE can be used to diagnose the
updraft mass flux.

It has been shown, from dimensional arguments, that
the bulk CKE dissipation timescale is inversely pro-
portional to the square root of the bulk CKE itself; that
is, the dissipation timescale is shorter for more vigorous
convective events. We also found that the convective
velocity scale can be uniquely estimated from the CAPE
of the thermodynamic sounding taken right before the
convective event.

We have to caution, however, that the results pre-
sented in this paper are based on a single simulation of
one particular period of deep continental convection
over the Southern Great Plains of the United States.
Although the dynamical characteristics of several con-
vective events that occurred during that particular period
do appear to be quite similar, we do not suggest that
the same similarity profiles would apply to any type of
deep convection over wide variety of thermodynamic
conditions and geographical locations. In fact, our pre-
liminary analysis of simulated convection based on the
Global Atmospheric Research Program (GARP) Atlan-
tic Tropical Experiment (GATE) Phase III data shows
a generally poor scalability of the dynamical charac-
teristics using the convective scales introduced in this
paper. The ARM convection events considered in this
study represent the cases of explosive deep continental
convection responding to very strong but brief forcing,
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and dominated by a particular type of a deep convective
system (a squall line, for example). The GATE con-
vection represents tropical maritime convection modu-
lated by the weakened African squall lines with almost
continuous precipitation produced by an ensemble of
various cloud types coexisting on a rather wide range
of spatial and temporal scales. Therefore, it is rather
difficult to extract a well defined convective event as
we were easily able to do in the case of the ARM con-
vection. The poor similarity of the simulated GATE con-
vection may be due to ‘‘cross contamination’’ of the
convective statistics by various convective types inter-
acting in some complicated way. Each of those con-
vective types, however, may still have dynamical sim-
ilarity properties of its own. Future research may clarify
this issue.
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